Research article

An extrapolated fixed-point optimization method for strongly convex smooth optimizations

  • Received: 21 November 2023 Revised: 21 December 2023 Accepted: 05 January 2024 Published: 16 January 2024
  • MSC : 47H09, 47J05, 65K10, 90C25

  • In this work, we focused on minimizing a strongly convex smooth function over the common fixed-point constraints. We proposed an extrapolated fixed-point optimization method, which is a modified version of the extrapolated sequential constraint method with conjugate gradient direction. We proved the convergence of the generated sequence to the unique solution to the considered problem without boundedness assumption. We also investigated some numerical experiments to underline the effectiveness and performance of the proposed method.

    Citation: Duangdaw Rakjarungkiat, Nimit Nimana. An extrapolated fixed-point optimization method for strongly convex smooth optimizations[J]. AIMS Mathematics, 2024, 9(2): 4259-4280. doi: 10.3934/math.2024210

    Related Papers:

  • In this work, we focused on minimizing a strongly convex smooth function over the common fixed-point constraints. We proposed an extrapolated fixed-point optimization method, which is a modified version of the extrapolated sequential constraint method with conjugate gradient direction. We proved the convergence of the generated sequence to the unique solution to the considered problem without boundedness assumption. We also investigated some numerical experiments to underline the effectiveness and performance of the proposed method.



    加载中


    [1] H. H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl., 202 (1996), 150–159. https://doi.org/10.1006/jmaa.1996.0308 doi: 10.1006/jmaa.1996.0308
    [2] I. Yamada, The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, In: Inherently parallel algorithms in feasibility and optimization and their applications, Elsevier, 2001,473–504.
    [3] H. K. Xu, T. H. Kim, Convergence of hybrid steepest-descent methods for variational inequalities, J. Optim. Theory Appl., 119 (2003), 185–201. https://doi.org/10.1023/B:JOTA.0000005048.79379.b6 doi: 10.1023/B:JOTA.0000005048.79379.b6
    [4] A. Cegielski, Extrapolated simultaneous subgradient projection method for variational inequality over the intersection of convex subsets, J. Nonlinear Convex Anal., 15 (2014), 211–218.
    [5] A. Cegielski, A. Gibali, S. Reich, R. Zalas, An algorithm for solving the variational inequality problem over the fixed point set of a quasi-nonexpansive operator in Euclidean space, Numer. Funct. Anal. Optim., 34 (2013), 1067–1096. https://doi.org/10.1080/01630563.2013.771656 doi: 10.1080/01630563.2013.771656
    [6] A. Cegielski, R. Zalas, Methods for variational inequality problem over the intersection of fixed point sets of quasi-nonexpansive operators, Numer. Funct. Anal. Optim., 34 (2013), 255–283. https://doi.org/10.1080/01630563.2012.716807 doi: 10.1080/01630563.2012.716807
    [7] S. Sabach, S. Shtern, A first order method for solving convex bilevel optimization problems, SIAM J. Optim., 27 (2017), 640–660. https://doi.org/10.1137/16M105592X doi: 10.1137/16M105592X
    [8] B. Tan, S. Li, Strong convergence of inertial Mann algorithms for solving hierarchical fixed point problems, J. Nonlinear Var. Anal., 4 (2020), 337–355. http://dx.doi.org/10.23952/jnva.4.2020.3.02 doi: 10.23952/jnva.4.2020.3.02
    [9] B. Tan, X. Qin, A. Gibali, Three approximation methods for solving constraint variational inequalities and related problems, Pure Appl. Funct. Anal., 8 (2023), 965–986.
    [10] M. Prangprakhon, N. Nimana, N. Petrot, A sequential constraint method for solving variational inequality over the intersection of fixed point sets, Thai J. Math., 18 (2020), 1105–1123.
    [11] M. Prangprakhon, N. Nimana, Extrapolated sequential constraint method for variational inequality over the intersection of fixed-point sets, Numer. Algorithms, 88 (2021), 1051–1075. https://doi.org/10.1007/s11075-021-01067-z doi: 10.1007/s11075-021-01067-z
    [12] H. Iiduka, I. Yamada, A use of conjugate gradient direction for the convex optimization problem over the fixed point set of a nonexpansive mapping, SIAM J. Optim., 19 (2009), 1881–1893. https://doi.org/10.1137/070702497 doi: 10.1137/070702497
    [13] A. Cegielski, Y. Censor, Extrapolation and local acceleration of an iterative process for common fixed point problems, J. Math. Anal. Appl., 394 (2012), 809–818. https://doi.org/10.1016/j.jmaa.2012.04.072 doi: 10.1016/j.jmaa.2012.04.072
    [14] A. Cegielski, N. Nimana, Extrapolated cyclic subgradient projection methods for the convex feasibility problems and their numerical behaviour, Optimization, 68 (2019), 145–161. https://doi.org/10.1080/02331934.2018.1509214 doi: 10.1080/02331934.2018.1509214
    [15] N. Petrot, M. Prangprakhon, P. Promsinchai, N. Nimana, A dynamic distributed conjugate gradient method for variational inequality problem over the common fixed-point constraints. Numer. Algorithms, 93 (2023), 639–668. https://doi.org/10.1007/s11075-022-01430-8 doi: 10.1007/s11075-022-01430-8
    [16] A. Beck, First-ordered methods in optimization, Philadelphia: SIAM, 2017.
    [17] A. Cegielski, Iterative methods for fixed point problems in Hilbert spaces, Berlin, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-30901-4
    [18] P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set Valued Anal., 16 (2008), 899–912. https://doi.org/10.1007/s11228-008-0102-z doi: 10.1007/s11228-008-0102-z
    [19] S. Saejung, P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal., 75 (2012), 742–750. https://doi.org/10.1016/j.na.2011.09.005 doi: 10.1016/j.na.2011.09.005
    [20] C. Jaipranop, S. Saejung, On Halpern-type sequences with applications in variational inequality problems, Optimization, 71 (2020), 675–710. https://doi.org/10.1080/02331934.2020.1812065 doi: 10.1080/02331934.2020.1812065
    [21] R. I. Boţ, E. R. Csetnek, N. Nimana, Gradient-type penalty method with inertial effects for solving constrained convex optimization problems with smooth data, Optim. Lett., 12 (2018), 17–33. https://doi.org/10.1007/s11590-017-1158-1 doi: 10.1007/s11590-017-1158-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(837) PDF downloads(72) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog