Research article

On Mann-type accelerated projection methods for pseudomonotone variational inequalities and common fixed points in Banach spaces

  • Received: 29 April 2023 Revised: 06 June 2023 Accepted: 15 June 2023 Published: 03 July 2023
  • MSC : 47H09, 47H10, 47J20, 47J25

  • In this paper, we investigate two Mann-type accelerated projection procedures with line search method for solving the pseudomonotone variational inequality (VIP) and the common fixed-point problem (CFPP) of finitely many Bregman relatively nonexpansive mappings and a Bregman relatively asymptotically nonexpansive mapping in $ p $-uniformly convex and uniformly smooth Banach spaces. Under mild conditions, we show weak and strong convergence of the proposed algorithms to a common solution of the VIP and CFPP, respectively.

    Citation: Lu-Chuan Ceng, Yeong-Cheng Liou, Tzu-Chien Yin. On Mann-type accelerated projection methods for pseudomonotone variational inequalities and common fixed points in Banach spaces[J]. AIMS Mathematics, 2023, 8(9): 21138-21160. doi: 10.3934/math.20231077

    Related Papers:

  • In this paper, we investigate two Mann-type accelerated projection procedures with line search method for solving the pseudomonotone variational inequality (VIP) and the common fixed-point problem (CFPP) of finitely many Bregman relatively nonexpansive mappings and a Bregman relatively asymptotically nonexpansive mapping in $ p $-uniformly convex and uniformly smooth Banach spaces. Under mild conditions, we show weak and strong convergence of the proposed algorithms to a common solution of the VIP and CFPP, respectively.



