Research article

Characterization of $ Q $ graph by the burning number

  • Received: 22 November 2023 Revised: 25 December 2023 Accepted: 26 December 2023 Published: 16 January 2024
  • MSC : 05C45, 05C70, 05C75

  • The burning number $ b(G) $ of a graph $ G $, introduced by Bonato, is the minimum number of steps to burn the graph, which is a model for the spread of influence in social networks. In 2016, Bonato et al. studied the burning number of paths and cycles, and based on these results, they proposed a conjecture on the upper bound for the burning number. In this paper, we determine the exact value of the burning number of $ Q $ graphs and confirm this conjecture for $ Q $ graph. Following this, we characterize the single tail and double tails $ Q $ graph in term of their burning number, respectively.

    Citation: Yinkui Li, Jiaqing Wu, Xiaoxiao Qin, Liqun Wei. Characterization of $ Q $ graph by the burning number[J]. AIMS Mathematics, 2024, 9(2): 4281-4293. doi: 10.3934/math.2024211

    Related Papers:

  • The burning number $ b(G) $ of a graph $ G $, introduced by Bonato, is the minimum number of steps to burn the graph, which is a model for the spread of influence in social networks. In 2016, Bonato et al. studied the burning number of paths and cycles, and based on these results, they proposed a conjecture on the upper bound for the burning number. In this paper, we determine the exact value of the burning number of $ Q $ graphs and confirm this conjecture for $ Q $ graph. Following this, we characterize the single tail and double tails $ Q $ graph in term of their burning number, respectively.



    加载中


    [1] J. A. Bondy, U. S. R. Murty, Graph theory with applications, J. Oper. Res. Soc., 28 (1977), 237–238. http://dx.doi.org/10.1057/jors.1977.45 doi: 10.1057/jors.1977.45
    [2] A. Bonato, J. Janssen, E. Roshanbin, Burning a graph as a model of social contagion, In: Algorithms and models for the web graph, 2014. https://doi.org/10.1007/978-3-319-13123-8_2
    [3] A. Bonato, J. Janssen, E. Roshanbin, How to burn a graph, Internet Math., 12 (2016), 85–100. http://dx.doi.org/10.1080/15427951.2015.1103339 doi: 10.1080/15427951.2015.1103339
    [4] A. Bonato, J. Janssen, E. Roshanbin, Burning a graph is hard, Discrete Appl. Math., 232 (2017), 73–87. http://dx.doi.org/10.1016/j.dam.2017.07.016 doi: 10.1016/j.dam.2017.07.016
    [5] N. Alon, P. Pralat, N. Wormald, Cleaning regular graphs with brushes, Siam. J. Discrete Math., 23 (2008), 233–250. http://dx.doi.org/10.1137/070703053 doi: 10.1137/070703053
    [6] A. Barghi, P. Winkler, Firefighting on a random geometric graph, Random. Struct. Algor., 46 (2015), 466–477. http://dx.doi.org/10.1002/rsa.20511 doi: 10.1002/rsa.20511
    [7] A. Bonato, T. Lidbetter, Bounds on the burning numbers of spiders and path-forests, Theor. Comput. Sci., 794 (2019), 12–19. http://dx.doi.org/10.1016/j.tcs.2018.05.035 doi: 10.1016/j.tcs.2018.05.035
    [8] K. A. Sim, T. S. Tan, K. B. Wong, On the burning number of generalized Petersen graphs, Bull. Malays. Math. Sci. Soc., 41 (2018), 1657–1670. http://dx.doi.org/10.1007/s40840-017-0585-6 doi: 10.1007/s40840-017-0585-6
    [9] D. Mitsche, P. Pralat, E. Roshanbin, Burning number of graph products, Theor. Comput. Sci., 746 (2018), 124–138. http://dx.doi.org/10.1016/j.tcs.2018.06.036 doi: 10.1016/j.tcs.2018.06.036
    [10] D. Mitsche, P. Pralat, E. Roshanbin, Burning graphs: A probabilistic perspective, Graph Combinator., 33 (2017), 449–471. http://dx.doi.org/10.1007/s00373-017-1768-5 doi: 10.1007/s00373-017-1768-5
    [11] H. Q. Liu, R. T. Zhang, X. L. Hu, Burning number of theta graphs, Appl. Math. Comput., 361 (2019), 246–257. http://dx.doi.org/10.1016/j.amc.2019.05.031 doi: 10.1016/j.amc.2019.05.031
    [12] H. Q. Liu, X. J. Hu, X. L. Hu, Burning numbers of path forests and spiders, Bull. Malays. Math. Sci. Soc., 44 (2021), 661–681. http://dx.doi.org/10.1007/s40840-020-00969-w doi: 10.1007/s40840-020-00969-w
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(899) PDF downloads(76) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog