In this study, we explored a novel type of contraction, known as paired contraction (PC), to establish fixed points in metric spaces. It has been demonstrated that mappings possessing the PC property are continuous. We have also provided proofs for the existence of fixed points for such mappings with the classical Banach fixed point theorem emerging as a corollary. Furthermore, we presented examples of mappings that do not satisfy the standard contraction condition, but do exhibit the PC property.
Citation: Deep Chand, Yumnam Rohen. Paired contractive mappings and fixed point results[J]. AIMS Mathematics, 2024, 9(1): 1959-1968. doi: 10.3934/math.2024097
In this study, we explored a novel type of contraction, known as paired contraction (PC), to establish fixed points in metric spaces. It has been demonstrated that mappings possessing the PC property are continuous. We have also provided proofs for the existence of fixed points for such mappings with the classical Banach fixed point theorem emerging as a corollary. Furthermore, we presented examples of mappings that do not satisfy the standard contraction condition, but do exhibit the PC property.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[2] | K. Mebarki, S. Georgiev, S. Djebali, K. Zennir, Fixed point theorems with applications, 1 Eds., Chapman and Hall/CRC, 2023. https://doi.org/10.1201/9781003381969 |
[3] | W. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer Cham, 2014. https://doi.org/10.1007/978-3-319-10927-5 |
[4] | Jr. Nadler, B. Sam, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475–488. https://doi.org/10.2140/pjm.1969.30.475 doi: 10.2140/pjm.1969.30.475 |
[5] | W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (196), 1004–1006. https://doi.org/10.2307/2313345 |
[6] | J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241–251. https://doi.org/10.1090/s0002-9947-1976-0394329-4 doi: 10.1090/s0002-9947-1976-0394329-4 |
[7] | D. W. Boyd, J. S. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 458–464. https://doi.org/10.1090/s0002-9939-1969-0239559-9 |
[8] | T. Suzuki, Fixed-point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces, Nonlinear Anal., 64 (2006), 971–978. https://doi.org/10.1016/j.na.2005.04.054 doi: 10.1016/j.na.2005.04.054 |
[9] | A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329. https://doi.org/10.1016/0022-247x(69)90031-6 doi: 10.1016/0022-247x(69)90031-6 |
[10] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94 |
[11] | P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl., 22 (2020), 21. https://doi.org/10.1007/s11784-020-0756-1 doi: 10.1007/s11784-020-0756-1 |
[12] | O. Popescu, Some remarks on the paper "Fixed point theorems for generalized contractive mappings in metric spaces", J. Fixed Point Theory Appl., 23 (2021), 72. https://doi.org/10.1007/s11784-021-00908-7 doi: 10.1007/s11784-021-00908-7 |
[13] | D. Chand, Y. Rohen, Fixed points of $(\alpha_s - \beta_s - \psi)$-contractive mappings in S-metric spaces, Nonlinear Funct. Anal. Appl., 28 (2023), 571–587. https://doi.org/10.22771/nfaa.2023.28.02.15 doi: 10.22771/nfaa.2023.28.02.15 |
[14] | N. Priyobarta, Y. Rohen, S. Thounaojam, S. Radenovic, Some remarks on $\alpha$-admissibility in S-metric spaces, J. Inequal. Appl., 2022 (2022), 34. https://doi.org/10.1186/s13660-022-02767-3 doi: 10.1186/s13660-022-02767-3 |
[15] | S. S. Chauhan, K. Kaur, Fixed point theorem for a pair of s-$\alpha$ contractions in b-dislocated metric spaces, Adv. Appl. Math. Sci., 19 (2020,783–791. |
[16] | A. Farajzaddeh, G. H. Joonaghany, E. Hazar, Y. Wang, Some fixed point theorems for Suzuki type E-contractions via $\psi$-simulation functions and their applications in integral equations, J. Nonlinear Convex Anal., 23 (2022), 2707–2721. |
[17] | S. Janković, Z. Kadelburg, S. Radenović, On cone metric spaces: A survey, Nonlinear Anal., 74 (2011), 2591–2601. https://doi.org/10.1016/j.na.2010.12.014 doi: 10.1016/j.na.2010.12.014 |
[18] | W. A. Kirk, N. Shahzad, Generalized metrics and Caristi's theorem, Fixed Point Theory Appl., 2013 (2013), 129. https://doi.org/10.1186/1687-1812-2013-129 doi: 10.1186/1687-1812-2013-129 |
[19] | B. Samet, Discussion on "A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces" by A. Branciari, Publ. Math. Debrecen., 76 (2010), 493–494. https://doi.org/10.5486/pmd.2010.4595 doi: 10.5486/pmd.2010.4595 |
[20] | N. Saleem, I. Iqbal, B. Iqbal, S. Radenovíc, Coincidence and fixed points of multivalued F-contractions in generalized metric space with application, J. Fixed Point Theory Appl., 22 (2020), 81. https://doi.org/10.1007/s11784-020-00815-3 doi: 10.1007/s11784-020-00815-3 |
[21] | H. A. Hammad, M. De la Sen, Generalized contractive mappings and related results in b-metric like spaces with an application, Symmetry, 11 (2019), 667. https://doi.org/10.3390/sym11050667 doi: 10.3390/sym11050667 |
[22] | N. Priyobarta, Y. Rohen, N. Mlaiki, Complex valued $S_b$-metric spaces, J. Math. Anal., 8 (2017), 13–24. |
[23] | R. Devaney, An introduction to chaotic dynamical systems, 2 Eds., CRC Press, 2003. https://doi.org/10.4324/9780429502309 |
[24] | S. G. Georgiev, K. Bouhali, K. Zennir, A new topological approach to target the existence of solutions for nonlinear fractional impulsive wave equations, Axioms, 11 (2022), 721. https://doi.org/10.3390/axioms11120721 doi: 10.3390/axioms11120721 |
[25] | E. Soori, M. R. Omidi, A. P. Farajzadeh, Y. Wang, An implicit algorithm for finding a fixed point of a Q-nonexpansive mapping in locally convex spaces, J. Math., 2021 (2021), 9913909. https://doi.org/10.1155/2021/9913909 doi: 10.1155/2021/9913909 |