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1. Introduction

Symmetry methods for differential equations were introduced by Lie towards the end of the
nineteenth century. Lie was looking for transformations that would change a differential equation to a
simpler version, so that it might, for example, become separable and then easy to solve. Lie noticed
that the ordinary differential equations (ODE’s) are invariant under certain transformations, which
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later came to be known as Lie groups. The use of symmetry methods has become an increasingly
important part of the study of differential equations. For example, we can obtain solutions of
differential equations if we know their symmetries; we can also use symmetries to reduce the order of
the ODE, and determine whether or not the ODE or partial differential equations (PDE) can be
linearized. We can also classify differential equations based on their symmetry Lie algebras. For more
information on the history of symmetry Lie algebras and their applications, we refer the reader
to [1–4]. Another very accessible reference is [5].

In this paper, we consider special systems of second order ordinary differential equations, known
as geodesic equations. The geodesic equation is a second order differential equation, where the
independent variable is t, which represents time, and the equation itself represents the motion of a
particle moving in a curved space. In Riemannian geometry, a geodesic curve gives the shortest path
between two points in that space. In general relativity, geodesic equations describe the motion in
spacetime. In the case of a differentiable manifold with a connection, geodesic curves provide a
generalization of straight lines in Euclidean space. On a smooth manifold, where (xi) are a system of
local coordinates, and Γi

jk are the connection components or Christoffel symbols, the geodesic
equation is given by

d2x
dt2 + Γ

i
jk

dx j

dt
dxk

dt
= 0. (1.1)

A significant amount of work has been done on analyzing the symmetry Lie algebras of the geodesic
equations of the canonical connection on Lie groups. See [6–9] for further details about this connection.
In [8], the main geometrical properties of this connection have been listed and proofs supplied. Ghanam
and Thompson have considered the problem in dimensions two, three and four [10]. They have also
considered the problem for six-dimensional nilpotent Lie algebras [11]. They have followed the list
of algebras classified by Patera et al. [12] for indecomposable Lie algebras in dimension up to six. In
recent articles, Almusawa et al. have considered the problem of classifying the symmetry Lie algebra
of the geodesic equations for indecomposable nilpotent Lie algebras in dimension five [13], and they
considered the problem for indecomposable five-dimensional solvable Lie algebras [14]. Finally, they
considered the problem for a general n-dimensional Lie algebra with co-dimension one, and general
results have been obtained [15]. In [16], the symmetry Lie algebras of the geodesic equations of the
canonical connection on Lie groups whose Lie algebras have a co-dimension two abelian nilradical in
dimensions four and five, were identified.

In this paper, we continue our investigation of the Lie symmetries of the geodesic system of the
canonical connection on a Lie group. The present article extends the investigation to indecomposable
Lie algebras in dimensions six, that have a co-dimension two abelian nilradical, together with an
abelian complement. The six-dimensional solvable real Lie algebras were classified into isomorphism
classes by Turkowski [17] and comprise forty cases, some of which contain up to four parameters. Of
these forty classes, the first nineteen, denoted by A6,1–A6,19, have co-dimension two abelian nilradical
and abelian complement. Since most of these algebras have parameters, we need to consider
sub-cases based on the values of these parameters: Symmetry may be broken in the sense that, for
exceptional values of the parameters, the symmetry algebra may have a higher dimension.

The outline of the paper is as follows: In Section 2, we give the definition of the of the canonical
connection ∇ on Lie groups and we review the main properties of ∇. We also show how the definition
is used to calculate the geodesic equations of the connection. In Section 3, we review the symmetries of
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differential equations and the Lie invariance condition. We also show how the Lie invariance condition
leads to a system of partial differential equations. The solution of that PDE system gives the Lie
symmetry of the geodesic equations. In Section 4, for each algebra A6,1–A6,19 in Turkowski’s list, we
give the geodesic equations, a basis for the symmetry algebra in terms of vector fields is given and
finally we identify and describe the symmetry algebra, which in all cases is a solvable Lie algebra,
in terms of its nilradical and its complement. Regarding our notation, we use ⋊ for the semi-direct
product and ⊕ for the direct sum of algebras.

2. The canonical Lie group connection

On left invariant vector fields, X and Y the canonical symmetric connection ∇ on a Lie group G is
defined by

∇XY =
1
2

[X,Y], (2.1)

and then extended to arbitrary vector fields using linearity and the Leibnitz rule. ∇ is left-invariant.
One could just as well use right-invariant vector fields to define ∇, but one must check that ∇ is well
defined, a fact that we will prove next.

Proposition 1. In the definition of ∇ we can equally assume that X and Y are right-invariant vector
fields and hence ∇ is also left-invariant and hence bi-invariant. Moreover ∇ is symmetric, that is, its
torsion is zero.

Proof. The fact that ∇ is symmetric is obvious from Eq (2.1). Now we choose a fixed basis in the
tangent space at the identity TIG. We shall denote its left and right invariant extensions by
{X1, X2, · · · , Xn} and {Y1,Y2, · · · ,Yn}, respectively. Then there must exist a non-singular matrix A of
functions on G such that Yi = a j

i X j. We shall suppose that

[Xi, X j] = Ck
i jXk. (2.2)

Changing from the left-invariant basis to the right gives

Ck
i ja

p
k = ak

i a
m
j Cp

km. (2.3)

Next, we use the fact that left and right vector fields commute to deduce that

ak
jC

m
ik + Xiam

j = 0, (2.4)

where the second term in (2.4) denotes directional derivative. We note that necessarily

[Yi,Y j] = −Ck
i jYk. (2.5)

Now we compute

∇YiY j +
1
2

Ck
i jYk =

1
2

ak
i a

m
j Cp

km + ak
i (Xka

p
i ) +

1
2

Ck
i ja

p
k . (2.6)

Next we use (2.4) to replace the second term on the right hand side of (2.6) so as to obtain

∇YiY j +
1
2

Ck
i jYk =

1
2

ak
i a

m
j Cp

km − ak
i a

m
j Cp

km +
1
2

Ck
i ja

p
k . (2.7)

AIMS Mathematics Volume 9, Issue 1, 1969–1996.



1972

However, the right hand side of (2.7) is seen to be zero by virtue of (2.3). Thus

∇XY =
1
2

[X,Y], (2.8)

whenever X and Y are right invariant vector fields. □

An alternative proof of Proposition 1 uses the inversion map ψ defined by, for S ∈ G,

ψ(S ) = S −1. (2.9)

As such, one checks that ψ∗I maps a left-invariant vector field evaluated at I to minus its right-invariant
counterpart evaluated at I. Then ψ∗I is an isomorphism and there is no change of sign in the structure
constants, as compared with Eq (2.5). Since there are two minus signs in Eq (2.1) the same condition
Eq (2.1) applies also to right-invariant vector fields.

Proposition 2. (i) An element in the center of g engenders a bi-invariant vector field.

(ii) A vector field in the center of g is parallel.

(iii) A bi-invariant differential k-form θ is closed and so defines an element of the cohomology group
Hk(M,R).

Proof. (i) Suppose that Z ∈ TIG is in the center of g and let exp(tZ) be the associated one-parameter
subgroup of G so that Z corresponds to the equivalence class of curves [exp(tZ)] based at I. Let S ∈ G;
then LS ∗Z corresponds to the equivalence class of curves [S exp(tZ)] based at S . Since Z is in the center
of g then exp(tZ) will be in the center of G and hence

[S exp(tZ)] = [exp(tZ)S ].

It follows that any element in the center of g engenders a bi-invariant vector field.
(ii) Obvious from Eq (2.1).
(iii) A proof can be found in [18]. Spivak shows that

ψ∗(θ) = (−1)kθ,

whereas dθ, which is also bi-invariant, changes by

ψ∗(dθ) = (−1)k+1dθ.

It follows that dθ = 0. □

Proposition 3. (i) The curvature tensor, which is also bi-invariant, on vector fields X,Y,Z is given by

R(X,Y)Z =
1
4

[[X,Y],Z]. (2.10)

(ii) The connection ∇ is flat if and only if the Lie algebra g of G is two-step nilpotent.

(iii) The tensor R is parallel in the sense that ∇WR(X,Y)Z = 0, where W is a fourth right invariant
vector field, so that G is in a sense a symmetric space.
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(iv) The Ricci tensor Ri j of ∇ is given by

Ri j =
1
4

Cl
jmCm

il (2.11)

and is symmetric and bi-invariant and is obtained by translating to the left or right one quarter of the
Killing form. It engenders a bi-invariant pseudo-Riemannian metric if and only if the Lie algebra g is
semi-simple.

Proof. (i) Is obvious and applies to arbitrary vector fields since it is a tensorial object.
(ii) Is obvious.
(iii) This fact follows from a series of implications:

4∇WR(X,Y)Z + 4R(∇W X,Y)Z + 4R(X,∇WY)Z + 4R(X,Y)∇WZ = ∇W[[X,Y],Z],
4∇WR(X,Y)Z + 2R([W, X],Y)Z + 2R(X, [W,Y])Z + 2R(X,Y)[W,Z] − 1

2 [W, [[X,Y],Z] = 0,
4∇WR(X,Y)Z + 1

2 [[W, X],Y],Z] + 1
2 [X, [W,Y]],Z] + 1

2 [[X,Y], [W,Z]] − 1
2 [W, [[X,Y],Z] = 0,

4∇WR(X,Y)Z + 1
2 [[W, X],Y],Z] + 1

2 [X, [W,Y]],Z] − 1
2 [Z, [[X,Y],W] = 0,

∇WR(X,Y)Z = 0.

(2.12)

(iv) The formula Eq (2.11) is obvious from Eqs (2.1) and (2.10). The last remark follows from Cartan’s
criterion. □

Proposition 4. (i) Any left or right-invariant vector field is geodesic.

(ii) Any geodesic curve emanating from the identity is a one-parameter subgroup.

(iii) An arbitrary geodesic curve is a translation, to the left or right, of a one-parameter subgroup.

Proof. (i) Is obvious because of the skew-symmetry in Eq (2.1).
(ii) By definition the curve t 7→ [S exp(tX)] integrates a geodesic field X.

(iii) If the geodesic curve at t = 0 starts at S , translate the curve to I by multiplying on the left or right
by S −1 and apply (ii). □

Proposition 5. (i) A left or right-invariant vector field is a symmetry, a.k.a. affine collineation, of ∇.

(ii) Any left or right-invariant one-form engenders a first integral of the geodesic system of ∇.

Proof. (i) The following condition for vector fields X and Y says that vector field W is a symmetry or,
affine collineation, of a symmetric linear connection:

∇X∇YW − ∇∇XYW − R(W, X)Y = 0. (2.13)

In the case at hand of the canonical connection, this condition just reduces to the Jacobi identity when
W, X and Y are all left or right-invariant.
(ii) A one-form α is a Killing one-form, if the following condition holds:

⟨∇Xα,Y⟩ + ⟨X,∇Yα⟩ = 0. (2.14)

In the case of the canonical connection, if X and Y are right-invariant and α is right-invariant then
Eq (2.1) gives

⟨X,∇Yα⟩ =
1
2
⟨[X,Y], α⟩. (2.15)
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Clearly, (2.15) implies (2.14) so that every left or right-invariant one-form engenders a first integral
of the geodesics: if the one-form is given in a coordinate system as αidxi on G, the first integral is αiui

viewed as a function on the tangent bundle TG that is linear in the fibers. □

Proposition 6. Any left or right-invariant one-form α is closed if and only if ⟨[g, g], α⟩ = 0, that is, α
annihilates the derived algebra of g.

Proof. Consider the identity

dα(X,Y) = X⟨Y, α⟩ − Y⟨X, α⟩ − ⟨[X,Y], α⟩. (2.16)

If α is left-invariant and we take X and Y left-invariant, then the first and second terms in Eq (2.16)
are zero. Now the conclusion of the proposition is obvious. The proof for right-invariant one-forms is
similar. □

Proposition 7. Consider the following conditions for a one-form α on G:

(i) α is bi-invariant.
(ii) α is right-invariant and closed.
(iii) α is left-invariant and closed.
(iv) α is parallel.
Then we have the following implications: (i)–(iii) are equivalent and any one of them implies (iv).

Proof. The fact that (i) implies (ii) and (iii) follows from Proposition 2 part (iii). Now, suppose that
(iii) holds and let X and Y be right and left-invariant vector fields, respectively. Then, consider again
the identity

dα(X,Y) = X⟨Y, α⟩ − Y⟨X, α⟩ − ⟨[X,Y], α⟩. (2.17)

Assuming that α is closed, then either because [X,Y] = 0 or by using Proposition 6, we find that
Eq (2.17) reduces to

X⟨Y, α⟩ = Y⟨X, α⟩. (2.18)

Now, the left hand side of Eq (2.18) is zero, since Y and α are left-invariant. Hence, ⟨X, α⟩ is constant,
which implies that α is right-invariant and hence bi-invariant. Thus, (iii) implies (i). The proof that (ii)
implies (i) is similar. Finally, supposing that (ii) or (iii) holds we show that (iv) holds. Then as with
any symmetric connection, the closure condition may be written, for arbitrary vector fields X and Y , as

⟨∇Xα,Y⟩ − ⟨X,∇Yα⟩ = 0. (2.19)

Clearly Eq (2.14) and Eq (2.19)imply that α is parallel. So a closed, invariant one-form is parallel. □

Of course, it may well be the case that there are no bi-invariant one-forms on G, for example if G is
semi-simple so that [g, g] = g. However, there must be at least one such one-form if G is solvable and
at least two if G is nilpotent.

If we choose a basis of dimension dim g-dim [g, g] for the bi-invariant one-forms on G, it may
be used to obtain a partial coordinate system on G, since each such form is closed. Such a partial
coordinate system is significant in terms of the geodesic system, in that it gives rise to second order
differential equations that resemble the system in Euclidean space.
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Proposition 8. Each of the bi-invariant one-forms on G projects to a one-form on the quotient space
G/[G,G], assuming that the commutator subgroup [G,G] is closed topologically in G. Furthermore,
the canonical connection ∇ on G projects to a flat connection on G/[G,G] and the induced system of
one-forms on G/[G,G] comprises a “flat” coordinate system.

Proof. The fact that a bi-invariant one-form on G projects to a one-form on G/[G,G] follows because
each such form annihilates the vertical distribution of the principal right [G,G]-bundle G → G/[G,G]
and furthermore the equivariance, or Lie-derivative condition along the fibers, is trivially satisfied since
the one-form is closed. The fact that ∇ projects to G/[G,G] follows because [G,G] ◁G, as was noted
in [19]. □

3. Lie invariance condition and symmetries of the geodesic equations

In this section, we explain the algorithm of finding the Lie symmetry of the geodesic equations.
Consider the system of the geodesic equations given by

d2x
dt2 = f i(t, xi), i = 1, 2, · · · , 6, (3.1)

where in in this case
(x1, x2, x3, x4, x5, x6) = (p, q, x, y, z,w)

and t is the independant variable and xi’s are the dependant variables. We now consider a symmetry
vector field Γ of the form:

Γ = T
∂

∂t
+ P

∂

∂p
+ Q

∂

∂q
+ X

∂

∂x
+ Y

∂

∂y
+ Z

∂

∂z
+W

∂

∂w
, (3.2)

where T, P,Q, X,Y,Z and W are unknown functions of (t, p, q, x, y, z,w). The first prolongation Γ1 and
second prolongation Γ2 of Γ are give by

Γ1 = Γ + Pt
∂

∂ ṗ
+ Qt

∂

∂q̇
+ Xt

∂

∂ẋ
+ Yt

∂

∂ẏ
+ Zt

∂

∂ż
+Wt

∂

∂ẇ
, (3.3)

Γ2 = Γ1 + Ptt
∂

∂ p̈
+ Qtt

∂

∂q̈
+ Xtt

∂

∂ẍ
+ Ytt

∂

∂ÿ
+ Ztt

∂

∂z̈
+Wtt

∂

∂ẅ
, (3.4)

where

Pt = Dt(P) − ṗDt(T ), Ptt = Dt(Pt) − p̈Dt(T ),
Qt = Dt(Q) − q̇Dt(T ), Qtt = Dt(Qt) − q̈Dt(T ),
Xt = Dt(X) − ẋDt(T ), Xtt = Dt(Xt) − ẍDt(T ),
Yt = Dt(Y) − ẏDt(T ), Ytt = Dt(Yt) − ÿDt(T ),
Zt = Dt(Z) − żDt(T ), Ztt = Dt(Zt) − z̈Dt(T ),

Wt = Dt(W) − ẇDt(T ), Wtt = Dt(Wt) − ẅDt(T ),

(3.5)

where Dt is given by

Dt =
∂

∂t
+ ṗ

∂

∂p
+ q̇

∂

∂q
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ ż

∂

∂z
+ ẇ

∂

∂w
+ p̈

∂

∂ṗ
+ q̈

∂

∂q̇
+ ẍ

∂

∂ẋ
+ ÿ

∂

∂ẏ
+ z̈

∂

∂ż
+ ẅ

∂

∂ẇ
. (3.6)
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Finally, Γ is said to be a Lie symmetry of the system the geodesic equations if

Γ2(∆(2)
i )|

∆
(2)
i =0 = 0, (3.7)

where

∆
(2)
i =

d2x
dt2 − f i(t, xi), i = 1, 2, · · · , 6. (3.8)

Equation (3.7) is called the Lie invariance condition. We equate the coefficients of the linearly
independent derivation terms to zero and this yields to an overdetermined system of PDEs.

4. Classification of the symmetry Lie algebras

In this section, we consider the nineteen six-dimensional Lie algebra with co-dimension two abelian
nilradical. For each Lie algebra, we will list the non-zero brackets, the system of the geodesic equations
and the symmetry vector fields. Finally, we analyze the symmetry Lie algebra in terms of its nilradical
and identify it.

4.1. Algebra Aabcd
6,1 (abcd : ab , 0, c2 + d2 , 0)

The non-zero brackets for the algebra Aabcd
6,1 are given by

[e1, e3] = ae3, [e1, e4] = ce4, [e1, e6] = e6,

[e2, e3] = be3, [e2, e4] = de4, [e2, e5] = e5. (4.1)

The geodesic equations are given by

p̈ = ṗẇ, q̈ = q̇ż, ẍ = ẋ(dż + cẇ), ÿ = ẏ(bż + aẇ), z̈ = 0, ẅ = 0. (4.2)

For the general case Aa,0,b,0,c,0,d,0
6,1 , the symmetry Lie algebra is spanned by

e1 = Dq, e2 = Dt, e3 = Dx, e4 = Dy, e5 = Dp, e6 = wDt, e7 = zDt,

e8 = ezDq, e9 = ewDp, e10 = ecw+dzDx, e11 = eaw+bzDy, e12 = Dw,

e13 = Dz, e14 = tDt, e15 = xDx, e16 = qDq, e17 = yDy. e18 = pDp. (4.3)

The non-zero brackets of the symmetry algebra are given by

[e1, e16] = e1, [e2, e14] = e2, [e3, e15] = e3, [e4, e17] = e4, [e5, e18] = e5,

[e6, e12] = −e2, [e6, e14] = e6, [e7, e13] = −e2, [e7, e14] = e7, [e8, e13] = −e8,

[e8, e16] = e8, [e9, e12] = −e9, [e9, e18] = e9, [e10, e15] = e10, [e11, e17] = e11,

[e10, e13] = −de10, [e11, e12] = −ae11, [e11, e13] = −be11, [e10, e12] = −ce10. (4.4)

In this case, based on the Lie invariance condition, we have to consider eight subcases based on the
values of the parameters to see if taking certain values will generate new solutions to the system of
PDE. The cases we consider are: Aa=1,b,0

6,1 , Aa=c,a,0
6,1 , Ab=1,a,0

6,1 , Ab=d,b,0
6,1 , Ac=0,d,0

6,1 , Ac=1
6,1 , Ad=0,c,0

6,1 and Ad=1
6,1 .

In the generic and sub-cases, we find that the structure of the symmetry Lie algberas are the same. We
summarize the results in the following proposition.

Proposition 9. The symmetry Lie algebra is an eighteen-dimensional solvable Lie algebra which is
the semidirect product of eleven-dimensional abelian nilradical spanned by e1–e11 and a
seven-dimensional abelian complement spanned by e12–e18. Hence, it can be described as R11 ⋊ R7.
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4.2. Algebra Aabc
6,2 (a2 + b2 , 0)

The non-zero brackets for the algebra Aabc
6,2 are given by

[e1, e4] = e4, [e1, e5] = e6, [e2, e5] = e5, [e2, e6] = e6,

[e2, e3] = be3, [e2, e4] = ce4, [e1, e3] = ae3. (4.5)

The geodesic equations are given by

p̈ = ṗż, q̈ = ṗẇ + q̇ż, ẍ = ẋ(cż + ẇ), ÿ = ẏ(bż + aẇ), z̈ = 0, ẅ = 0. (4.6)

For the general case Aa,0,b,0,c,0
6,2 , the symmetry Lie algebra is spanned by

e1 = ezDq, e2 = Dq, e3 = ezDp + wezDq, e4 = Dp, e5 = pDq, e6 = Dt,

e7 = Dx, e8 = Dy, e9 = xDx, e10 = xDt, e11 = zDt, e12ww+czDx,

e13 = eaw+bzDy, e14 = Dw, e15 = Dz, e16 = tDt, e17 = yDy, e18 = pDp = qDq. (4.7)

The non-zero brackets of the symmetry algebra are given by

[e1, e15] = e1, [e2, e18] = e2, [e3, e16] = e3, [e4, e17] = e4, [e8, e10] = −e9,

[e5, e18] = e5, [e6, e13] = −e1, [e6, e15] = e6, [e7, e14] = −e1, [e7, e15] = e7,

[e5, e8] = e2, [e9, e14] = −e9, [e9, e18] = e9, [e12, e17] = e12, [e11, e16] = e11,

[e10, e18] = e10, [e11, e13] = −e11, [e10, e13] = −e9, [e10, e14] = −e10,

[e12, e13] = −ae12, [e12, e14] = −be12, [e11, e14] = −ce11. (4.8)

In this case, based on the Lie invariance condition, we have to consider seven sub-cases based on
the values of the parameters to see if taking certain values will generate new solutions to the system of
PDE. The cases we consider are: Aa=0,b,0

6,2 , Aa=1
6,2 , Ab=0,a,0

6,2 , Ab=1
6,2 , Aa,0,b=c

6,2 , Ac=0
6,2 and Ac=1

6,2 . In the generic
and sub-cases, we find that the structure of the symmetry Lie algebras are the same. We summarize the
results in the following proposition.

Proposition 10. The symmetry Lie algebra is an eighteen-dimensional solvable Lie algebra which is
the semidirect product of twelve-dimensional decomposable nilradical spanned by e1–e12 and a six-
dimensional abelian complement spanned by e12–e18. In fact, the nilradical is a direct sum of A5,1 in
Winternitz list and R7. Hence, symmetry algebra can be can be described as (A5,1 ⊕R

7)⋊R6 where the
non-zero brackets of A5,1 are given by

[e3, e5] = e1, [e4, e5] = e2. (4.9)

4.3. Algebra Aa
6,3

The non-zero brackets for the algebra Aa
6,3 are given by

[e1, e3] = e3, [e1, e4] = e4, [e1, e5] = e6, [e2, e5] = e5,
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[e2, e3] = ae3 + e4, [e2, e4] = ae4, [e2, e6] = e6. (4.10)

The geodesic equations are given by

p̈ = ṗż + q̇ẇ, q̈ = q̇ż, ẍ = ẋ(aż + ẇ) + ẏż, ÿ = ẏ(aż + ẇ), z̈ = 0, ẅ = 0. (4.11)

For the general case Aa,0
6,3 , the symmetry Lie algebra is spanned by

e1 = Dt, e2 = Dx, e3 = Dp, e4 = Dy, e5 = Dq, e6 = wDt, e7 = zDt,

e8 = yDx, e9 = qDp, e10 = ezDp, e11 = wezDp + ezDq, e12 =
eweazDx

a
,

e13 =
(az − 1)eaz+wDx

a
+ eweazDy, e14 = Dw, e15 = Dz,

e16 = tDt, e17 = xDx + yDy, e18 = pDp + qDq. (4.12)

The non-zero brackets of the symmetry algebra are given by

[e1, e16] = e1, [e2, e17] = e2, [e3, e18] = e3, [e13, e15] = −ae12 − ae13,

[e5, e9] = e3, [e5, e18] = e5, [e6, e14] = −e1, [e7, e15] = −e1,

[e7, e16] = e7, [e9, e11] = −e10, [e10, e15] = −e10, [e10, e18] = e10,

[e11, e14] = −e10, [e11, e15] = −e11, [e11, e18] = e11, [e4, e17] = e4,

[e4, e8] = e2, [e6, e16] = e6, [e8, e13] = −ae12, [e12, e14] = −e12,

[e12, e17] = e12, [e13, e14] = −e13, [e12, e15] = −ae12, [e13, e17] = e13. (4.13)

In this case, based on the Lie invariance condition, we have to consider two sub-cases based on the
values of the parameters to see if taking certain values will generate new solutions to the system of
PDE. The cases we consider are Aa=0

6,3 and Aa=1
6,3 . In the generic and sub-cases, we find that the structure

of the symmetry Lie algebras are the same. We summarize the results in the following proposition.

Proposition 11. The symmetry Lie algebra is an eighteen-dimensional solvable Lie algebra with
thirteen-dimensional nilradical spanned by e1–e13 and five-dimensional abelian complement spanned
by e14–e18. In fact, the nilradical is a direct sum of two copies of A5,1 and R3. Hence, the symmetry
algebra is (A5,1 ⊕ A5,1 ⊕ R

3) ⋊ R5, where A5,1 is given by Eq (4.9).

4.4. Algebra Aab
6,4 (a , 0)

The non-zero brackets for the algebra Aab
6,4 are given by

[e1, e3] = e3, [e1, e4] = e4, [e1, e5] = e6, [e2, e3] = e4,

[e2, e4] = −e3, [e2, e5] = ae5 + be6, [e2, e6] = ae6. (4.14)

The geodesic equations are given by

p̈ = ż(aṗ + bq̇) + q̇ẇ, q̈ = aq̇ż, ẍ = ẋẇ − ẏż, ÿ = ẋż + ẏẇ, z̈ = 0, ẅ = 0. (4.15)

For the general case Aa,0,b,0
6,4 , the symmetry Lie algebra is spanned by

e1 = Dx, e2 = Dy, e3 = Dp, e4 = Dq, e5 = Dt, e6 = qDp,
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e7 = wDt, e8 = zDt, e9 =
eazDp

a
, e10 = ew cos(z)Dx + ew sin(z)Dy,

e11 = ew sin(z)Dx − ew cos(z)Dy, e12 =
((bz + w)a − b)eazDp

a
+ eazDq, e13 = Dw,

e14 = Dz, e15 = tDt, e16 = pDp + qDq, e17 = xDx + yDy, e18 = yDx − xDy. (4.16)

The non-zero brackets of the symmetry algebra are given by

[e1, e17] = e1, [e1, e18] = −e2, [e2, e17] = e2, [e2, e18] = e1, [e3, e16] = e3,

[e4, e6] = e3, [e4, e16] = e4, [e15, e15] = e5, [e10, e17] = e10, [e7, e13] = −e5,

[e7, e15] = e7, [e8, e14] = −e5, [e8, e15] = e8, [e10, e14] = e11, [e9, e16] = e9,

[e11, e13] = −e11, [e11, e14] = −e10, [e11, e17] = e11, [e11, e18] = −e10,

[e10, e18] = e11, [e10, e13] = −e10, [e6, e12] = −ae9, [e9, e14] = −ae9,

[e12, e13] = −ae9, [e12, e14] = −abe9 − ae12, [e12, e16] = e12. (4.17)

In this case, based on the Lie invariance condition, we have to consider one sub-case based on the
values of the parameters to see if taking certain values will generate new solutions to the system of
PDE. The only case we consider is Ab=0

6,4 . In the generic and sub-cases, we find that the structure of the
symmetry Lie algebras are the same. We summarize the results in the following proposition.

Proposition 12. The symmetry Lie algebra is an eighteen-dimensional solvable Lie algebra which is
the semidirect product of twelve-dimensional decomposable nilradical spanned by e1–e12 and a six-
dimensional abelian complement spanned by e12–e18. In fact, the nilradical is a direct sum of A5,1 in
Winternitz list and R7. Hence, symmetry algebra can be can be described as (A5,1 ⊕ R

7) ⋊ R6, where
A5,1 is given by Eq (4.9).

4.5. Algebra Aab
6,5 (ab , 0)

The non-zero brackets for the algebra Aab
6,5 are given by

[e1, e3] = ae3, [e1, e5] = e5 + e6, [e1, e6] = e6, [e2, e3] = be3, [e2, e4] = e4. (4.18)

The geodesic equations are given by

p̈ = ẇ( ṗ + q̇), q̈ = q̇ẇ, ẍ = ẋ(bż + aẇ), ÿ = ẏż, z̈ = 0, ẅ = 0. (4.19)

For the general case Aa,0,b,0
6,5 , the symmetry Lie algebra is spanned by

e1 = Dt, e2 = Dp, e3 = Dx, e4 = Dy, e5 = Dq, e6 = wDt, e7 = zDt,

e8 = qDp, e9 = ewDp, e10 = ezDy, e11 = (w − 1)ewDp + ewDq, e12 = eawebzDx,

e13 = Dz, e14 = Dw, e15 = tDt, e16 = xDx, e17 = yDy, e18 = pDp + qDq. (4.20)

The non-zero brackets of the symmetry algebra are given by

[e3, e16] = e3, [e4, e17] = e4, [e5, e8] = e2, [e11, e14] = −e11 − e9,
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[e5, e18] = e5, [e6, e14] = −e1, [e6, e15] = e6, [e7, e13] = −e1,

[e8, e11] = −e9, [e9, e14] = −e9, [e9, e18] = e9, [e10, e13] = −e10,

[e10, e17] = e10, [e7, e15] = e7, [e12, e13] = −be12, [e11, e18] = e11,

[e1, e15] = e1, [e2, e18] = e2, [e12, e14] = −ae12, [e12, e16] = e12. (4.21)

In this case, based on the Lie invariance condition, we have to consider two sub-cases based on
the values of the parameters to see if taking certain values will generate new solutions to the system
of PDE. The cases we consider are Aa=1,b,0

6,5 and Aa,0,b=1
6,5 . In the generic and sub-cases, we find that

the structure of the symmetry Lie algebras are the same. We summarize the results in the following
proposition.

Proposition 13. The symmetry Lie algebra is an eighteen-dimensional solvable Lie algebra which is
the semidirect product of twelve-dimensional decomposable nilradical spanned by e1–e12 and a six-
dimensional abelian complement spanned by e12–e18. In fact, the nilradical is a direct sum of A5,1 in
Winternitz list and R7. Hence, symmetry algebra can be can be described as (A5,1 ⊕ R

7) ⋊ R6, where
A5,1 is given by Eq (4.9).

4.6. Algebra Aab
6,6 (a2 + b2 , 0)

The non-zero brackets for the algebra Aab
6,6 are given by

[e1, e3] = ae3, [e1, e4] = ae4, [e2, e4] = e4, [e1, e6] = e6,

[e1, e5] = e5 + e6, [e2, e3] = e3 + e4, [e2, e5] = be6. (4.22)

The geodesic equations are given by

p̈ = ẇ( ṗ + q̇) + bq̇ż, q̈ = q̇ẇ, ẍ = ẋ(ż + aẇ) + ẏż, ÿ = ẏ(ż + aẇ), z̈ = 0, ẅ = 0. (4.23)

For the general case Aa,0,b,0
6,6 , the symmetry Lie algebra is spanned by

e1 = Dt, e2 = Dx, e3 = Dp, e4 = Dy, e5 = Dq, e6 = wDt,

e7 = zDt, e8 = yDx, e9 = qDp, e10 = ewDp, e11 = ezeawDx,

e12 = (bz + w − 1)ewDp + ewDq, e13 = (z − 1)eaw+zDx + ezeawDy,

e14 = Dz, e15 = Dw, e16 = tDt, e17 = xDx + yDy, e18 = pDp + qDq. (4.24)

The non-zero brackets of the symmetry algebra are given by

[e1, e16] = e1, [e2, e17] = e2, [e3, e18] = e3, [e4, e8] = e2, [e4, e17] = e4,

[e5, e18] = e5, [e6, e15] = −e1, [e6, e16] = e6, [e5, e9] = e3, [e7, e16] = e7,

[e19, e12] = −e10, [e10, e15] = −e10, [e10, e18] = e10, [e11, e15] = −ae11,

[e11, e14] = −e11, [e11, e17] = e11, [e8, e13] = −e11, [e12, e18] = e12,

[e12, e15] = −e10 − e12, [e7, e14] = −e1, [e12, e14] = −be10,

[e13, e14] = −e11 − e13, [e13, e15] = −ae13, [e13, e17] = e13. (4.25)
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In this case, based on the Lie invariance condition, we have to consider three sub-cases based on
the values of the parameters to see if taking certain values will generate new solutions to the system of
PDE. The cases we consider are Aa=0,b,0

6,6 , Aa=1
6,6 and Aa,0,b=0

6,6 . In the generic and sub-cases, we find that
the structure of the symmetry Lie algebras are the same. We summarize the results in the following
proposition.

Proposition 14. The symmetry Lie algebra is an eighteen-dimensional solvable Lie algebra with
thirteen-dimensional nilradical spanned by e1–e13 and five-dimensional abelian complement spanned
by e14–e18. In fact, the nilradical is a direct sum of two copies of A5,1 and R3. Hence, the symmetry
algebra is (A5,1 ⊕ A5,1 ⊕ R

3) ⋊ R5, where A5,1 is given by Eq (4.9).

4.7. Algebra Aabc
6,7 (a2 + b2 , 0)

The non-zero brackets for the algebra Aabc
6,7 are given by

[e1, e3] = ae3, [e1, e4] = ae4, [e2, e5] = be6, [e1, e6] = e6,

[e1, e5] = e5 + e6, [e2, e3] = ce3 + e4, [e2, e4] = −e3 + ce4. (4.26)

The geodesic equations are given by

p̈ = ṗ(cż + aẇ) + q̇ż, q̈ = ż(−ṗ + cq̇) + aq̇ẇ, ẍ = ẋẇ, ÿ = ẋ(bż + ẇ) + ẏẇ, z̈ = 0, ẅ = 0. (4.27)

For the general case Aa,0,b,0,c,0
6,7 , the symmetry Lie algebra is spanned by

e1 = Dq, e2 = Dp, e3 = Dy, e4 = Dx, e5 = Dt,

e6 = xDy, e7 = wDt, e8 = zDt, e9 = ewDy,

e10 = ewDx + (bz + w − 1)ewDy, e11 = sin(z)eaw+czDp + ecz cos(z)eawDq,

e12 = − cos(z)eaw+czDp + ecz sin(z)eawDq, e13 = Dz, e14 = Dw, e15 = tDt,

e16 = xDx + yDy, e17 = pDp + qDq, e18 = −qDp + pDq. (4.28)

The non-zero brackets of the symmetry algebra are given by

[e1, e17] = e1, [e1, e18] = −e2, [e2, e17] = e2, [e9, e14] = −e9, [e3, e16] = e3,

[e4, e16] = e4, [e5, e15] = e5, [e6, e10] = −e9, [e7, e14] = −e5, [e7, e15] = e7,

[e8, e15] = e8, [e2, e18] = e1, [e9, e16] = e9, [e11, e17] = e11, [e10, e16] = e10,

[e11, e14] = −ae11, [e10, e13] = −be9, [e12, e18] = −e11, [e11, e18] = e12,

[e11, e13] = −ce11 + e12, [e12, e17] = e12, [e4, e6] = e3, [e8, e13] = −e5,

[e12, e13] = −ce12 − e11, [e12, e14] = −ae12, [e10, e14] = −e10 − e9. (4.29)

In this case, based on the Lie invariance condition, we have to consider four sub-cases based on the
values of the parameters to see if taking certain values will generate new solutions to the system of
PDE. The cases we consider are Aa=0,b,0

6,7 , Aa=1
6,7 , Aa,0,b=0

6,7 and Ac=0
6,7 . In the generic and sub-cases, we find

that the structure of the symmetry Lie algebras are the same. We summarize the results in the following
proposition.
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Proposition 15. The symmetry Lie algebra is an eighteen-dimensional solvable Lie algebra which is
the semidirect product of twelve-dimensional decomposable nilradical spanned by e1–e12 and a six-
dimensional abelian complement spanned by e12–e18. In fact, the nilradical is a direct sum of A5,1 in
Winternitz list and R7. Hence, symmetry algebra can be can be described as (A5,1 ⊕ R

7) ⋊ R6, where
A5,1 is given by Eq (4.9).

4.8. Algebra A6,8

The non-zero brackets for the algebra A6,8 are given by

[e1, e3] = e3, [e1, e4] = e6, [e2, e5] = e5 + e6, [e2, e6] = e6, [e2, e4] = e4. (4.30)

The geodesic equations are given by

p̈ = ż( ṗ + ẏ) + q̇ẇ, q̈ = q̇ż, ẍ = ẋẇ, ÿ = ẏż, z̈ = 0, ẅ = 0. (4.31)

The symmetry Lie algebra is spanned by

e1 = Dt, e2 = Dp, e3 = Dx, e4 = Dq, e5 = Dy, e6 = wDt,

e7 = zDt, e8 = qDp, e9 = yDp, e10 = ezDp, e11 = ewDx,

e12 = wezDp + ezDq, e13 = (z − 1)ezDp + ezDy, e14 = Dz,

e15 = tDt, e16 = Dw, e17 = xDx, e18 = pDp + qDq + yDy. (4.32)

The non-zero brackets of the symmetry algebra are given by

[e1, e15] = e1, [e2, e18] = e2, [e3, e17] = e3, [e4, e8] = e2, [e4, e18] = e4,

[e5, e9] = e2, [e5, e18] = e5, [e6, e15] = e6, [e6, e16] = −e1, [e7, e15] = e7,

[e7, e14] = −e1, [e8, e12] = −e10, [e9, e13] = −e10, [e10, e14] = −e10,

[e10, e18] = e10, [e11, e16] = −e11, [e11, e17] = e11, [e12, e14] = −e12,

[e12, e16] = −e10, [e12, e18] = e12, [e13, e14] = −e10 − e13, [e13, e18] = e13. (4.33)

Proposition 16. The symmetry Lie algebra is an eighteen-dimensional solvable Lie algebra with
thirteen-dimensional nilradical spanned by e1–e13, which is a direct sum of an eight-dimensional
indecomposable solvable Lie algebra B8(a=0) and a five-dimensional abelian Lie algebra. The
complement of the nilradical is a another five-dimensional abelian Lie algebra spanned by e14–e18.
Therefore, the symmetry algebra can be identified as: (B8(a=0) ⊕ R

5) ⋊ R5, where the non-zero brackets
of B8a are given by Eq (4.38).
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4.9. Algebra Aa
6,9

The non-zero brackets for the algebra Aa
6,9 are given by

[e1, e3] = e3, [e1, e4] = e6, [e2, e4] = e4 + e5, [e2, e5] = e5 + ae6, [e2, e6] = e6. (4.34)

The geodesic equations are given by

p̈ = ż( ṗ + aẏ) + q̇ẇ, q̈ = q̇ż, ẍ = ẋẇ, ÿ = ż(q̇ + ẏ), z̈ = 0, ẅ = 0. (4.35)

For the general case Aa,0
6,9 , the symmetry Lie algebra is spanned by

e1 = Dt, e2 = Dy, e3 = Dp, e4 = Dx, e5 = Dq, e6 = wDt,

e7 = zDt, e8 = qDp, e9 = ezDp, e10 = ewDx, e11 = ayDp + qDy,

e12 = (z − 1)aezDp + ezDy, e13 = [
(z2 − 2z + 2)a

2
+ w]ezDp + ezDq + (z − 1)ezDy,

e14 = Dw, e15 = Dz, e16 = tDt, e17 = xDx, e18 = pDp + qDq + yDy. (4.36)

The non-zero brackets of the symmetry algebra are given by

[e1, e16] = e1, [e2, e18] = e2, [e3, e18] = e3, [e4, e17] = e4,

[e5, e11] = e2, [e5, e18] = e5, [e6, e14] = −e1, [e6, e16] = e6,

[e7, e15] = −e1, [e8, e13] = −e9, [e9, e15] = −e9, [e9, e18] = e9,

[e10, e14] = −e10, [e11, e12] = −ae9, [e2, e11] = ae3, [e11, e13] = −e12,

[e12, e18] = e12, [e5, e8] = e3, [e12, e15] = −ae9 − e12, [e7, e16] = e7,

[e10, e17] = e10, [e13, e14] = −e9, [e13, e15] = −e12 − e13, [e13, e18] = e13. (4.37)

In this case, based on the Lie invariance condition, we have to consider one sub-case based on the
values of the parameters to see if taking certain values will generate new solutions to the system of
PDE. The only case we consider is Aa=0

6,9 . In the generic and sub-cases, we find that the structure of the
symmetry Lie algebras are the same. We summarize the results in the following proposition.

Proposition 17. The symmetry Lie algebra is an eighteen-dimensional solvable Lie algebra with
thirteen-dimensional nilradical spanned by e1–e13, which is a direct sum of an eight-dimensional
indecomposable solvable Lie algebra B8 and a five-dimensional abelian Lie algebra. The complement
of the nilradical is a another five-dimensional abelian Lie algebra spanned by e14–e18. Therefore, the
symmetry algebra can be identified as (B8 ⊕ R

5) ⋊ R5, where B8 is the following solvable
indecomposable eight-dimensional Lie algebra given by the non-zero brackets

[e3, e4] = e2, [e3, e6] = e1, [e4, e8] = −e5, [e6, e7] = −ae5, [e6, e8] = −e7. (4.38)
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4.10. Algebra Aab
6,10

The non-zero brackets for the algebra Aab
6,10 are given by

[e1, e3] = ae3, [e1, e4] = e4 + be6, [e1, e5] = e5,

[e1, e6] = e6, [e2, e3] = e3, [e2, e4] = e5, [e2, e5] = e6. (4.39)

The geodesic equations are given by

p̈ = ẇ( ṗ + bẋ) + q̇ż, q̈ = q̇ẇ + ẋż, ẍ = ẋẇ, ÿ = ẏ(ż + aẇ), z̈ = 0, ẅ = 0. (4.40)

For the general case Aa,0,b,0
6,10 , the symmetry Lie algebra is spanned by

e1 = Dt, e2 = Dq, e3 = Dp, e4 = Dy, e5 = Dx, e6 = wDt,

e7 = zDt, e8 = xDp, e9 = qDp + xDq, e10 = ewDp, e11 = zewDp + ewDq,

e12 = eawezDy, e13 = [
(2w − 2)b

2
+

z2

2
]ewDp + zewDq + ewDx,

e14 = Dz, e15 = Dw, e16 = tDt, e17 = yDy, e18 = pDp + qDq + xDx. (4.41)

The non-zero brackets of the symmetry algebra are given by

[e1, e16] = e1, [e2, e9] = e3, [e2, e18] = e2, [e3, e18] = e3, [e4, e17] = e4,

[e5, e8] = e3, [e5, e9] = e2, [e5, e18] = e5, [e6, e15] = −e1, [e6, e16] = e6,

[e7, e14] = −e1, [e7, e16] = e7, [e8, e13] = −e10, [e13, e15] = −be10 − e13,

[e9, e13] = −e11, [e10, e15] = −e10, [e10, e18] = e10, [e11, e14] = −e10,

[e11, e18] = e11, [e11, e15] = −e11, [e12, e14] = −e12, [e12, e15] = −ae12,

[e12, e17] = e12, [e13, e14] = −e11, [e9, e11] = −e10, [e13, e18] = e13. (4.42)

In this case, based on the Lie invariance condition, we have to consider three sub-cases based on
the values of the parameters to see if taking certain values will generate new solutions to the system
of PDE. The cases we consider are Aa=0

6,10, Aa=1
6,10 and Ab=0

6,10. In the generic and sub-cases, we find that
the structure of the symmetry Lie algebras are the same. We summarize the results in the following
proposition.

Proposition 18. The symmetry Lie algebra is an eighteen-dimensional solvable Lie algebra with
thirteen-dimensional nilradical spanned by e1–e13, which is a direct sum of an eight-dimensional
indecomposable solvable Lie algebra B8(a=1) and a five-dimensional abelian Lie algebra. The
complement of the nilradical is a another five-dimensional abelian Lie algebra spanned by e14–e18.
Therefore, the symmetry algebra can be identified as (B8(a=1) ⊕ R

5) ⋊ R5, where the non-zero brackets
of B8a are given by Eq (4.38).
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4.11. Algebra Aa
6,11

The non-zero brackets for the algebra Aa
6,11 are given by

[e1, e3] = e4, [e2, e4] = e4, [e1, e6] = e6, [e2, e3] = e3,

[e1, e5] = e5 + e6, [e2, e5] = ae5, [e2, e6] = ae6. (4.43)

The geodesic equations are given by

p̈ = ṗ(aż + ẇ) + q̇ẇ, q̈ = q̇(aż + ẇ), ẍ = ẋż, ÿ = ẋẇ + żẏ, z̈ = 0, ẅ = 0. (4.44)

For the general case Aa,0
6,11, the symmetry Lie algebra is spanned by

e1 = Dt, e2 = Dp, e3 = Dy, e4 = Dq, e5 = Dx, e6 = wDt,

e7 = zDt, e8 = qDp, e9 = xDy, e10 = ezDy, e11 = ezDx + wezDy,

e12 = eweazDp, e13 = weweazDp + eweazDq, e14 = Dw, e15 = Dz,

e16 = tDt, e17 = pDp + qDq, e18 = xDx + yDy. (4.45)

The non-zero brackets of the symmetry algebra are given by

[e1, e16] = e1, [e2, e17] = e2, [e3, e18] = e3, [e4, e8] = e2, [e4, e17] = e4,

[e6, e14] = −e1, [e6, e16] = e6, [e13, e15] = −ae13, [e7, e15] = −e1,

[e8, e13] = −e12, [e9, e11] = −e10, [e10, e15] = −e10, [e10, e18] = e10,

[e11, e15] = −e11, [e11, e18] = e11, [e12, e14] = −e12, [e5, e9] = e3,

[e12, e15] = −ae12, [e11, e14] = −e10, [e13, e14] = −e12 − e13,

[e12, e17] = e12, [e5, e18] = e5, [e7, e16] = e7, [e13, e17] = e13. (4.46)

In this case, based on the Lie invariance condition, we have to consider two sub-cases based on the
values of the parameters to see if taking certain values will generate new solutions to the system of
PDE. The cases we consider are Aa=0

6,11 and Aa=1
6,11. In the generic and sub-cases, we find that the structure

of the symmetry Lie algebras are the same. We summarize the results in the following proposition.

Proposition 19. The symmetry Lie algebra is an eighteen-dimensional solvable Lie algebra with
thirteen-dimensional nilradical spanned by e1–e13 and five-dimensional abelian complement spanned
by e14–e18. In fact, the nilradical is a direct sum of two copies of A5,1 and R3. Hence, the symmetry
algebra is (A5,1 ⊕ A5,1 ⊕ R

3) ⋊ R5, where A5,1 is given by Eq (4.9).
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4.12. Algebra Aab
6,12

The non-zero brackets for the algebra Aab
6,12 are given by

[e1, e4] = e4, [e1, e5] = e5 + e6, [e1, e6] = e6, [e2, e3] = ae4 + e5 − be6,

[e1, e3] = e3 + e4, [e2, e4] = e6, [e2, e5] = −e3 + be4 + ae6, [e2, e6] = −e4. (4.47)

The geodesic equations are given by

p̈ = ż( ṗ + ẋ) + ẇ(aẋ + bẏ − q̇), q̈ = ż(q̇ + ẏ) + ẇ(aẏ − bẋ + ṗ),

ẍ = ẋż − ẏẇ, ÿ = ẏż + ẋẇ, z̈ = 0, ẅ = 0. (4.48)

For the general case Aa,0,b,0
6,12 , the symmetry Lie algebra is spanned by

e1 = Dy, e2 = Dp, e3 = Dq, e4 = Dt, e5 = Dx,

e6 = wDt, e7 = zDt, e8 = xDp + yDq, e9 = yDp − xDq,

e10 = cos(w)ezDp + sin(w)ezDq, e11 = sin(w)ezDp − cos(w)ezDq,

e12 = ((aw + b + z − 1) cos(w) + bw sin(w)) ezDp + ((aw + b + z − 1) sin(w)

−w cos(w)b) ezDq + cos(w) ezDx + sin(w) ezDy,

e13 = ((−bw + a) cos(w) + sin(w)(aw + z − 1)) ezDp + (− cos(w)(aw + z − 1)

−(bw − a) sin(w)) ezDq + sin(w) ezDx − cos(w) ezDy,

e14 = tDt, e15 = Dz, e16 = Dw,

e17 = pDp + qDq + xDx + yDy, e18 = qDp − pDq + yDx − xDy. (4.49)

The non-zero brackets of the symmetry algebra are given by

[e1, e8] = e3, [e1, e9] = e2, [e1, e17] = e1, [e13, e15] = −e11 − e13,

[e13, e16] = 2be10 − e12, [e3, e17] = e3, [e3, e18] = e2, [e4, e14] = e4,

[e5, e9] = −e3, [e5, e17] = e5, [e5, e18] = −e1, [e6, e14] = e6,

[e7, e14] = e7, [e7, e15] = −e4, [e8, e12] = −e10, [e8, e13] = −e11,

[e9, e12] = −e11, [e9, e13] = e10, [e10, e15] = −e10, [e10, e16] = e11,

[e10, e17] = e10, [e10, e18] = e11, [e11, e15] = −e11, [e11, e16] = −e10,

[e11, e17] = e11, [e11, e18] = −e10, [e5, e8] = e2, [e12, e17] = e12,

[e13, e17] = e13, [e12, e18] = −ae10 + be11 + e13, [e1, e18] = e5,

[e12, e16] = −2ae10 + e13, [e2, e17] = e2, [e12, e15] = −e10 − e12,

[e2, e18] = −e3, [e6, e16] = −e4, [e13, e18] = ae11 + be10 − e12. (4.50)

In this case, based on the Lie invariance condition, we have to consider two sub-cases based on the
values of the parameters to see if taking certain values will generate new solutions to the system of
PDE. The cases we consider are Aa=0

6,12 and Ab=0
6,12. In the generic and sub-cases, we find that the structure

of the symmetry Lie algebras are the same. We summarize the results in the following proposition.
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Proposition 20. The symmetry Lie algebra is an eighteen-dimensional solvable Lie algebra with
thirteen-dimensional nilradical spanned by e1–e13 and five-dimensional abelian complement spanned
by e14–e18. In fact, the nilradical is a direct sum of ten-dimensional solvable Lie algebra C10 and R3.
Hence, the symmetry algebra is (C10 ⊕ R

3) ⋊ R5, where C10 is an indecoposable ten-dimensional
solvable Lie algebra given by the non-zero brackets

[e1, e5] = e3, [e1, e6] = e2, [e4, e5] = e2, [e4, e6] = −e3,

[e5, e9] = −e7, [e5, e10] = −e8, [e6, e9] = −e8, [e6, e10] = e7. (4.51)

4.13. Algebra Aabcd
6,13 (abcd : a2 + b2 , 0, c2 + d2 , 0)

The non-zero brackets for the algebra Aabcd
6,13 are given by

[e1, e3] = ae3, [e1, e4] = ce4, [e1, e5] = e6, [e1, e6] = −e5,

[e2, e3] = be3, [e2, e4] = de4, [e2, e6] = e6, [e2, e5] = e5. (4.52)

The geodesic equations are given by

p̈ = ṗż − q̇ẇ, q̈ = ṗẇ + q̇ż, ẍ = ẋ(dż + cẇ), ÿ = ẏ(bż + aẇ), z̈ = 0, ẅ = 0. (4.53)

For the general case Aa,0,b,0,c,0,d,0
6,13 , the symmetry Lie algebra is spanned by

e1 = Dt, e2 = Dp, e3 = Dq, e4 = Dx, e5 = Dy, e6 = wDt, e7 = zDt,

e8 = ecwedzDx, e9 = eawebzDy, e10 = cos(w)ezDp + sin(w)ezDq,

e11 = sin(w)ezDp − cos(w)ezDq, e12 = Dw, e13 = Dz, e14 = tDt,

e15 = xDx, e16 = yDy, e17 = pDp + qDq e18 = qDp − pDq. (4.54)

The non-zero brackets of the symmetry algebra are given by

[e1, e14] = e1, [e2, e17] = e2, [e2, e18] = −e3, [e3, e17] = e3, [e3, e18] = e2,

[e4, e15] = e4, [e6, e12] = −e1, [e9, e12] = −ae9, [e6, e14] = e6,

[e7, e14] = e7, [e8, e12] = −ce8, [e8, e13] = −de8, [e8, e15] = e8,

[e9, e16] = e9, [e10, e12] = e11, [e10, e13] = −e10, [e10, e17] = e10,

[e11, e13] = −e11, [e9, e13] = −be9, [e10, e18] = e11, [e7, e13] = −e1,

[e5, e16] = e5, [e11, e12] = −e10, [e11, e17] = e11, [e11, e18] = −e10. (4.55)

In this case, based on the Lie invariance condition, we have to consider eight sub-cases based on
the values of the parameters to see if taking certain values will generate new solutions to the system of
PDE. The cases we consider are: Aa=0,b,0

6,13 , Aa=c,a,0
6,13 , Ab=0,a,0

6,13 , Ab=1
6,13, Ab=d,b,0

6,13 , Ac=0,d,0
6,13 , Ad=1

6,13 and Ad=0,c,0
6,13 .

In the generic and sub-cases, we find that the structure of the symmetry Lie algebras are the same. We
summarize the results in the following proposition.

Proposition 21. The symmetry Lie algebra is an eighteen-dimensional solvable Lie algebra which
is the semidirect product of eleven-dimensional abelian nilradical spanned by e1–e11 and a seven-
dimensional abelian complement spanned by e12–e18. Hence, it can be described as R11 ⋊ R7.
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4.14. Algebra Aabc
6,14 (ab , 0)

The non-zero brackets for the algebra Aabc
6,14 are given by

[e1, e3] = ae3, [e1, e5] = ce5 + e6, [e1, e6] = e5 + ce6, [e2, e3] = be3, [e2, e4] = e4. (4.56)

The geodesic equations are given by

p̈ = ẇ(cṗ + q̇), q̈ = ẇ(−ṗ + cq̇), ẍ = ẋż, ÿ = ẏ(bż + aẇ), z̈ = 0, ẅ = 0. (4.57)

For the general case Aa,0,b,0,c,0
6,14 , the symmetry Lie algebra is spanned by

e1 = Dt, e2 = Dq, e3 = Dp, e4 = Dy, e5 = Dx, e6 = wDt,

e7 = zDt, e8 = ezDx, e9 = eawebzDy, e10 = ecw sin(w)Dp + ecw cos(w)Dq,

e11 = −ecw cos(w)Dp + ecw sin(w)Dq, e12 = Dz, e13 = Dw, e14 = tDt,

e15 = yDy, e16 = xDx, e17 = pDp + qDq, e18 = −qDp + pDq. (4.58)

The non-zero brackets of the symmetry algebra are given by

[e1, e14] = e1, [e2, e17] = e2, [e7, e14] = e7, [e3, e17] = e3, [e3, e18] = e2,

[e4, e15] = e4, [e5, e16] = e5, [e6, e13] = −e1, [e6, e14] = e6, [e8, e16] = e8,

[e11, e13] = −ce11 − e10, [e11, e17] = e11, [e11, e18] = −e10, [e7, e12] = −e1,

[e9, e15] = e9, [e10, e13] = −ce10 + e11, [e10, e17] = e10, [e10, e18] = e11,

[e2, e18] = −e3, [e8, e12] = −e8, [e9, e13] = −ae9, [e9, e12] = −be9. (4.59)

In this case, based on the Lie invariance condition, we have to consider two sub-cases based on
the values of the parameters to see if taking certain values will generate new solutions to the system
of PDE. The cases we consider are: Ab=1,a,0

6,14 and Aa=c,a,0
6,14 . In the generic and sub-cases, we find that

the structure of the symmetry Lie algebras are the same. We summarize the results in the following
proposition.

Proposition 22. The symmetry Lie algebra is an eighteen-dimensional solvable Lie algebra which
is the semidirect product of eleven-dimensional abelian nilradical spanned by e1–e11 and a seven-
dimensional abelian complement spanned by e12–e18. Hence, it can be described as R11 ⋊ R7.

4.15. Algebra Aabcd
6,15 (abcd : b , 0)

The non-zero brackets for the algebra Aabcd
6,15 are given by

[e1, e3] = e3, [e1, e4] = e4, [e1, e5] = ae5 + be6, [e1, e6] = −be5 + ae6,

[e2, e3] = ce3 + e4, [e2, e4] = −e3 + ce4, [e2, e6] = de6, [e2, e5] = de5. (4.60)

The geodesic equations are given by

p̈ = ṗ(cż + ẇ) − q̇ż, q̈ = ż( ṗ + cq̇) + q̇ẇ, z̈ = 0,
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ẍ = ẋ(dż + aẇ) − bẏẇ, ÿ = bẋẇ + ẏ(dż + qẇ), ẅ = 0. (4.61)

For the general case Aa,0,b,0,c,0,d,0
6,15 , the symmetry Lie algebra is spanned by

e1 = Dp, e2 = Dt, e3 = Dw, e4 = Dz, e5 = Dx, e6 = Dy,

e7 = wDt, e8 = zDt, e9 = tDt, e10 = xDx + yDy. (4.62)

The non-zero brackets of the symmetry algebra are given by

[e2, e9] = e2, [e3, e7] = e2, [e4, e8] = e2, [e5, e10] = e5,

[e6, e10] = e6, [e7, e9] = e7, [e8, e9] = e8. (4.63)

In this case, based on the Lie invariance condition, we have to consider five sub-cases based on the
values of the parameters to see if taking certain values will generate new solutions to the system of
PDE. The cases we consider are Aa=0

6,15, Aa=1
6,15, Ac=0

6,15, Ad=0
6,15 and Ac=d

6,15. In the generic and sub-cases, we find
that the structure of the symmetry Lie algebras are the same. We summarize the results in the following
proposition.

Proposition 23. The symmetry Lie algebra is a ten-dimensional solvable Lie algebra with eight
-dimensional not abelian nilradical spanned by e1–e8 and two-dimensional abelian complement
spanned by e9 and e10. In fact, The nilradical is a direct sum of A5,4 and R3. Hence, the symmetry Lie
algebra can be identified as (A5,4 ⊕ R

3) ⋊ R2, where the non-zero brackets of A5,4 are given by

[e2, e4] = e1, [e3, e5] = e1. (4.64)

4.16. Algebra Aab
6,16

The non-zero brackets for the algebra Aab
6,16 are given by

[e1, e3] = e4, [e2, e4] = e4, [e1, e5] = ae5 + e6, [e2, e3] = e3,

[e1, e6] = −e5 + ae6, [e2, e5] = be5, [e2, e6] = be6. (4.65)

The geodesic equations are given by

p̈ = ṗ(bż + aẇ) − q̇ẇ, q̈ = ṗẇ + q̇(bż + aẇ), ẍ = ẋż, ÿ = ẏż, z̈ = 0, ẅ = 0. (4.66)

For the general case Aa,0,b,0
6,16 , the symmetry Lie algebra is spanned by

e1 = Dt, e2 = Dp, e3 = Dq, e4 = Dx, e5 = Dy, e6 = wDt,

e7 = zDt, e8 = ezDx, e9 = ezDy, e10 = ebz cos(w)eawDp + sin(w)eaw+bzDq,

e11 = ebz sin(w)eawDp − cos(w)eaw+bzDq, e12 = Dz, e13 = tDt, e14 = Dw,

e15 = xDx, e16 = yDx, e17 = xDy, e18 = yDy, e19 = pDp + qDq, e20 = qDp − pDq. (4.67)

The non-zero brackets of the symmetry algebra are given by

[e1, e13] = e1, [e2, e19] = e2, [e3, e19] = e3, [e10, e14] = −ae10 + e11,
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[e4, e15] = e4, [e4, e17] = e5, [e5, e16] = e4, [e11, e14] = −ae11 − e10,

[e6, e14] = −e1, [e7, e13] = e7, [e8, e15] = e8, [e16, e17] = −e15 + e18,

[e15, e17] = e17, [e16, e18] = −e16, [e7, e12] = −e1, [e17, e18] = e17,

[e2, e20] = −e3, [e10, e19] = e10, [e10, e20] = e11, [e11, e12] = −be11,

[e11, e19] = e11, [e5, e18] = e5, [e11, e20] = −e10, [e10, e12] = −be10,

[e3, e20] = e2, [e6, e13] = e6, [e8, e12] = −e8, [e15, e16] = −e16,

[e8, e17] = e9, [e9, e12] = −e9, [e9, e16] = e8, [e9, e18] = e9. (4.68)

In this case, based on the Lie invariance condition, we have to consider three sub-cases based on
the values of the parameters to see if taking certain values will generate new solutions to the system
of PDE. The cases we consider are Aa=0

6,16, Ab=0
6,16 and Ab=1

6,16. In the generic and sub-cases, we find that
the structure of the symmetry Lie algebras are the same. We summarize the results in the following
proposition.

Proposition 24. The symmetry Lie algebra is a twenty-dimensional semi direct product of seventeen
solvable Lie algebra and three -dimensional semi-simple sl(2,R). Furthermore, the symmetry Lie
algebra has eleven dimensional abelian nilradical and nine-dimensional complement. Therefore, the
symmetry Lie algebra can be identified as (R11 ⋊ R6) ⋊ sl(2,R).

4.17. Algebra Aa
6,17

The non-zero brackets for the algebra Aa
6,17 are given by

[e1, e3] = ae3 + e4, [e1, e4] = ae4, [e1, e5] = e6,

[e1, e6] = −e5, [e2, e5] = e5, [e2, e6] = e6. (4.69)

The geodesic equations are given by

p̈ = ṗż − q̇ẇ, q̈ = ṗẇ + q̇ż, ẍ = ẇ(aẋ + ẏ), ÿ = aẏẇ, z̈ = 0, ẅ = 0. (4.70)

Based on the system of PDE’s obtained from the Lie Invarince Condition we consider the following
subcases of certain values of the parameters.

4.17.1. Case 1: Aa,0
6,17

The symmetry Lie algebra is spanned by

e1 = Dx, e2 = Dp, e3 = Dq, e4 = Dy, e5 = Dt, e6 = yDx,

e7 = wDt, e8 = zDt, e9 =
eawDx

a
, e10 = cos (w)ezDp + sin (w)ezDq,

e11 = sin (w)ezDp − cos (w)ezDq, e12 =
(aw − 1)eawDx

a
+ eawDy, e13 = Dz,

e14 = Dw, e15 = tDt, e16 = xDx + yDy, e17 = pDp + qDq, e18 = qDp − pDq. (4.71)
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The non-zero brackets of the symmetry algebra are given by

[e1, e16] = e1, [e2, e17] = e2, [e3, e18] = −e3, [e3, e17] = e3, [e3, e18] = e2,

[e4, e16] = e4, [e5, e15] = e5, [e6, e12] = −ae9, [e7, e14] = −e5, [e7, e15] = e7,

[e8, e13] = −e5, [e8, e15] = e8, [e9, e14] = −ae9, [e10, e13] = −e10,

[e10, e14] = e11, [e10, e17] = e10, [e10, e18] = e11, [e11, e13] = −e11,

[e11, e17] = e11, [e4, e6] = e1, [e9, e16] = e9, [e11, e14] = −e10,

[e11, e18] = −e10, [e12, e14] = −ae12 − ae9, [e12, e16] = e12. (4.72)

Proposition 25. The symmetry Lie algebra is an eighteen-dimensional solvable Lie algebra which is
the semidirect product of twelve-dimensional decomposable nilradical spanned by e1–e12 and a six-
dimensional abelian complement spanned by e12–e18. In fact, the nilradical is a direct sum of A5,1 in
Winternitz list and R7. Hence, symmetry algebra can be can be described as (A5,1 ⊕ R

7) ⋊ R6, where
A5,1 is given by Eq (4.9).

4.17.2. Case 2: Aa=0
6,17

The symmetry Lie algebra is spanned by

e1 = Dt, e2 = Dx, e3 = Dp, e4 = Dq, e5 = Dy, e6 = wDt, e7 = zDt,

e8 = zDx, e9 = wDx, e10 =
1
2

w2Dx + wDy, e11 =
1
2

wzDx + zDy,

e12 = cos (w)ezDp + sin (w)ezDq, e13 = sin (w)ezDp − cos (w)ezDq,

e14 = tDx, e15 = Dz, e16 = Dw, e17 = tDt, e18 = yDt, e19 = yDx,

e20 = pDp + qDq, e21 = qDp − pDq, e22 =
1
2

twDx + tDy, e23 = (wy − 2x)Dt,

e24 =
1
2

wyDx + yDy, e25 = (x −
wy
2

)Dx, e26 = (
1
2

yw2 − wx)Dx + (wy − 2x)Dy. (4.73)

The non-zero brackets of the symmetry algebra are given by

[e1, e14] = e2, [e1, e17] = e1, [e1, e22] = e5 +
e9

2
, [e2, e23] = −2e1,

[e2, e25] = e2, [e2, e26] = −2e5 − e9, [e3, e20] = e3, [e3, e21] = −e4,

[e4, e20] = e4, [e4, e21] = e3, [e5, e18] = e1, [e5, e19] = e2, [e5, e23] = e6,

[e5, e24] = e5 +
e9

2
, [e5, e25] =

e9

2
, [e5, e26] = e10, [e10, e16] = −e5 − e9,

[e6, e16] = −e1, [e6, e17] = e6, [e6, e22] = e10, [e7, e14] = e8,

[e7, e15] = −e1, [e7, e17] = e7, [e7, e22] = e11, [e8, e15] = −e2,

[e8, e23] = −2e7, [e8, e25] = e8, [e8, e26] = −2e11, [e9, e16] = −e2,

[e9, e23] = −2e6, [e9, e25] = e9, [e9, e26] = −2e10, [e6, e14] = e9,

AIMS Mathematics Volume 9, Issue 1, 1969–1996.



1992

[e10, e18] = e6, [e10, e19] = e9, [e10, e24] = e10, [e11, e15] = −e5 −
e9

2
,

[e11, e16] = −
e8

2
, [e11, e18] = e7, [e11, e19] = e8, [e11, e24] = e11,

[e12, e15] = −e12, [e12, e16] = e13, [e12, e20] = e12, [e12, e21] = e13,

[e13, e15] = −e13, [e13, e16] = −e12, [e13, e20] = e13, [e13, e21] = −e12,

[e14, e25] = e14, [e14, e26] = −2e22, [e16, e22] =
e14

2
, [e17, e18] = −e18,

[e16, e26] = e24 − e25, [e14, e18] = −e19, [e14, e23] = −2e17 + 2e25,

[e16, e23] = e18, [e16, e24] =
e19

2
, [e19, e25] = e19, [e17, e23] = −e23,

[e16, e25] = −
e19

2
, [e14, e17] = −e14, [e17, e22] = e22, [e19, e22] = −e14,

[e19, e23] = −2e18, [e18, e24] = −e18, [e18, e26] = −e23, [e22, e23] = −e26,

[e18, e22] = −e17 + e24, [e19, e24] = −e19, [e19, e26] = −2e24 + 2e25,

[e22, e24] = e22, [e23, e25] = −e23, [e24, e26] = −e26, [e25, e26] = e26. (4.74)

Proposition 26. The symmetry Lie algebra is a twenty six-dimensional semi direct product of
eighteen solvable Lie algebra and eight-dimensional semi-simple sl(3,R). Furthermore, the symmetry
Lie algebra has thirteen-dimensional complement. Therefore, the symmetry algebra can be identified
as (R13 ⋊ R5) ⋊ sl(3,R).

4.18. Algebra Aabc
6,18 (b , 0)

The non-zero brackets for the algebra Aabc
6,18 are given by

[e1, e3] = e4, [e1, e4] = −e3, [e1, e5] = ae5 + be6, [e2, e3] = e3,

[e1, e6] = −be5 + ae6, [e2, e4] = e4, [e2, e5] = ce5, [e2, e6] = ce6. (4.75)

The geodesic equations are given by

p̈ = ṗż + q̇ẇ, q̈ = −ṗẇ + q̇ż, ẍ = ẋ(cż − aẇ) + bẏẇ, ÿ = −bẋẇ + ẏ(cż − aẇ), z̈ = 0, ẅ = 0. (4.76)

For the general case Aa,0,b,0,c,0
6,18 , the symmetry Lie algebra is spanned by

e1 = Dy, e2 = Dq, e3 = Dp, e4 = Dt, e5 = Dx, e6 = wDt, e7 = zDt,

e8 = sin (w)ezDp + cos (w)ezDq, e9 = − cos (w)ezDp + sin (w)ezDq,

e10 = ecz sin (bw)e−awDx + cos (bw)e−aw+czDy, e11 = ecz cos (bw)e−awDx − sin (bw)e−aw+czDy,

e12 = Dz, e13 = tDt, e14 = Dw, e15 = pDp + qDq,

e16 = xDx + yDy, e17 = −qDp + pDq, e18 = yDx − xDy. (4.77)

The non-zero brackets of the symmetry algebra are given by

[e1, e16] = e1, [e1, e18] = e5, [e2, e15] = e2, [e2, e17] = −e3, [e10, e18] = e11,

AIMS Mathematics Volume 9, Issue 1, 1969–1996.



1993

[e3, e17] = e2, [e4, e13] = e4, [e5, e16] = e5, [e5, e18] = −e1,

[e6, e14] = −e4, [e7, e12] = −e4, [e7, e13] = e7, [e8, e12] = −e8,

[e9, e12] = −e9, [e9, e14] = −e8, [e9, e17] = −e8, [e10, e12] = −ce10,

[e9, e15] = e9, [e8, e14] = e9, [e11, e18] = −e10, [e11, e12] = −ce11,

[e8, e15] = e8, [e8, e17] = e9, [e10, e14] = ae10 − be11, [e10, e16] = e10,

[e3, e15] = e3, [e11, e14] = ae11 + be10, [e10, e16] = e11, [e6, e13] = e6. (4.78)

In this case, based on the Lie invariance condition, we have to consider three sub-cases based on
the values of the parameters to see if taking certain values will generate new solutions to the system
of PDE. The cases we consider are Aa=0

6,18, Ac=0
6,18 and Ac=1

6,18. In the generic and sub-cases, we find that
the structure of the symmetry Lie algebras are the same. We summarize the results in the following
proposition.

Proposition 27. The symmetry Lie algebra is an eighteen-dimensional solvable Lie algebra which
is the semidirect product of eleven-dimensional abelian nilradical spanned by e1–e11 and a seven-
dimensional abelian complement spanned by e12–e18. Hence, it can be described as R11 ⋊ R7.

4.19. Algebra A6,19

The non-zero brackets for the algebra A6,19 are given by

[e1, e3] = e4 + e5, [e1, e5] = e6, [e1, e6] = −e5, [e2, e3] = e3,

[e1, e4] = −e3 + e6, [e2, e4] = e4, [e2, e5] = e5, [e2, e6] = e6. (4.79)

The geodesic equations are given by

p̈ = ṗż + ẇ(ẋ − q̇), q̈ = ẇ(ẏ − ṗ) + q̇ż, ẍ = ẋż − ẏẇ, ÿ = ẏż + ẋẇ, z̈ = 0, ẅ = 0. (4.80)

The symmetry Lie algebra is spanned by

e1 = Dy, e2 = Dp, e3 = Dq, e4 = Dt, e5 = Dx, e6 = wDt,

e7 = zDt, e8 = ezewDp − ez+wDq, e9 = eze−wDp + ez−wDq,

e10 = sin (w)ezDp + cos (w)ezDx + sin (w)ezDy,

e11 = − cos (w)ezDp + sin (w)ezDx − cos (w)ezDy, e12 = Dz,

e13 = tDt, e14 = Dw, e15 = pDp + qDq + xDx + yDy,

e16 = qDp + (−y + p)Dq, e17 = −xDp + yDx − xDy, e18 = (y − p)Dp − qDq. (4.81)

The non-zero brackets of the symmetry algebra are given by

[e1, e15] = e1, [e1, e16] = −e3, [e1, e17] = e5, [e1, e18] = e2, [e2, e15] = e2,

[e2, e16] = e3, [e2, e18] = −e2, [e3, e15] = e3, [e3, e16] = e2, [e3, e18] = −e3,

[e4, e13] = e4, [e5, e15] = e5, [e5, e17] = −e1 − e2, [e6, e13] = e6, [e6, e14] = −e4,
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[e7, e12] = −e4, [e7, e13] = e7, [e8, e12] = −e8, [e8, e14] = e8, [e8, e15] = e8,

[e8, e16] = e8, [e8, e18] = −e8, [e9, e12] = −e9, [e9, e14] = −e9, [e9, e15] = e9,

[e9, e16] = −e9, [e9, e18] = −e9, [e10, e12] = −e10, [e10, e14] = e11, [e10, e15] = e10,

[e10, e17] = e11, [e11, e12] = −e11, [e11, e14] = −e10, [e11, e15] = e11, [e11, e17] = −e10. (4.82)

Proposition 28. The symmetry Lie algebra is an eighteen-dimensional solvable Lie algebra which
is the semidirect product of eleven-dimensional abelian nilradical spanned by e1–e11 and a seven-
dimensional abelian complement spanned by e12–e18. Hence, it can be described as R11 ⋊ R7.

5. Conclusions and future work

n this work, we have investigated the symmetry Lie algebra of the geodesic equations of the
canonical connection on a Lie group. More precisely, we have considered six-dimensional
indecomposable solvable Lie algebras with co-dimension two abelian nilradical and abelian
complement. In dimension six, there are nineteen such algebras, namely, A6,1–A6,19 in [17]. In each
case, we list the non-zero brackets of the Lie algebra, the geodesic equations and a basis for the
symmetry Lie algebra in terms of vector fields. We also analyze the nilradical of the symmetry Lie
algebra. In every case, we identify the symmetry Lie algebra, and a summary of our results is given in
Table 1.

Table 1. Six-dimensional Lie algebras and identification of the symmetry algebra.

Six-dimensional Lie algebras Dimension Identification

Aa,0,b,0,c,0,d,0
6,1 18 R11 ⋊ R7

Aa,0,b,0,c,0
6,2 18 (A5,1 ⊕ R

7) ⋊ R6

Aa,0
6,3 18 (A5,1 ⊕ A5,1 ⊕ R

3) ⋊ R5

Aa,0,b,0
6,4 18 (A5,1 ⊕ R

7) ⋊ R6

Aa,0,b,0
6,5 18 (A5,1 ⊕ R

7) ⋊ R6

Aa,0,b,0
6,6 18 (A5,1 ⊕ A5,1 ⊕ R

3) ⋊ R5

Aa,0,b,0,c,0
6,7 18 (A5,1 ⊕ R

7) ⋊ R6

A6,8 18 (B8(a=0) ⊕ R
5) ⋊ R5

Aa,0
6,9 18 (B8 ⊕ R

5) ⋊ R5

Aa,0,b,0
6,10 18 (B8(a=1) ⊕ R

5) ⋊ R5

Aa,0
6,11 18 (A5,1 ⊕ A5,1 ⊕ R

3) ⋊ R5

Aa,0,b,0
6,12 18 (C10 ⊕ R

3) ⋊ R5

Aa,0,b,0,c,0,d,0
6,13 18 R11 ⋊ R7

Aa,0,b,0,c,0
6,14 18 R11 ⋊ R7

Aa,0,b,0,c,0,d,0
6,15 10 (A5,4 ⊕ R

3) ⋊ R2

Aa,0,b,0
6,16 20 (R11 ⋊ R6) ⋊ sl(2,R)

Aa,0
6,17 18 (A5,1 ⊕ R

7) ⋊ R6

Aa=0
6,17 26 (R13 ⋊ R5) ⋊ sl(3,R)

Aa,0,b,0,c,0
6,18 18 R11 ⋊ R7

A6,19 18 R11 ⋊ R7
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In future work, we intend to consider the problem in dimension n. For an n dimensional solvable
Lie algebra with co-dimension two abelian nilrdical and abelian complement, we plan to construct
the system of geodesic equations in general, the Lie invariance conditions, and try to integrate, to the
extent possible, the system of partial differential equations and obtain general results.
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