In this paper, we consider the symmetry algebra of the geodesic equations of the canonical connection on a Lie group. We mainly consider the solvable indecomposable six-dimensional Lie algebras with co-dimension two abelian nilradical that have an abelian complement. In dimension six, there are nineteen such algebras, namely, $ A_{6, 1} $–$ A_{6, 19} $ in Turkowski's list. For each algebra, we give the geodesic equations, a basis for the symmetry Lie algebra in terms of vector fields, and finally we identify the symmetry Lie algebra from standard lists.
Citation: Nouf Almutiben, Edward L. Boone, Ryad Ghanam, G. Thompson. Classification of the symmetry Lie algebras for six-dimensional co-dimension two Abelian nilradical Lie algebras[J]. AIMS Mathematics, 2024, 9(1): 1969-1996. doi: 10.3934/math.2024098
In this paper, we consider the symmetry algebra of the geodesic equations of the canonical connection on a Lie group. We mainly consider the solvable indecomposable six-dimensional Lie algebras with co-dimension two abelian nilradical that have an abelian complement. In dimension six, there are nineteen such algebras, namely, $ A_{6, 1} $–$ A_{6, 19} $ in Turkowski's list. For each algebra, we give the geodesic equations, a basis for the symmetry Lie algebra in terms of vector fields, and finally we identify the symmetry Lie algebra from standard lists.
[1] | S. Lie, Classification und integration von gewöhnlichen differentialgleichungen zwischenxy, die eine gruppe von transformationen gestatten, Math. Ann., 32 (1888), 213–281. https://doi.org/10.1007/BF01444068 doi: 10.1007/BF01444068 |
[2] | S. Lie, Vorlesungen über differentialgleichungen mit bekannten infinitesimalen transformationen, Leipzig, 1891. |
[3] | P. J. Olver, Applications of Lie groups to differential equations, Springer Science & Business Media, 2000. https://doi.org/10.1007/978-1-4684-0274-2 |
[4] | G. W. Bluman, S. Kumei, Symmetries and differential equations, Springer Science & Business Media, 2013. http://doi.org/10.1007/978-1-4757-4307-4 |
[5] | D. J. Arrigo, Symmetry analysis of differential equations, John Wiley & Sons, 2015. |
[6] | E. Cartan, J. A. Schouten, On the geometry of the group-manifold of simple and semi-simple groups, Proc. Akad. Wetensch., 29 (1926), 803–815. |
[7] | S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, 1979. https://doi.org/10.1090/gsm/034 |
[8] | R. Ghanam, G. Thompson, E. J. Miller, Variationality of four-dimensional Lie group connections, J. Lie Theory, 14 (2004), 395–425. |
[9] | R. Ghanam, G. Thompson, Lie symmetries of the canonical geodesic equations for four dimensional Lie groups, Math. Aeterna, 8 (2018), 57–70. |
[10] | R. Ghanam, G. Thompson, Symmetry algebras for the canonical Lie group geodesic equations in dimension three, Math. Aeterna, 8 (2018), 37–47. |
[11] | R. Ghanam, G. Thompson, Lie symmetries of the canonical geodesic equations for six-dimensional nilpotent Lie groups, Cogent Math. Stat., 7 (2020), 1781505. https://doi.org/10.1080/25742558.2020.1781505 doi: 10.1080/25742558.2020.1781505 |
[12] | J. Patera, R. T. Sharp, P. Winternitz, H. Zassenhaus, Invariants of real low dimension Lie algebras, J. Math. Phys., 17 (1976), 986–994. https://doi.org/10.1063/1.522992 doi: 10.1063/1.522992 |
[13] | H. Almusawa, R. Ghanam, G. Thompson, Symmetries of the canonical geodesic equations of five-dimensional nilpotent Lie algebras, J. Generalized Lie Theory Appl., 13 (294), 1–5. https://doi.org/10.4172/1736-4337.1000294 |
[14] | H. Almusawa, R. Ghanam, G. Thompson, Classification of symmetry Lie algebras of the canonical geodesic equations of five-dimensional solvable Lie algebras, Symmetry, 11 (2019), 1354. https://doi.org/10.3390/sym11111354 doi: 10.3390/sym11111354 |
[15] | H. Almusawa, R. Ghanam, G. Thompson, Lie symmetries of the canonical connection: one abelian nilradical case, J. Nonlinear Math. Phys., 28 (2021), 242–253. https://doi.org/10.2991/jnmp.k.210401.001 doi: 10.2991/jnmp.k.210401.001 |
[16] | N. Almutiben, E. L. Boone, R. Ghanam, G. Thompson, Lie symmetries of the canonical connection: co-dimension two Abelian nilradical, J. Generalized Lie Theory Appl., 16 (2022), 347. |
[17] | P. Turkowski, Solvable Lie algebras of dimension six, J. Math. Phys., 31 (1990), 1344–1350. https://doi.org/10.1063/1.528721 doi: 10.1063/1.528721 |
[18] | M. Spivak, A comprehensive introduction to differential geometry, Amer. Math. Mon., 80 (1973), 448–449. https://doi.org/10.2307/2319112 doi: 10.2307/2319112 |
[19] | M. Kossowski, G. Thompson, Submersive second order ordinary differential equations, Math. Proc. Camb. Phil. Soc., 110 (1991), 207–224. https://doi.org/10.1017/S0305004100070262 doi: 10.1017/S0305004100070262 |