Research article Special Issues

Classification of the symmetry Lie algebras for six-dimensional co-dimension two Abelian nilradical Lie algebras

  • Received: 03 September 2023 Revised: 05 December 2023 Accepted: 11 December 2023 Published: 18 December 2023
  • MSC : 22B05, 35A16, 53A04

  • In this paper, we consider the symmetry algebra of the geodesic equations of the canonical connection on a Lie group. We mainly consider the solvable indecomposable six-dimensional Lie algebras with co-dimension two abelian nilradical that have an abelian complement. In dimension six, there are nineteen such algebras, namely, $ A_{6, 1} $–$ A_{6, 19} $ in Turkowski's list. For each algebra, we give the geodesic equations, a basis for the symmetry Lie algebra in terms of vector fields, and finally we identify the symmetry Lie algebra from standard lists.

    Citation: Nouf Almutiben, Edward L. Boone, Ryad Ghanam, G. Thompson. Classification of the symmetry Lie algebras for six-dimensional co-dimension two Abelian nilradical Lie algebras[J]. AIMS Mathematics, 2024, 9(1): 1969-1996. doi: 10.3934/math.2024098

    Related Papers:

  • In this paper, we consider the symmetry algebra of the geodesic equations of the canonical connection on a Lie group. We mainly consider the solvable indecomposable six-dimensional Lie algebras with co-dimension two abelian nilradical that have an abelian complement. In dimension six, there are nineteen such algebras, namely, $ A_{6, 1} $–$ A_{6, 19} $ in Turkowski's list. For each algebra, we give the geodesic equations, a basis for the symmetry Lie algebra in terms of vector fields, and finally we identify the symmetry Lie algebra from standard lists.



    加载中


    [1] S. Lie, Classification und integration von gewöhnlichen differentialgleichungen zwischenxy, die eine gruppe von transformationen gestatten, Math. Ann., 32 (1888), 213–281. https://doi.org/10.1007/BF01444068 doi: 10.1007/BF01444068
    [2] S. Lie, Vorlesungen über differentialgleichungen mit bekannten infinitesimalen transformationen, Leipzig, 1891.
    [3] P. J. Olver, Applications of Lie groups to differential equations, Springer Science & Business Media, 2000. https://doi.org/10.1007/978-1-4684-0274-2
    [4] G. W. Bluman, S. Kumei, Symmetries and differential equations, Springer Science & Business Media, 2013. http://doi.org/10.1007/978-1-4757-4307-4
    [5] D. J. Arrigo, Symmetry analysis of differential equations, John Wiley & Sons, 2015.
    [6] E. Cartan, J. A. Schouten, On the geometry of the group-manifold of simple and semi-simple groups, Proc. Akad. Wetensch., 29 (1926), 803–815.
    [7] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, 1979. https://doi.org/10.1090/gsm/034
    [8] R. Ghanam, G. Thompson, E. J. Miller, Variationality of four-dimensional Lie group connections, J. Lie Theory, 14 (2004), 395–425.
    [9] R. Ghanam, G. Thompson, Lie symmetries of the canonical geodesic equations for four dimensional Lie groups, Math. Aeterna, 8 (2018), 57–70.
    [10] R. Ghanam, G. Thompson, Symmetry algebras for the canonical Lie group geodesic equations in dimension three, Math. Aeterna, 8 (2018), 37–47.
    [11] R. Ghanam, G. Thompson, Lie symmetries of the canonical geodesic equations for six-dimensional nilpotent Lie groups, Cogent Math. Stat., 7 (2020), 1781505. https://doi.org/10.1080/25742558.2020.1781505 doi: 10.1080/25742558.2020.1781505
    [12] J. Patera, R. T. Sharp, P. Winternitz, H. Zassenhaus, Invariants of real low dimension Lie algebras, J. Math. Phys., 17 (1976), 986–994. https://doi.org/10.1063/1.522992 doi: 10.1063/1.522992
    [13] H. Almusawa, R. Ghanam, G. Thompson, Symmetries of the canonical geodesic equations of five-dimensional nilpotent Lie algebras, J. Generalized Lie Theory Appl., 13 (294), 1–5. https://doi.org/10.4172/1736-4337.1000294
    [14] H. Almusawa, R. Ghanam, G. Thompson, Classification of symmetry Lie algebras of the canonical geodesic equations of five-dimensional solvable Lie algebras, Symmetry, 11 (2019), 1354. https://doi.org/10.3390/sym11111354 doi: 10.3390/sym11111354
    [15] H. Almusawa, R. Ghanam, G. Thompson, Lie symmetries of the canonical connection: one abelian nilradical case, J. Nonlinear Math. Phys., 28 (2021), 242–253. https://doi.org/10.2991/jnmp.k.210401.001 doi: 10.2991/jnmp.k.210401.001
    [16] N. Almutiben, E. L. Boone, R. Ghanam, G. Thompson, Lie symmetries of the canonical connection: co-dimension two Abelian nilradical, J. Generalized Lie Theory Appl., 16 (2022), 347.
    [17] P. Turkowski, Solvable Lie algebras of dimension six, J. Math. Phys., 31 (1990), 1344–1350. https://doi.org/10.1063/1.528721 doi: 10.1063/1.528721
    [18] M. Spivak, A comprehensive introduction to differential geometry, Amer. Math. Mon., 80 (1973), 448–449. https://doi.org/10.2307/2319112 doi: 10.2307/2319112
    [19] M. Kossowski, G. Thompson, Submersive second order ordinary differential equations, Math. Proc. Camb. Phil. Soc., 110 (1991), 207–224. https://doi.org/10.1017/S0305004100070262 doi: 10.1017/S0305004100070262
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(999) PDF downloads(66) Cited by(1)

Article outline

Figures and Tables

Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog