The aim of this paper is to study the $ \lambda $-Stirling numbers of both kinds, which are $ \lambda $-analogues of Stirling numbers of both kinds. These numbers have nice combinatorial interpretations when $ \lambda $ are positive integers. If $ \lambda = 1 $, then the $ \lambda $-Stirling numbers of both kinds reduce to the Stirling numbers of both kinds. We derive new types of generating functions of the $ \lambda $-Stirling numbers of both kinds which are related to the reciprocals of the generalized rising factorials. Furthermore, some related identities are also derived from those generating functions. In addition, all the corresponding results to the $ \lambda $-Stirling numbers of both kinds are obtained for the $ \lambda $-analogues of $ r $-Stirling numbers of both kinds, which are generalizations of those numbers.
Citation: Dae San Kim, Hye Kyung Kim, Taekyun Kim. New approach to $ \lambda $-Stirling numbers[J]. AIMS Mathematics, 2023, 8(12): 28322-28333. doi: 10.3934/math.20231449
The aim of this paper is to study the $ \lambda $-Stirling numbers of both kinds, which are $ \lambda $-analogues of Stirling numbers of both kinds. These numbers have nice combinatorial interpretations when $ \lambda $ are positive integers. If $ \lambda = 1 $, then the $ \lambda $-Stirling numbers of both kinds reduce to the Stirling numbers of both kinds. We derive new types of generating functions of the $ \lambda $-Stirling numbers of both kinds which are related to the reciprocals of the generalized rising factorials. Furthermore, some related identities are also derived from those generating functions. In addition, all the corresponding results to the $ \lambda $-Stirling numbers of both kinds are obtained for the $ \lambda $-analogues of $ r $-Stirling numbers of both kinds, which are generalizations of those numbers.
[1] | J. Arias-de Reyna, On the theorem of Frullani, Proc. Amer. Math. Soc., 109 (1990), 165–175. |
[2] | H. Belbachir, I. Bousbaa, Translated Whitney and r-Whitney numbers: a combinatorial approach, J. Integer Seq, 16 (2013), Article 13.8.6. |
[3] | K. Boyadzhiev, Integrating inverse factorial series and series identities with binomial sums, preprint paper, 2023. |
[4] | S. Bravo, I. Gonzalez, K. Kohl, V. H. Moll, Integrals of Frullani type and the method of brackets, Open Math., 15 (2017). https://doi.org/10.1515/math-2017-0001 doi: 10.1515/math-2017-0001 |
[5] | L. Carlitz, Weighted Stirling numbers of the first and second kind. Ⅱ, Fibonacci Quart., 18 (1980), 242–257. |
[6] | L. Carlitz, Weighted Stirling numbers of the first and second kind. Ⅰ, Fibonacci Quart., 18 (1980), 147–162. |
[7] | L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Berlin: Springer, 1974. |
[8] | S. Araci, U. Duran, M. Acikgoz, On $(q.r, w)$-Stirling numbers of the second kind, J. Inequal. Spec. Funct. 9 (2018), 9–16. |
[9] | D. S. Kim, H. K. Kim, T. Kim, Some identities on $\lambda$-analogues of $r$-Stirling numbers of the second kind, Eur. J. Pure Appl. Math., 15 (2022), 1054–1066. |
[10] | T. Kim, D. S. Kim, Some identities involving degenerate Stirling numbers associated with several degenerate polynomials and numbers, Russ. J. Math. Phys., 30 (2023), 62–75. https://doi.org/10.1134/S1061920823010041 doi: 10.1134/S1061920823010041 |
[11] | T. Kim, D. S. Kim, Some identities on $\lambda$-analogues of $r$-Stirling numbers of the first kind, Filomat, 34 (2020), 451–460. https://doi.org/10.2298/FIL2002451K doi: 10.2298/FIL2002451K |
[12] | T. Kim, D. S. Kim, Degenerate $r$-Whitney numbers and degenerate $r$-Dowling polynomials via boson operators, Adv. Appl. Math., 140 (2022), 102394. https://doi.org/10.1016/j.aam.2022.102394 doi: 10.1016/j.aam.2022.102394 |
[13] | T. Kim, D. S. Kim, Combinatorial identities involving degenerate harmonic and hyperharmonic numbers, Adv. Appl. Math., 148 (2023), 102535. https://doi.org/10.1016/j.aam.2023.102535 doi: 10.1016/j.aam.2023.102535 |
[14] | T. Kim, D. S. Kim, Degenerate Whitney numbers of first and second kind of Dowling lattices, Russ. J. Math. Phys., 29 (2022), 358–377. https://doi.org/10.1134/S1061920822030050 doi: 10.1134/S1061920822030050 |
[15] | T. Kim, D. S. Kim, H. Lee, J. Kwon, Degenerate binomial coefficients and degenerate hypergeometric functions, Adv. Differ. Equ., 2020 (2020), 115. https://doi.org/10.1186/s13662-020-02575-3 doi: 10.1186/s13662-020-02575-3 |
[16] | M. M. Mangontraum, O. I. Cauntongan, A. M. Dibagulun, A note on the translated Whitney numbers and their $q$-analogues, Turkish J. Anal. Number Theory, 4 (2016), 74–81. http://dx.doi.org/10.12691/tjant-4-3-4 doi: 10.12691/tjant-4-3-4 |
[17] | A. M. Ostrowski, On Cauchy-Frullani integrals, Comment. Math. Helvetici, 51 (1976), 57–91. |
[18] | L. Ronald, D. E. Knuth, O. Patashnik, Concrete Mathematics, New York: Addison-Wesley, 1994. |
[19] | Y. Simsek, Identities and relations related to combinatorial numbers and polynomials, Proc. Jangieon Math. Soc., 20 (2017), 127–135. |
[20] | D. S. Kim, T. K. Kim, Normal ordering associated with $\lambda$-Whitney numbers of the first kind in $\lambda$-shift algebra, Russ. J. Math. Phys., 30 (2023), 310–319. https://doi.org/10.1134/S1061920823030044 doi: 10.1134/S1061920823030044 |