
http://www.aimspress.com/journal/Math

AIMS Mathematics, 10(2): 4374–4411.
DOI: 10.3934/math.2025202
Received: 24 December 2024
Revised: 09 February 2025
Accepted: 18 February 2025
Published: 28 February 2025

Research article

Novel solitary wave solutions of the (3+1)–dimensional nonlinear
Schrödinger equation with generalized Kudryashov self–phase modulation

Nafissa Toureche Trouba1,2, Mohamed E. M. Alngar3, Reham M. A. Shohib4, Haitham A.
Mahmoud5, Yakup Yildirim6,7,*, Huiying Xu1,* and Xinzhong Zhu1,8

1 School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004, China
2 Zhejiang Institute of Photoelectronics, Jinhua, Zhejiang 321004, China
3 Department of Mathematics Education, Faculty of Education & Arts, Sohar University, Sohar 3111,

Oman
4 Basic Science Department, Higher Institute of Management Sciences & Foreign Trade, Cairo, 379,

Egypt
5 Industrial Engineering Department, College of Engineering, King Saud University, Riyadh 11421,

Saudi Arabia
6 Department of Computer Engineering, Biruni University, Istanbul–34010, Turkey
7 Mathematics Research Center, Near East University, 99138 Nicosia, Cyprus
8 College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035,

China

* Correspondence: Email: yakupyildirim110@gmail.com; xhy@zjnu.edu.cn.

Abstract: This paper investigates the (3+1)-dimensional nonlinear Schrödinger equation,
incorporating cross-spatial dispersion and a generalized form of Kudryashov’s self-phase modulation.
Using the generalized Jacobi elliptic method, we systematically derive novel soliton solutions
expressed in terms of Jacobi elliptic and Weierstrass elliptic functions, providing deeper insights into
wave dynamics in nonlinear optical media. The obtained solutions exhibit diverse structural
transformations governed by the parameter (n) known as full nonlinearity, encompassing optical
bullet solutions, optical domain wall solutions, singular solitons, and periodic solutions. Furthermore,
we discuss the potential experimental realization of these solitonic structures in ultrafast fiber lasers
and nonlinear optical systems, drawing connections to recent experimental findings. To facilitate a
comprehensive understanding of their physical properties, we present detailed three-dimensional
(3D), two-dimensional (2D), and contour visualizations, highlighting the interplay among dispersion,
nonlinearity, and self-modulation effects. These results offer new perspectives on soliton interactions
and have significant implications for optical communication, signal processing, and nonlinear wave
phenomena.
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1. Introduction

Nonlinear optics is a vibrant and dynamic field within optical science that pushes beyond the
constraints of linear optical phenomena [1,2]. It delves into the complex interplay between intense
light and matter, giving rise to a plethora of intriguing nonlinear effects. These effects present
unparalleled opportunities for manipulating and controlling light, with applications spanning various
disciplines including telecommunications, imaging, and signal processing. Among the captivating
nonlinear phenomena are optical bullets and domain walls [3,4]. These are localized structures
characterized by unique properties that have versatile applications. Optical bullets and domain walls
are particularly significant due to their potential impact on telecommunications and signal processing
technologies. The behavior and stability of optical solitons, dromions, bullets, and domain walls are
determined by the delicate balance between chromatic dispersion (CD) and self-phase modulation
(SPM) [5,6]. CD refers to the phenomenon where different wavelengths of light travel at different
speeds through a medium, while SPM is the change in the phase of an optical wave caused by its
interaction with a nonlinear medium. Understanding the interplay between CD and SPM is crucial for
controlling the dynamics of optical structures. The concept of SPM, initially introduced by
Kudryashov, has emerged as a pivotal aspect of nonlinear optics [7–9]. It provides a powerful
mechanism for altering the dynamics of an optical system by modulating the phase of the medium in
response to intense optical fields. Building upon prior research [10–13], recent studies have focused
on exploring cross-spatial dispersive effects to uncover new behaviors of optical soliton solutions. By
formulating a novel Schrödinger equation in three dimensions, researchers have expanded the
theoretical framework of nonlinear optics, opening up new avenues for investigation and application
[14–19]. In this expanded framework, CD extends along three spatial directions, leading to pairwise
cross-spatial dispersion effects and a total of six dispersive effects [20–22]. Additionally,
Kudryashov’s innovative form of SPM introduces eight coupled SPM effects alongside the dispersion
effects in the Schrödinger equation [23,24]. The primary goal of recent research endeavors is to utilize
the generalized Jacobi elliptic method [25,26] to derive solutions for various optical structures in
(3+1) dimensions. These structures include Jacobi elliptic functions, optical bullets, domain walls,
singular solitons, Weierstrass elliptic functions, and periodic structures. By employing advanced
mathematical techniques, researchers aim to deepen our understanding of light propagation in
complex media and uncover new insights into the behavior of optical structures. The contributions of
these studies extend beyond theoretical advancements. They include the extension of the Schrödinger
equation to (3+1) dimensions, the development of a comprehensive dispersion model, the
introduction of a novel SPM effect, and the exploration of the coupling between dispersion and SPM
effects. The insights provided by these investigations not only enrich our foundational understanding
of nonlinear optical systems but also hold significant promise for practical applications in ultrafast
all-optical signal processing. By harnessing the unique properties of optical bullets, researchers aim to
advance high-speed data transmission and storage technologies, paving the way for innovative
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developments in telecommunications and information technology.
In this study, our focus centers on delving into the intricacies of the extended (3+1)-dimensional

nonlinear Schrödinger equation (NLSE), a fundamental mathematical framework that governs the
behavior of optical systems in complex media. The NLSE is a cornerstone in nonlinear optics,
providing a powerful tool for understanding the propagation of intense light through nonlinear
materials. The extension to (3+1) dimensions is a significant advancement that allows for a more
comprehensive modeling of optical phenomena. By incorporating an additional spatial dimension,
researchers can capture the full complexity of light propagation in three-dimensional (3D) space,
along with the temporal dimension. Central to our investigation is the incorporation of
cross-spatio-dispersion effects into the NLSE formulation. Spatio-dispersion refers to the spatial
variation of dispersion characteristics within a medium. In other words, different regions of space
may exhibit varying degrees of dispersion, influencing the behavior of optical waves as they
propagate. Moreover, we integrate Kudryashov’s proposed form of SPM into the NLSE framework.
SPM, a nonlinear optical effect, describes the modulation of the phase of an optical wave as it
interacts with a nonlinear medium. Kudryashov’s proposed form of SPM introduces additional
complexity and richness to the NLSE model, enabling a more accurate representation of real-world
optical systems. Our approach builds upon prior works, which have laid the groundwork for
extending the NLSE to (3+1) dimensions and incorporating cross spatio-dispersion effects and
Kudryashov’s form of SPM. These works have demonstrated the feasibility and importance of
considering these factors in understanding optical phenomena in multidimensional space. By
investigating the extended (3+1)-dimensional NLSE with cross-spatio-dispersion and Kudryashov’s
SPM, we aim to gain deeper insights into the behavior of optical structures such as optical bullets,
domain walls, and solitons. Through mathematical analysis and numerical simulations, we seek to
elucidate how these structures evolve and interact in three-dimensional space-time, taking into
account the intricate interplay among dispersion, nonlinearity, and spatial variation. Lastly, our study
contributes to the advancement of nonlinear optics by refining theoretical models and enhancing our
understanding of light–matter interactions in multidimensional media. The insights gained from this
investigation may have far-reaching implications for various applications, including optical
communication, signal processing, and quantum information processing.

The model equation is introduced below:

iQt −
(

a1Qxx + a2Qyy + a3Qzz + 2a4Qxy − 2a5Qxz − 2a6Qyx

)
+

(
b1|Q|−n + b2|Q|−2n + b3|Q|−3n + b4|Q|−4n + c1|Q|n + c2|Q|2n + c3|Q|3n + c4|Q|4n

)
Q = 0.

(1)

In the context of the extended (3+1)-dimensional NLSE with cross-spatio-dispersion and
Kudryashov’s proposed form of SPM, the function Q(x, y, z, t) serves as a crucial component. This
function represents complex-valued wave profiles, with t representing the temporal variable and x, y,
and z representing the spatial variables. The imaginary unit i is defined as i2 = −1, allowing for
complex-valued representations of wave profiles. Within the NLSE framework, the coefficients a j

(where j ranges from 1 to 6), bk, and ck (where k ranges from 1 to 4) are constants that play significant
roles in shaping the behavior of the optical system. These coefficients govern various aspects of the
optical properties, including CD and SPM. The coefficient a1 specifically represents CD, a
phenomenon where different wavelengths of light propagate at different speeds through a medium.
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This dispersion is influenced by the coefficients a2, a3, a4, a5, and a6, which contribute to
cross-spatio-dispersion effects. Cross-spatio-dispersion refers to the spatial variation of dispersion
characteristics across different dimensions, adding complexity to the dispersion profile and affecting
how optical waves propagate in multidimensional space [20–22]. These terms account for interactions
between spatial coordinates, reflecting the coupling between different dispersion directions. In
particular:

• a2Qyy and a3Qzz represent second-order dispersion along the y- and z-axes, similar to the
conventional chromatic dispersion term a1Qxx.
• a4Qxy, a5Qxz, and a6Qyz introduce mixed partial derivatives, which describe how dispersion in one

direction influences another. These terms are crucial for modeling complex wave interactions in
an isotropic or in homogeneous optical media.

The numerical coefficients (such as 1 and 2) appearing in front of these terms in Eq (1) originate
from the derivation process of the equation from higher-order NLSE formulations. These prefactors
ensure the correct scaling of each term, preserving the fundamental balance between dispersion and
nonlinearity. Specifically, the factors of 2 in front of some cross-terms arise due to the symmetry
properties of second-order mixed derivatives:

Qxy = Qyx, Qxz = Qzx, Qyz = Qzy.

This symmetry leads to the standard form of Eq (1), where the cross-dispersion terms appear with
appropriate coefficients. Additionally, the coefficients bk and ck contribute to SPM, a nonlinear optical
effect where the phase of an optical wave is modulated as it interacts with a nonlinear medium. These
coefficients govern the strength and nature of the SPM effect, influencing how the phase of the optical
wave evolves over time and space. In Eq (1), the terms involving bk and ck describe the nonlinear
response of the medium [7,9]. SPM is a nonlinear optical effect where the phase of an optical wave is
modulated due to the intensity-dependent refractive index of the medium. In the context of our model,
both the positive and negative powers of Q contribute to this effect for the following reasons.

1) Nonlinear refractive index modulation:

• The positive power terms (e.g., c1|Q|n, c2|Q|2n, etc.) represent the conventional self-focusing
effect, where the refractive index increases with the field intensity. This is a well-known
feature of materials exhibiting Kerr-type nonlinearity.
• The negative power terms (e.g., b1|Q|−n, b2|Q|−2n, etc.) introduce additional nonlinear

effects, which can be interpreted as higher-order nonlinear contributions, typically seen in
some specially engineered optical materials where low-intensity regions experience
different phase shifts.

2) Balance between self-focusing and defocusing effects:

• The coexistence of both positive and negative power terms implies a competition between
self-focusing and defocusing effects, which significantly alters the wave dynamics. The
presence of inverse power nonlinearities can lead to novel soliton solutions, including
singular solitons and periodic structures.
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• This interplay enables a more generalized form of SPM, allowing for a richer variety of wave
interactions, including those relevant to optical bullets and domain walls.

3) Generalized Kudryashov SPM model:

• The equation incorporates Kudryashov’s extended SPM framework, where nonlinearity is
not solely dependent on direct power laws but includes inverse nonlinear terms as well.
• This generalization allows the model to describe complex nonlinear interactions in optical

systems, particularly in non-Kerr media, where deviations from standard cubic nonlinearity
arise.

Lastly, the nonlinearity index n denotes the power law parameter, which characterizes the
nonlinearity of the medium. The value of n determines the degree of nonlinearity in the NLSE,
impacting the formation and stability of optical structures such as solitons, domain walls, and optical
bullets. Therefore, the coefficients a j, bk, and ck in the extended NLSE with cross-spatio-dispersion
and Kudryashov’s SPM form the foundational elements that govern the behavior of optical waves in
multidimensional space. Understanding the roles of these coefficients is essential for analyzing and
predicting the dynamics of nonlinear optical phenomena and their applications in various fields such
as telecommunications, imaging, and signal processing.

The study of nonlinear wave dynamics in higher-dimensional systems is crucial for understanding
various physical phenomena. In this work, we focus on the (3+1)-dimensional nonlinear Schrödinger
equation, which is relevant to soliton propagation in optical fibers and Bose–Einstein condensates. Our
research introduces new solutions and explores the effects of modulation and dispersion on soliton
behavior.

We derive novel Jacobi elliptic and Weierstrass elliptic function solutions for the
(3+1)-dimensional nonlinear Schrödinger equation, providing new insights into soliton dynamics.
Additionally, we present a generalized Kudryashov self-phase modulation (SPM) model that includes
both focusing and defocusing effects, offering a more comprehensive description of nonlinear wave
behavior. We also examine the role of cross-spatial dispersion terms in shaping soliton structures,
contributing to a deeper understanding of soliton interactions in multidimensional optical systems.
Finally, we connect our theoretical findings to recent experimental studies on soliton interactions in
ultrafast fiber lasers, emphasizing the practical implications of our results. These advancements
enhance our understanding of soliton dynamics in multidimensional systems and have potential
applications in optical technologies.

The structure of this paper is carefully designed to provide a systematic exploration of the
extended (3+1)-dimensional NLSE with cross-spatio-dispersion and Kudryashov’s proposed form of
SPM. Each section of the paper contributes distinctively to our understanding of the model and its
implications. Section 2 delves into an extensive mathematical analysis of the extended NLSE. It
involves deriving the equations governing chromatic dispersion, self-phase modulation, and
nonlinearity, as well as exploring the implications of cross-spatio-dispersion on the behavior of optical
waves. This analysis provides the theoretical foundation for the subsequent sections. In Section 3, the
paper describes the integration method employed to solve the extended NLSE. The generalized Jacobi
elliptic method is introduced as a powerful mathematical technique for finding analytical solutions to
nonlinear partial differential equations. The section explains the principles of the method and its
application to the NLSE. Building upon the theoretical framework established in the previous
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sections, Section 4 focuses on the practical implementation of the integration method to the model
equation derived in Section 2. The goal is to derive novel soliton solutions that capture the behavior of
optical structures such as optical bullets and domain walls in multidimensional space. In Section 5,
the paper presents the results obtained via the integration method and provides comprehensive plots
illustrating the behavior of optical solitons, domain walls, and other structures predicted by the model.
The discussion interprets these results, highlighting key findings, comparing them with existing
literature, and exploring their implications for nonlinear optics and related fields. Finally, Section 6
concludes by summarizing the main findings and contributions of the study. It discusses the
significance of the results in advancing our understanding of nonlinear optical systems and outlines
potential avenues for future research. The section emphasizes the importance of the extended NLSE
with cross-spatio-dispersion and Kudryashov’s SPM in addressing complex optical phenomena and
its relevance to practical applications in telecommunications, signal processing, and beyond.

2. Mathematical analysis

In order to address this objective, we propose that the exact solution to Eq (1) can be articulated in
the following manner:

Q(x, y, z, t) = Φ(ζ) exp[i𭟋(x, y, z, t)], (2)

where Φ(ζ) = Φ, and 𭟋(x, y, z, t) represent real-valued functions, satisfying the condition:

ζ = β1x + β2y + β3z − vt, 𭟋(x, y, z, t) = −κ1x − κ2y − κ3z + ωt + ζ0. (3)

Here, the symbol v denotes the velocity of the soliton, along the x, y, and z axes, while the wave
numbers are symbolized by κ1, κ2, and κ3, respectively. Additionally, ζ0 represents the phase constant,
and ω signifies the frequency. In the context of an optical bullet, β1, β2, and β3 denote the directional
ratios, indicating the widths along the three spatial dimensions. Upon substituting Eqs (2) and (3) into
Eq (1) and separating it into its real and imaginary components, we have:

ℜ : −
(
a1β

2
1 + a2β

2
2 + a3β

2
3 + 2a4β1β2 − 2a5β1β3 − 2a6β2β3

)
Φ′′

+
(
−ω + a1κ

2
1 + a2κ

2
2 + a3κ

2
3 + 2a4κ1κ2 − 2a5κ1κ3 − 2a6κ2κ3

)
Φ

+b1Φ
1−n + b2Φ

1−2n + b3Φ
1−3n + b4Φ

1−4n + c1Φ
1+n + c2Φ

1+2n + c3Φ
1+3n + c4Φ

1+4n = 0,

(4)

and

ℑ :
[
−v + 2β1 (a1κ1 + a4κ2 − a5κ3) + 2β2 (a2κ2 + a4κ1 − a6κ3) + 2β3 (a3κ3 − a5κ1 − a6κ2)

]
Φ′ = 0. (5)

Based on Eq (5), one can infer

v = 2β1 (a1κ1 + a4κ2 − a5κ3) + 2β2 (a2κ2 + a4κ1 − a6κ3) + 2β3 (a3κ3 − a5κ1 − a6κ2) . (6)

To obtain solutions in a closed form, we consider the following transformation:

Φ(ζ) =
[
U(ζ)

] 1
2n , (7)
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assuming that U(ζ) is positive. By substituting Eq (7) into Eq (4), we obtain:

2nΠ1 U(ζ)U′′(ζ) + (1 − 2n)Π1
[
U′(ζ)

]2
+ 4n2 (Π2 − ω) U2(ζ) + 4n2b1 U

3
2 (ζ) + 4n2b2 U(ζ)

+4n2b3 U
1
2 (ζ) + 4n2b4 + 4n2c1 U

5
2 (ζ) + 4n2c2 U3(ζ) + 4n2c3 U

7
2 (ζ) + 4n2c4 U4(ζ) = 0,

(8)

where
Π1 = −

(
a1β

2
1 + a2β

2
2 + a3β

2
3 + 2a4β1β2 − 2a5β1β3 − 2a6β2β3

)
,

Π2 = a1κ
2
1 + a2κ

2
2 + a3κ

2
3 + 2a4κ1κ2 − 2a5κ1κ3 − 2a6κ2κ3.

(9)

To guarantee integrability, it is crucial to carefully select

b1 = b3 = c1 = c3 = 0. (10)

Hence, Eq (8) becomes

2nΠ1 U(ζ)U′′(ζ) + (1 − 2n)Π1
[
U′(ζ)

]2
+ 4n2 (Π2 − ω) U2(ζ)

+4n2b2 U(ζ) + 4n2b4 + 4n2c2 U3(ζ) + 4n2c4 U4(ζ) = 0.
(11)

3. Generalized Jacobi elliptic method

We suggest that Eq (11) has the following formal solution:

U(ζ) = γ0 +

N∑
j=1

γ j φ
j(ζ), (12)

where N is a positive integer belonging to the set of positive integers (Z+), and γ j (where j ranges from
0 to N) is a constant, with the condition that γN , 0. Additionally, φ(ζ) is the solution of the equation:

φ′2(ζ) = χ0 + χ2 φ
2(ζ) + χ4 φ

4(ζ). (13)

The constants χ0, χ2, and χ4 are parameters. It is widely acknowledged that Eq (13) allows the
following solutions to be expressed in terms of generalized Jacobian elliptic functions (GJEFs).

Type 1. χ0 =
m2(m2 − 1)χ2

2(
2m2 − 1

)2 χ4

, 0 < m < 1, and

φ(ζ) =



±m
√
−

χ2(
2m2 − 1

)
χ4

cn
(√

χ2

2m2 − 1
ζ

)
,

(
2m2 − 1

)
χ2 > 0, χ4 < 0,

±

√ (
1 − m2

)
χ2(

2m2 − 1
)
χ4

nc
(√

χ2

2m2 − 1
ζ

)
,

(
2m2 − 1

)
χ2 > 0, χ4 > 0,

±m

√
−

(
1 − m2

)
χ2(

2m2 − 1
)
χ4

sd
(√

χ2

2m2 − 1
ζ

)
,

(
2m2 − 1

)
χ2 > 0, χ4 < 0,

±

√
χ2(

2m2 − 1
)
χ4

ds
(√

χ2

2m2 − 1
ζ

)
,

(
2m2 − 1

)
χ2 > 0, χ4 > 0.

(14)
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Type 2. χ0 =
m2χ2

2(
1 + m2)2 χ4

, 0 < m < 1, and

φ(ζ) =



±m
√
−

χ2(
1 + m2) χ4

sn
(√
−
χ2

1 + m2 ζ

)
, χ2 < 0, χ4 > 0,

±

√
−

χ2(
1 + m2) χ4

ns
(√
−
χ2

1 + m2 ζ

)
, χ2 < 0, χ4 > 0,

±m
√
−

χ2(
1 + m2) χ4

cd
(√
−
χ2

1 + m2 ζ

)
, χ2 < 0, χ4 > 0,

±

√
−

χ2(
1 + m2) χ4

dc
(√
−
χ2

1 + m2 ζ

)
, χ2 < 0, χ4 > 0.

(15)

Type 3. χ0 =
(1 − m2)χ2

2(
2 − m2)2 χ4

, 0 < m < 1, and

φ(ζ) =



±

√
−

χ2(
2 − m2) χ4

dn
(√

χ2

2 − m2 ζ

)
, χ2 > 0, χ4 < 0,

±

√
−

(
1 − m2

)
χ2(

2 − m2) χ4
nd

(√
χ2

2 − m2 ζ

)
, χ2 < 0, χ4 < 0,

±

√
χ2(

2 − m2) χ4
cs

(√
χ2

2 − m2 ζ

)
, χ2 > 0, χ4 > 0,

±

√(
1 − m2

)
χ2(

2 − m2) χ4
sc

(√
χ2

2 − m2 ζ

)
, χ2 > 0, χ4 > 0.

(16)
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Type 4. χ0 =
(1 − m2)2χ2

2

4
(
1 + m2)2 χ4

, 0 < m < 1, and

φ(ζ) =



±

√
−

χ2

2
(
1 + m2) χ4

mcn
√ 2χ2

1 + m2 ζ

 ± dn
√ 2χ2

1 + m2 ζ

 , χ2 > 0, χ4 < 0,

±

√
−

(
1 − m2

)
χ2

2
(
1 + m2) χ4

msd
√ 2χ2

1 + m2 ζ

 ± nd
√ 2χ2

1 + m2 ζ

 , χ2 > 0, χ4 < 0,

±

√ (
1 − m2

)
χ2

2
(
1 + m2) χ4

nc
√ 2χ2

1 + m2 ζ

 ± sc
√ 2χ2

1 + m2 ζ

 , χ2 > 0, χ4 > 0,

±

√ (
1 − m2

)
χ2

2
(
1 + m2) χ4

cn
√ 2χ2

1 + m2 ζ

 1 ± sn
√ 2χ2

1 + m2 ζ

−1

, χ2 > 0, χ4 > 0.

(17)

Type 5. χ0 =
m4χ2

2

4
(
2 − m2)2 χ4

, 0 < m < 1, and

φ(ζ) =
√
−

χ2

2
(
2 − m2) χ4

√1 − m2nc
√− 2χ2

2 − m2 ζ

 ± dc
√− 2χ2

2 − m2 ζ

 , χ2 < 0, χ4 > 0. (18)

Type 6. Equation (13) also possesses the following solutions expressed in terms of Weierstrass elliptic
functions (WEFs):

φ(ζ) =


3℘′ (ζ, l2, l3)

√
χ4

[
6℘ (ζ, l2, l3) + χ2

] , χ4 > 0,

√
χ0

[
6℘ (ζ, l2, l3) + χ2

]
3℘′ (ζ, l2, l3)

, χ0 > 0,

(19)

where

l2 = χ0χ4 +
χ2

2

12
and l2 =

χ2

(
36l0χ4 − χ

2
2

)
216

. (20)

Here, ℘ (ζ, l2, l3) denotes a WEF, and ℘′ (ζ, l2, l3) = d℘(ζ,l2,l3)
dζ . This function satisfies the equation

℘′2 = 4℘3 − l2℘ − l3, where l2 and l3 are referred to as the invariants of the WEF.

4. Novel solitary wave solutions

By employing the balance technique between U(ζ)U′′(ζ) and U4(ζ) as described in Eq (11), we
obtain N = 1, resulting in the following expression for the solution:

U(ζ) = γ0 + γ1 φ(ζ). (21)

AIMS Mathematics Volume 10, Issue 2, 4374–4411.



4383

Incorporating Eq (21) along with Eq (12) into Eq (11), we obtain the following set of algebraic
equations:

4
[
c4γ

4
0 + c2γ

3
0 + (Π2 − ω)γ2

0 + b2γ0 + b4

]
n2 − 2Π1γ

2
1nχ0 + Π1γ

2
1χ0 = 0,

4
[
γ2

1(c2 + 4c4γ0)n + χ4γ0Π1

]
nγ1 = 0,(

4c4n2γ2
1 + 2Π1nχ4 + Π1χ4

)
γ2

1 = 0,
8
[
16c4γ

3
0 + 12c2γ

2
0 + 8(Π2 − ω)γ0 + 4b2

]
n2γ1 + 2nΠ1γ0γ1χ2 = 0,[

4(3c2γ0 + Π2 − ω + 6c4γ
2
0)n2 + χ2Π1

]
γ2

1 = 0.


(22)

Result 1. When setting χ0 =
m2(m2 − 1)χ2

2(
2m2 − 1

)2 χ4

in Eq (22) and solving it with Maple, the following results

are revealed:

γ0= −
c2 (2 n + 1)
4c4 (n + 1)

, γ0 = ±
1

2n

√
−

(2 n + 1)Π1χ4

c4
, χ2 =

[
16 (n + 1)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
n2

2 (n + 1)2 (n − 1) (2 n + 1)Π1c2c4
,

(23)
and

ω =
4 (n + 1)2 (n − 1) (2 n + 1)Π2c2c4 + 8 (n + 1)3 b2c2

4 −
(
4 n3 − 3 n − 1

)
c3

2

4 (n + 1)2 (n − 1) (2 n + 1) c2c4
,

b4 =
(2 n−1)

{
(2n+1)2(n−1)[32 (n+1)3b2c3

2c2
4+(2n+1)2(n−1)c6

2]+1024(1−m2)(n+1)6b2
2c4

4

}
256(2m2−1)2(n−1)2(n+1)4(2 n+1)c2

2c3
4

,


(24)

assuming that Π1χ4c4 < 0. By integrating Eq (23) along with Eq (14) into Eq (21), it follows that
Eq (1) presents the following solutions in accordance with the Jacobian elliptic function (JEF):

Q(x, y, z, t) =


−

(2 n+1)c2
4(1+n)c4

± m
2(1+n)c4

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(2 m2−1)(n−1)c2

× cn
(

n
(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(2 m2−1)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)


1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(25)

provided that
(
2 m2 − 1

)
c2

[
16 (1 + n)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
> 0 and Π1c4 > 0.

Q(x, y, z, t) =


−

(2 n+1)c2
4(1+n)c4

± 1
2(1+n)c4

√
−

(1−m2)[16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2]
2(2 m2−1)(n−1)c2

× nc
(

n
(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(2 m2−1)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)


1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(26)
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provided that
(
2 m2 − 1

)
c2

[
16 (1 + n)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
< 0 and Π1c4 < 0.

Q(x, y, z, t) =


−

(2 n+1)c2
4(1+n)c4

± m
2(1+n)c4

√
(1−m2)[16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2]

2(2 m2−1)(n−1)c2

× sd
(

n
(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(2 m2−1)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)


1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(27)

provided that
(
2 m2 − 1

)
c2

[
16 (1 + n)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
> 0 and Π1c4 > 0.

Q(x, y, z, t) =


−

(2 n+1)c2
4(1+n)c4

± 1
2(1+n)c4

√
−

16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2

2(2 m2−1)(n−1)c2

× ds
(

n
(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(2 m2−1)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)


1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(28)

provided that
(
2 m2 − 1

)
c2

[
16 (1 + n)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
< 0 and Π1c4 < 0. When m = 1 in

Eqs (25) and (28), it yields the optical bullet solution and the singular soliton solution, respectively

Q(x, y, z, t) =

 −
(2 n+1)c2
4(1+n)c4

± 1
2(1+n)c4

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(n−1)c2

× sech
(

n
(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

) 
1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(29)

and

Q(x, y, z, t) =

 −
(2 n+1)c2
4(1+n)c4

± 1
2(1+n)c4

√
−

16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2
2(n−1)c2

× csch
(

n
(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

) 
1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0).

(30)

When m = 0 in Eqs (26) and (28), it leads to periodic solutions, which are, respectively:

Q(x, y, z, t) =

 −
(2 n+1)c2
4(1+n)c4

± 1
2(1+n)c4

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(n−1)c2

× sec
(

n
(1+n)

√
−

16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2
2(n−1)(2 n+1)Π1c2c4

(β1x + β2y + β3z − vt)
) 

1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(31)
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and

Q(x, y, z, t) =

 −
(2 n+1)c2
4(1+n)c4

± 1
2(1+n)c4

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(n−1)c2

× csc
(

n
(1+n)

√
−

16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2
2(n−1)(2 n+1)Π1c2c4

(β1x + β2y + β3z − vt)
) 

1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0).

(32)

Result 2. When setting χ0 =
m2χ2

2(
1 + m2)2 χ4

in Eq (22) and solving it with Maple, the resulting solution

remains the same as in Eq (23), along with the emergence of the following constraint conditions:

ω =
4 (n + 1)2 (n − 1) (2 n + 1)Π2c2c4 + 8 (n + 1)3 b2c2

4 −
(
4 n3 − 3 n − 1

)
c3

2

4 (n + 1)2 (n − 1) (2 n + 1) c2c4
,

b4 =
(2 n−1)

{
(m2−1)2(2n+1)2(n−1)[32 (n+1)3b2c3

2c2
4+(2n+1)2(n−1)c6

2]−1024m2(n+1)6b2
2c4

4

}
256(m2+1)2(n−1)2(n+1)4(2 n+1)c2

2c3
4

.


(33)

By incorporating Eq (23) along with Eq (15) into Eq (21), it follows that Eq (1) presents the
following solutions in accordance with the JEF

Q(x, y, z, t) =


−

(2 n+1)c2
4(1+n)c4

± m
2(1+n)c4

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(1+m2)(n−1)c2

× sn
(

n
(1+n)

√
−

16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2

2(m2+1)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)


1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(34)

Q(x, y, z, t) =


−

(2 n+1)c2
4(n+1)c4

± 1
2(1+n)c4

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(1+m2)(n−1)c2

× ns
(

n
(1+n)

√
−

16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2

2(m2+1)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)


1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(35)

Q(x, y, z, t) =


−

(2 n+1)c2
4(n+1)c4

± m
2(1+n)c4

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(1+m2)(n−1)c2

× cd
(

n
(1+n)

√
−

16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2

2(m2+1)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)


1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(36)
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Q(x, y, z, t) =


−

(2 n+1)c2
4(n+1)c4

± 1
2(1+n)c4

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(1+m2)(n−1)c2

× dc
(

n
(1+n)

√
−

16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2

2(m2+1)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)


1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(37)

provided that c2

[
16 (1 + n)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
> 0 and Π1c4 < 0.

When m = 1 in Eqs (34) and (35), it leads to the optical domain wall solution and the singular
soliton solution, respectively

Q(x, y, z, t) =

 −
(2 n+1)c2
4(1+n)c4

± 1
4(1+n)c4

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

(n−1)c2

× tanh
(

n
2(1+n)

√
−

16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2
(n−1)(2 n+1)Π1c2c4

(β1x + β2y + β3z − vt)
) 

1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(38)

and

Q(x, y, z, t) =

 −
(2 n+1)c2
4(1+n)c4

± 1
4(1+n)c4

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

(n−1)c2

× coth
(

n
2(1+n)

√
−

16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2
(n−1)(2 n+1)Π1c2c4

(β1x + β2y + β3z − vt)
) 

1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0).

(39)

Result 3. When setting χ0 =
(1 − m2)χ2

2(
2 − m2)2 χ4

in Eq (22) and solving it with Maple, the resulting solution

remains the same as in Eq (23), along with the emergence of the following constraint conditions:

ω =
4 (n + 1)2 (n − 1) (2 n + 1)Π2c2c4 + 8 (n + 1)3 b2c2

4 −
(
4 n3 − 3 n − 1

)
c3

2

4 (n + 1)2 (n − 1) (2 n + 1) c2c4
,

b4 =
(2 n−1){m4(2n+1)2(n−1)[32 (n+1)3b2c3

2c2
4+(2n+1)2(n−1)c6

2]−1024(1−m2)(n+1)6b2
2c4

4}

256(2−m2)2(n−1)2(n+1)4(2 n+1)c2
2c3

4

.


(40)

By incorporating Eq (23) along with Eq (16) into Eq (21), it follows that Eq (1) presents the
following solutions in accordance with the JEF:

Q(x, y, z, t) =


−

(2 n+1)c2
4(1+n)c4

± 1
2(1+n)c4

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(2−m2)(n−1)c2

× dn
(

n
(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(2−m2)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)


1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(41)
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provided that c2

[
16 (1 + n)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
> 0 and Π1c4 > 0.

Q(x, y, z, t) =


−

(2 n+1)c2
4(1+n)c4

± 1
2(1+n)c4

√
(1−m2)[16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2]

2(2−m2)(n−1)c2

× nd
(

n
(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(2−m2)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)


1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(42)

provided that c2

[
16 (1 + n)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
> 0 and Π1c4 > 0.

Q(x, y, z, t) =


−

(2 n+1)c2
4(1+n)c4

± 1
2(1+n)c4

√
−

16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2

2(2−m2)(n−1)c2

× cs
(

n
(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(2−m2)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)


1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(43)

provided that c2

[
16 (1 + n)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
< 0 and Π1c4 < 0.

Q(x, y, z, t) =


−

(2 n+1)c2
4(1+n)c4

± 1
2(1+n)c4

√
−

(1−m2)[16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2]
2(2−m2)(n−1)c2

× sc
(

n
(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(2−m2)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)


1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(44)

provided that c2

[
16 (1 + n)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
< 0 and Π1c4 < 0.

When m = 0 in Eqs (43) and (44), it leads to periodic solutions, respectively

Q(x, y, z, t) =

 −
(2 n+1)c2
4(1+n)c4

± 1
4(1+n)c4

√
−

[16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2]
(n−1)c2

× cot
(

n
2(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

) 
1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(45)

and

Q(x, y, z, t) =

 −
(2 n+1)c2
4(1+n)c4

± 1
4(1+n)c4

√
−

[16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2]
(n−1)c2

× tan
(

n
2(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

) 
1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0).

(46)
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Result 4. When setting χ0 =
(1 − m2)2χ2

2

4
(
1 + m2)2 χ4

in Eq (22) and solving it with Maple, the resulting solution

remains the same as in Eq (23), along with the emergence of the following constraint conditions:

ω =
4 (n + 1)2 (n − 1) (2 n + 1)Π2c2c4 + 8 (n + 1)3 b2c2

4 −
(
4 n3 − 3 n − 1

)
c3

2

4 (n + 1)2 (n − 1) (2 n + 1) c2c4
,

b4 =
(2 n−1)

{
m2(2n+1)2(n−1)[32 (n+1)3b2c3

2c2
4+(2n+1)2(n−1)c6

2]−64(1−m2)2(n+1)6b2
2c4

4

}
64(1+m2)2(n−1)2(n+1)4(2 n+1)c2

2c3
4

.


(47)

By incorporating Eq (23) along with Eq (17) into Eq (21), it follows that Eq (1) presents the
following solutions in accordance with the JEF:

Q(x, y, z, t) =



−
(2 n+1)c2
4(1+n)c4

± 1
4(1+n)c4

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

(1+m2)(n−1)c2

×


m cn

(
n

(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

(1+m2)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)

±dn
(

n
(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

(1+m2)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)




1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(48)

provided that c2

[
16 (1 + n)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
> 0 and Π1c4 > 0.

Q(x, y, z, t) =



−
(2 n+1)c2
4(1+n)c4

± 1
4(1+n)c4

√
(1−m2)[16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2]

(1+m2)(n−1)c2

×


m sd

(
n

(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

(1+m2)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)

±nd
(

n
(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

(1+m2)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)




1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(49)

provided that c2

[
16 (1 + n)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
> 0 and Π1c4 > 0.

Q(x, y, z, t) =



−
(2 n+1)c2
4(1+n)c4

± 1
4(1+n)c4

√
−

(1−m2)[16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2]
(1+m2)(n−1)c2

×


nc

(
n

(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

(1+m2)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)

±sc
(

n
(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

(1+m2)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)




1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(50)
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provided that c2

[
16 (1 + n)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
< 0 and Π1c4 < 0.

Q(x, y, z, t) =



−
(2 n+1)c2
4(1+n)c4

± 1
4(1+n)c4

√
−

(1−m2)[16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2]
(1+m2)(n−1)c2

×


cn

(
n

(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

(1+m2)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)
1 ± sn

(
n

(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

(1+m2)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)




1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(51)

provided that c2

[
16 (1 + n)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
< 0 and Π1c4 < 0.

When m = 0 in Eqs (50) and (51), it results in the periodic solutions, respectively:

Q(x, y, z, t) =



−
(2 n+1)c2
4(1+n)c4

± 1
4(1+n)c4

√
−

[16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2]
2(n−1)c2

×


sec

(
n

(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)

±tan
(

n
(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

2(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)




1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(52)

and

Q(x, y, z, t) =



−
(2 n+1)c2
4(1+n)c4

± 1
4(1+n)c4

√
−

[16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2]
(n−1)c2

×


cos

(
n

(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)
1 ± sin

(
n

(1+n)

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)




1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0).

(53)

Result 5. When setting χ0 =
m4χ2

2

4
(
2 − m2)2 χ4

in Eq (22) and solving it with Maple, the resulting solution

remains the same as in Eq (23), along with the emergence of the following constraint conditions:

ω =
4 (n + 1)2 (n − 1) (2 n + 1)Π2c2c4 + 8 (n + 1)3 b2c2

4 −
(
4 n3 − 3 n − 1

)
c3

2

4 (n + 1)2 (n − 1) (2 n + 1) c2c4
,

b4 =
(2 n−1){(1−m2)(2n+1)2(n−1)[32 (n+1)3b2c3

2c2
4+(2n+1)2(n−1)c6

2]−64m4(n+1)6b2
2c4

4}

64(2−m2)2(n−1)2(n+1)4(2 n+1)c2
2c3

4

.


(54)
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By incorporating Eq (23) along with Eq (18) into Eq (21), it follows that Eq (1) presents the
following solutions in accordance with the JEF:

Q(x, y, z, t) =



−
(2 n+1)c2
4(1+n)c4

± 1
4(1+n)c4

√
16 (1+n)3b2c2

4+(4 n3−3 n−1)c3
2

(2−m2)(n−1)c2

×



√
1 − m2 nc

(
n

(1+n)

√
−

16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2

(2−m2)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)

±dc
(

n
(1+n)

√
−

16 (1+n)3b2c2
4+(4 n3−3 n−1)c3

2

(2−m2)(n−1)(2 n+1)Π1c2c4
(β1x + β2y + β3z − vt)

)




1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),
(55)

provided that c2

[
16 (1 + n)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
> 0 and Π1c4 < 0.

Result 6. Solving (22) with Maple reveals the following results:

γ0= −
c2 (2 n + 1)
4c4 (n + 1)

, γ0 = ±
1

2n

√
−

(2 n + 1)Π1χ4

c4
, χ2 =

[
16 (n + 1)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
n2

2 (n + 1)2 (n − 1) (2 n + 1)Π1c2c4
,

χ0 =
[32 (n + 1)3

(
4 n2 − 1

)
b2c2c2

4 − 256 b4c3
4 (n − 1) (n + 1)4 +

(
4 n2 − 1

)
(2 n + 1)2 (n − 1) c4

2]n4

16
(
4 n2 − 1

)
(n + 1)4 (n − 1)Π2

1χ4c2
4

,

(56)
and

ω =
4 (n + 1)2 (n − 1) (2 n + 1)Π2c2c4 + 8 (n + 1)3 b2c2

4 −
(
4 n3 − 3 n − 1

)
c3

2

4 (n + 1)2 (n − 1) (2 n + 1) c2c4
, (57)

assuming that Π1χ4c4 < 0. By integrating Eq (56) along with Eq (19) into Eq (21), it follows that
Eq (1) has the following solutions expressed in terms of WEFs

Q(x, y, z, t) =



−
(2 n+1)c2
4(1+n)c4

± 1
2n

√
−

(2 n + 1)Π1

c4

×
3℘′ (β1x + β2y + β3z − vt, l2, l3)6℘ (β1x + β2y + β3z − vt, l2, l3) +

[
16 (n + 1)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
n2

2 (n + 1)2 (n − 1) (2 n + 1)Π1c2c4





1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),
(58)
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and

Q(x, y, z, t) =



−
(2 n+1)c2
4(1+n)c4

± 1
2n

√
−

(2 n + 1)Π1

c4

×

√
[32 (n+1)3(4 n2−1)b2c2c2

4−256 b4c3
4(n−1)(n+1)4+(4 n2−1)(2 n+1)2(n−1)c4

2]n4

16(4 n2−1)(n+1)4(n−1)Π2
1c2

4

×
12(n+1)2(n−1)(2 n+1)Π1c2c4℘(β1 x+β2y+β3z−vt,l2,l3)+16 n2(n+1)3b2c2

4+n2(4 n3−3 n−1)c3
2

6(n+1)2(n−1)(2 n+1)Π1c2c4℘′(β1 x+β2y+β3z−vt,l2,l3)



1
2n

× ei(−κ1 x−κ2y−κ3z+ωt+ζ0),

(59)

where

l2 =
{n4(2 n−1)[c6

2(n−1)2(2 n+1)4+32(n−1)(n+1)3(2 n+1)2c2
4c3

2b2+64(n+1)6b2
2c4

4]−192 n4c3
4c2

2b4(n−1)2(n+1)4(2 n+1)}
12c2

2c2
4Π

2
1(n−1)2(n+1)4(2 n−1)(2 n+1)2 ,

l3 =
1

216(2 n−1)(2 n+1)3(n+1)6c3
2Π

3
1c3

4(n−1)3

{
−288 n6 (2 n + 1)3 (n − 1)3 (n + 1)4 b4c3

4c5
2

+32n6
[
15 (2 n + 1)2 (n − 1) b2

2c4
4c3

2 − 16 (n + 1)3 b3
2c6

4

]
(2 n − 1) (n + 1)6

−4608 n6 (n + 1)7 (n − 1)2 (2 n + 1) b2b4c2
2c5

4

+
[
48 n6 (n + 1)3 b2c2

4c6
2 + n6 (n − 1) (2 n + 1)2 c9

2

]
(2 n − 1) (n − 1)2 (2 n + 1)4

}
,

(60)

provided that
(
2 m2 − 1

)
c2

[
16 (1 + n)3 b2c2

4 +
(
4 n3 − 3 n − 1

)
c3

2

]
> 0 and Π1c4 > 0.

5. Results and discussion

This section provides an in-depth analysis of the soliton’s behavior and characteristics depicted in
Figures 1–15. The figures illustrate various soliton solutions, including bright solitons, singular
solitons, dark solitons, and periodic solutions, using the time parameter t = 1 and the power
nonlinearity parameters n = 1, 2, and 3. Each set of figures addresses different aspects of the soliton
solutions, including their modulus, real part, and imaginary part, presented through surface plots,
contour plots, and two-dimensional (2D) plots. The parameters used in Figures 1–15 are: β1 = 0.15,
β2 = 0, β3 = 0, a1 = 0.2, a2 = 0.3, a3 = 0.35, a4 = 0.4, a5 = −0.45, a6 = −0.5, κ1 = 0.18, κ2 = 0,
κ3 = 0, b2 = 0.31, b4 = 0.4, n = 1, n = 2, n = 3, ω = 0.55, v = 0.3, and ζ0 = 0.

Figures 1–3 explore the characteristics of the bright soliton described by the complex-valued
solution (29). These figures present the soliton’s modulus, real part, and imaginary part, as influenced
by the power nonlinearity parameters n = 1, n = 2, and n = 3. For n = 1 in Figure 1, the surface plots
in Figure 1(a), (d), and (g) reveal a highly localized bright soliton with a pronounced peak in its
modulus, suggesting strong confinement of energy in space. The contour plots in Figure 1(b), (e), and
(h) exhibit circular symmetry, indicating that the soliton maintains its shape during its evolution. The
2D plots in Figure 1(c), (f), and (i) confirm the stability of the soliton under these conditions, with
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minimal deformation as it propagates through space. In Figure 2, increasing the nonlinearity
parameter to n = 2 results in a broader soliton profile, as shown in the surface plots (Figure 2(a), (d),
and (g)). The energy spreads more widely compared with n = 1, and the contour plots (Figure 2(b),
(e), and (h)) show less pronounced symmetry. The 2D plots (Figure 2(c), (f), and (i)) demonstrate that
while the soliton remains stable, it experiences minor broadening, indicating a stronger influence of
nonlinearity. When the nonlinearity parameter increases to n = 3 (Figure 3), the soliton becomes even
broader, as evidenced by the surface plots (Figure 3(a), (d), and (g)). The contour plots (Figure 3(b),
(e), and (h)) show further weakening of the central peak, and the 2D plots (Figure 3(c), (f), and (i))
reveal a more diffuse structure. This suggests that higher-power nonlinearity induces a significant
broadening effect, making the bright soliton less confined in space.
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Figure 1. Profile of a bright soliton given n = 1.
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(a) Surface plot
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(b) Contour plot

-4 -2 0 2

0.0

0.2

0.4

0.6

0.8

1.0

x

Q
(x
,
t)


t = 1, n = 1

t = 1, n = 2

(c) 2D plot

(d) Surface plot

-1.5 -1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

x

t

Re(Q(x, t))

-0.2

0

0.2

0.4

0.6

0.8

(e) Contour plot

-4 -2 0 2

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

x

R
e
(Q

(x
,
t)
)

t = 1, n = 1

t = 1, n = 2
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Figure 2. Profile of a bright soliton given n = 2.
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(a) Surface plot
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Figure 3. Profile of a bright soliton given n = 3.

Figures 4–6 illustrate the singular soliton’s behavior using the complex-valued solution (30), again
for n = 1, n = 2, and n = 3. Singular solitons are known for their sharp, divergent profiles, and the
figures reveal how these profiles evolve under different nonlinearity conditions. For n = 1 in Figure 4,
the surface plots (Figure 4(a), (d), and (g)) highlight the sharply peaked and highly localized nature of
the singular soliton for n = 1. The soliton’s modulus exhibits a singularity at the core, with the real
and imaginary parts showing steep gradients near this point. The contour plots (Figure 4(b), (e), and
(h)) clearly indicate the divergence at the center, and the 2D plots (Figure 4(c), (f), and (i)) show the
steepness of the soliton, typical of singular solutions. As the nonlinearity increases to n = 2 in Figure
5, the singularity becomes more pronounced, as seen in the surface plots (Figure 5(a), (d), and (g)).
The contour plots (Figures 5(b), (e), and (h)) show that the energy distribution remains tightly confined
to the singularity, and the 2D plots (Figure 5(c), (f), and (i)) reveal a sharper peak than in Figure 4,
demonstrating the enhanced focusing effect of increased nonlinearity. Figure 6 shows that for n = 3,
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the singularity reaches an extreme, with the surface plots (Figure 6(a), (d), and (g)) displaying a very
narrow and highly localized peak. The contour plots (Figure 6(b), (e), and (h)) confirm the intense
confinement of energy around the singularity, while the 2D plots (Figure 6(c), (f), and (i)) depict a
highly steep and sharp structure, characteristic of singular solitons under strong nonlinearity.

(a) Surface plot (b) Contour plot
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Figure 4. Profile of a singular soliton given n = 1.
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(a) Surface plot (b) Contour plot
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Figure 5. Profile of a singular soliton given n = 2.
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(a) Surface plot (b) Contour plot
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Figure 6. Profile of a singular soliton given n = 3.

Figures 7–9 analyze the evolution of dark solitons, which are described by the complex-valued
solution (38). Dark solitons are characterized by a dip in their modulus, surrounded by a flat
background. For n = 1 in Figure 7, the dark soliton exhibits a pronounced dip in its modulus, as
shown in the surface plots (Figure 7(a), (d), and (g)). The real part displays an antisymmetric
structure, while the imaginary part shows a flat profile. The contour plots (Figure 7(b), (e), and (h))
demonstrate that the dark soliton maintains a flat background, and the 2D plots (Figure 7(c), (f), and
(i)) highlight the clear dip in the modulus at the soliton’s center. Increasing n to 2 results in a more
pronounced dip, as illustrated in Figure 8. The surface plots (Figure 8(a), (d), and (g)) show a deeper
trough in the modulus, and the contour plots (Figure 8(b), (e), and (h)) depict a sharper contrast
between the soliton’s center and the surrounding background. The 2D plots (Figure 8(c), (f), and (i))
reveal that the dip becomes more pronounced, indicating the influence of stronger nonlinearity. With
n = 3 (Figure 9), the dark soliton’s dip becomes even deeper, as seen in the surface plots (Figure 9(a),
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(d), and (g)). The contour plots (Figure 9(b), (e), and (h)) show a well-defined trough, and the 2D
plots (Figure 9(c), (f), and (i)) reveal that the dark soliton becomes more pronounced with increasing
nonlinearity, indicating the strong influence of the power nonlinearity parameter on the soliton’s
shape.

(a) Surface plot

-4 -3 -2 -1 0 1 2 3

-2

-1

0

1

x

t

Q(x, t)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Contour plot

-4 -2 0 2

0.0

0.2

0.4

0.6

0.8

1.0

x

Q
(x
,
t)


t = 1, n = 1

(c) 2D plot

(d) Surface plot

-4 -3 -2 -1 0 1 2 3

-2

-1

0

1

x

t

Re(Q(x, t))

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(e) Contour plot

-4 -2 0 2

-1.0

-0.5

0.0

0.5

1.0

x

R
e
(Q

(x
,
t)
)

t = 1, n = 1

(f) 2D plot

(g) Surface plot

-4 -3 -2 -1 0 1 2 3

-2

-1

0

1

x

t

Im(Q(x, t))

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(h) Contour plot

-4 -2 0 2
-1.0

-0.5

0.0

0.5

1.0

x

Im
(Q

(x
,
t)
)

t = 1, n = 1

(i) 2D plot

Figure 7. Profile of a dark soliton given n = 1.
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(a) Surface plot
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Figure 8. Profile of a dark soliton given n = 2.
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Figure 9. Profile of a dark soliton given n = 3.

Figures 10–12 present another set of singular soliton solutions using the complex-valued solution
(39). The characteristics of these solitons are similar to those in Figures 4–6, with the key difference
being the specific form of the solution. For n = 1 in Figure 10, the singularity is prominent, as shown
in the surface plots (Figure 10(a), (d), and (g)). The contour plots (Figure 10(b), (e), and (h)) indicate
the sharp peak characteristic of singular solitons, and the 2D plots (Figure 10(c), (f), and (i)) show the
steep gradient near the singularity. Figure 11 illustrates that for n = 2, the singularity becomes sharper,
as seen in the surface plots (Figure 11(a), (d), and (g)). The contour plots (Figure 11(b), (e), and (h))
show a more localized energy concentration, and the 2D plots (Figure 11(c), (f), and (i)) depict an
increasingly steep gradient at the singularity’s core. In Figure 12, for n = 3, the singularity becomes
extremely sharp and localized, as evidenced by the surface plots (Figure 12(a), (d), and (g)), contour
plots (Figure 12(b), (e), and (h)), and 2D plots (Figure 12(c), (f), and (i)). The soliton’s peak sharpens
significantly, illustrating the strong focusing effect of high-power nonlinearity.
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Figure 10. Profile of a singular soliton given n = 1.
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Figure 11. Profile of a singular soliton given n = 2.
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Figure 12. Profile of a singular soliton given n = 3.

Figures 13–15 depict periodic solutions using the complex-valued solution (53). Unlike solitons,
periodic solutions exhibit repeating structures over space. For n = 1 in Figure 13, the periodic nature of
the solution is evident, with repeating peaks and troughs in the modulus, as shown in the surface plots
(Figure 13(a), (d), and (g)). The contour plots (Figure 13(b), (e), and (h)) highlight the periodicity,
and the 2D plots (Figure 13(c), (f), and (i)) confirm the regular structure of the solution. With n = 2
in Figure 14, the periodic peaks and troughs become more pronounced, as evidenced by the surface
plots (Figure 14(a), (d), and (g)). The contour plots (Figure 14(b), (e), and (h)) show a sharper contrast
between the peaks and troughs, and the 2D plots (Figure 14(c), (f), and (i)) confirm the enhancement
of the periodic structure. In Figure 15, the periodic peaks and troughs are even more pronounced for
n = 3, as shown in the surface plots (Figure 15(a), (d), and (g)). The contour plots (Figure 15(b), (e),
and (h)) depict a highly regular pattern, and the 2D plots (Figure 15(c), (f), and (i)) confirm that the
periodic structure becomes sharper with increased nonlinearity.
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Figure 13. Profile of a periodic solution given n = 1.
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Figure 14. Profile of a periodic solution given n = 2.
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Figure 15. Profile of a periodic solution given n = 3.

The behavior of soliton solutions across different types (bright solitons, singular solitons, dark
solitons, and periodic solutions) shows distinct yet interconnected patterns as the power nonlinearity
increases. This trend reveals important insights into how soliton dynamics are influenced by
nonlinearity in optical systems. As the power nonlinearity increases, several key characteristics of the
solitons are amplified, leading to sharper, more localized profiles, regardless of the type of soliton
under consideration. The overall impact of increasing power nonlinearity on the different soliton
types illustrates the diversity of behaviors that can be observed in nonlinear systems. While bright
solitons become more concentrated and resistant to dispersion, singular solitons exhibit an extreme
focusing of energy near their core, creating sharp, localized fields. Dark solitons, meanwhile, deepen
their characteristic dips, maintaining stability in nonlinear environments, and periodic solutions
sharpen and densify, leading to more regular and ordered wave patterns. This diversity of soliton
behavior highlights the rich dynamics that arise from the interaction between dispersion, nonlinearity,
and the initial conditions in these systems. Such a range of soliton solutions is essential for
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understanding the complex behavior of nonlinear optical systems and the potential to control and
manipulate these solutions for technological applications. For instance, bright solitons can be used for
signal transmission in fiber optics, dark solitons for phase modulation, singular solitons for
high-intensity beam generation, and periodic solutions for filtering and guiding light in photonic
structures. The insights gained from the analysis of solitons’ behavior with increasing power
nonlinearity have significant implications for the design and optimization of nonlinear optical
systems, including fiber optics, waveguides, and other systems involving nonlinear wave propagation.
By understanding how solitons behave as a function of the nonlinearity parameter, engineers and
physicists can better design systems to control solitons’ propagation, stability, and interactions. This
is crucial for the development of next-generation communication systems, where solitons are used to
transmit information over long distances with minimal distortion, or in optical waveguides, where the
precise control of light is necessary for applications such as switching, routing, and sensing.
Furthermore, understanding the role of nonlinearity in shaping soliton profiles could also advance
technologies in quantum communication, plasma physics, and nonlinear laser optics, where intense,
localized fields are required to achieve specific outcomes.

In summary, the analysis of soliton behavior under varying power nonlinearity provides a
comprehensive understanding of how these nonlinear waveforms evolve, offering valuable insights for
future research and applications in nonlinear wave propagation and optical technologies.

6. Conclusions

As we draw to a close on this investigation, we reflect on the exhaustive examination conducted
into the NLSE in the context of (3+1) dimensions. Our inquiry has been enriched by the incorporation
of cross-spatio-dispersion and generalized Kudryashov’s SPM through the utilization of the
generalized Jacobi elliptic method. This amalgamation of methodologies has enabled a thorough
exploration into the behavior of nonlinear waves in nonlinear media. Our primary objective
throughout this study has been to derive new optical soliton solutions expressed through two main
mathematical frameworks: Jacobi elliptic functions and Weierstrass elliptic functions. These solutions
mark a significant leap forward in our comprehension of the intricate dynamics dictating wave
propagation within nonlinear media. Importantly, the solutions we have obtained exhibit remarkable
transformations contingent upon the parameter ‘m’. This parameter governs the elliptic functions and
plays a crucial role in shaping the behavior of the solutions. The spectrum of solutions we have
uncovered is broad and enlightening. We have transitioned from optical bullet solutions, which are
compact, localized wave packets resembling solitary waves, to optical domain wall solutions,
characterized by abrupt changes in phase or amplitude across a distinct boundary. Singular soliton
solutions, representing solitary waves that retain their shape and velocity during propagation, have
also been elucidated. Finally, we have delved into the realm of Weierstrass elliptic functions, which
are doubly periodic functions providing a rich mathematical framework for describing complex wave
phenomena. These findings shed light on the intricate interplay among dispersion, nonlinearity, and
self-modulation phenomena within optical systems. By unraveling these complexities, we gain deeper
insights into the underlying mechanisms governing wave dynamics in nonlinear media. To enhance
the clarity of our presentation and facilitate comprehension, we have provided comprehensive
visualizations in 3D, 2D, and contour formats. These visual representations offer intuitive insights
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into the structural attributes of the solutions, revealing patterns and behaviors that might otherwise be
obscured by mathematical formalism alone. Furthermore, they highlight the potential applications of
these solutions across various domains of physics, from understanding fundamental wave behavior to
practical applications in fields such as optical communication and signal processing. In essence, our
discoveries not only advance our fundamental understanding of light propagation within complex
media but also hold promise for practical implications across a spectrum of disciplines. As we look
ahead, these findings will undoubtedly serve as a catalyst for further research and innovation in
critical areas of study, propelling us toward new frontiers in the understanding and manipulation of
nonlinear wave phenomena.

Recent experimental developments suggest that our theoretical solutions may be realized in
practice. Studies on ultrafast fiber lasers have demonstrated multi-wavelength soliton dynamics,
soliton explosions, and chaotic soliton states, offering feasible platforms for validation [27]. The
formation of soliton molecules via polarization-induced mechanisms further supports the relevance of
our solutions in real-world systems [28]. Additionally, the existence of biperiodic pulsations and
solitonic states in fiber lasers highlights another experimental framework where our analytical
solutions may be validated, particularly in systems governed by a balance of dispersion and
nonlinearity [29]. The use of deep learning for dynamic modeling and coded information storage of
vector soliton pulsations in mode-locked fiber lasers [30], as well as the development of tunable
three-wavelength fiber lasers with transient switching between soliton and q-switched mode-locked
states [31], further demonstrate the potential for experimental realization. Additionally, the generation
and π-phase-induced oscillations of multi soliton molecular complexes in ultrafast fiber lasers based
on MOF-253@Au provide another avenue for observing and controlling soliton interactions [32].
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