    加载中


    [1] L. C. Ceng, A. Petrusel, X. Qin, J. C. Yao, Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints, Optimization, 70 (2021), 1337–1358. https://doi.org/10.1080/02331934.2020.1858832 doi: 10.1080/02331934.2020.1858832
    [2] Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148 (2011), 318–335. https://doi.org/10.1007/s10957-010-9757-3 doi: 10.1007/s10957-010-9757-3
    [3] Y. Yao, N. Shahzad, J. C. Yao, Convergence of Tseng-type self-adaptive algorithms for variational inequalities and fixed point problems, Carpathian J. Math., 37 (2021), 541–550. https://doi.org/10.37193/CJM.2021.03.15 doi: 10.37193/CJM.2021.03.15
    [4] H. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240–256. https://doi.org/10.1112/S0024610702003332 doi: 10.1112/S0024610702003332
    [5] L. He, Y. L. Cui, L. C. Ceng, T. Y. Zhao, D. Q. Wang, H. Y. Hu, Strong convergence for monotone bilevel equilibria with constraints of variational inequalities and fixed points using subgradient extragradient implicit rule, J. Inequal. Appl., 2021 (2021), 146. https://doi.org/10.1186/s13660-021-02683-y doi: 10.1186/s13660-021-02683-y
    [6] R. W. Cottle, J. C. Yao, Pseudo-monotone complementarity problems in Hilbert space, J. Optim. Theory Appl., 75 (1992), 281–295. https://doi.org/10.1007/BF00941468 doi: 10.1007/BF00941468
    [7] Y. Yao, M. Postolache, J. C. Yao, Iterative algorithms for generalized variational inequalities, U.P.B. Sci. Bull., Series A, 81 (2019), 3–16.
    [8] D. V. Thong, D. V. Hieu, Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems, Numer. Algor., 80 (2019), 1283–1307. https://doi.org/10.1007/s11075-018-0527-x doi: 10.1007/s11075-018-0527-x
    [9] K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, New York: Marcel Dekker, 1984.
    [10] L. C. Ceng, C. F. Wen, Systems of variational inequalities with hierarchical variational inequality constraints for asymptotically nonexpansive and pseudocontractive mappings, RACSAM, 113 (2019), 2431–2447. https://doi.org/10.1007/s13398-019-00631-6 doi: 10.1007/s13398-019-00631-6
    [11] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747–756.
    [12] L. C. Ceng, A. Petrusel, X. Qin, J. C. Yao, Pseudomonotone variational inequalities and fixed points, Fixed Point Theory, 22 (2021), 543–558.
    [13] S. Reich, D. V. Thong, Q. L. Dong, X. H. Li, V. T. Dung, New algorithms and convergence theorems for solving variational inequalities with non-Lipschitz mappings, Numer. Algor., 87 (2021), 527–549. https://doi.org/10.1007/s11075-020-00977-8 doi: 10.1007/s11075-020-00977-8
    [14] Y. Yao, O. S. Iyiola, Y. Shehu, Subgradient extragradient method with double inertial steps for variational inequalities, J. Sci. Comput., 90 (2022), 71. https://doi.org/10.1007/s10915-021-01751-1 doi: 10.1007/s10915-021-01751-1
    [15] A. N. Iusem, M. Nasri, Korpelevich's method for variational inequality problems in Banach spaces, J. Glob. Optim., 50 (2011), 59–76.
    [16] Y. He, A new double projection algorithm for variational inequalities, J. Comput. Appl. Math., 185 (2006), 166–173. https://doi.org/10.1016/j.cam.2005.01.031 doi: 10.1016/j.cam.2005.01.031
    [17] L. C. Ceng, J. C. Yao, Y. Shehu, On Mann-type subgradient-like extragradient method with linear-search process for hierarchical variational inequalities for asymptotically nonexpansive mappings, Mathematics, 9 (2021), 3322. https://doi.org/10.3390/math9243322 doi: 10.3390/math9243322
    [18] G. Z. Eskandani, R. Lotfikar, M. Raeisi, Hybrid projection methods for solving pseudomonotone variational inequalities in Banach spaces, Fixed Point Theory, In press.
    [19] Y. Takahashi, K. Hashimoto, M. Kato, On sharp uniform convexity, smoothness, and strong type, cotype inequalities, J. Nonlinear Convex Anal., 3 (2002), 267–281.
    [20] L. J. Zhu, Y. Yao, Algorithms for approximating solutions of split variational inclusion and fixed point problems, Mathematics, 11 (2023), 641. https://doi.org/10.3390/math11030641 doi: 10.3390/math11030641
    [21] D. Reem, S. Reich, A. De Pierro, Re-examination of Bregman functions and new properties of their divergences, Optimization, 68 (2019), 279–348. https://doi.org/10.1080/02331934.2018.1543295 doi: 10.1080/02331934.2018.1543295
    [22] D. Butnariu, E. Resmerita, Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., 2006 (2006), 084919. https://doi.org/10.1155/AAA/2006/84919 doi: 10.1155/AAA/2006/84919
    [23] X. Zhao, Y. Yao, Modified extragradient algorithms for solving monotone variational inequalities and fixed point problems, Optimization, 69 (2020), 1987–2002. https://doi.org/10.1080/02331934.2019.1711087 doi: 10.1080/02331934.2019.1711087
    [24] D. Butnariu, A. N. Iusem, E. Resmerita, Total convexity for powers of the norm in uniformly convex Banach spaces, J. Convex Anal., 7 (2000), 319–334.
    [25] S. Reich, A weak convergence theorem for the alternating method with Bregman distances, In: Theory and applications of nonlinear operators, New York: Marcel Dekker, 1996,313–318.
    [26] F. Schöpfer, T. Schuster, A. K. Louis, An iterative regularization method for the solution of the split feasibility problem in Banach spaces, Inverse Probl., 24 (2008), 055008, 20. https://doi.org/10.1088/0266-5611/24/5/055008 doi: 10.1088/0266-5611/24/5/055008
    [27] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899–912.
    [28] S. Jabeen, M. A. Noor, K. I. Noor, Inertial methods for solving system of quasi variational inequalities, J. Adv. Math. Stud., 15 (2022), 1–10.
    [29] J. Zheng, J. Chen, X. Ju, Fixed-time stability of projection neurodynamic network for solving pseudomonotone variational inequalities, Neurocomputing, 505 (2022), 402–412. https://doi.org/10.1016/j.neucom.2022.07.034 doi: 10.1016/j.neucom.2022.07.034
    [30] J. Chen, Z. Wan, L. Yuan, Y. Zheng, Approximation of fixed points of weak Bregman relatively nonexpansive mappings in Banach spaces, Int. J. Math. Math. Sci., 2011 (2011), 420192. https://doi.org/10.1155/2011/420192 doi: 10.1155/2011/420192
    [31] B. Tan, X. Qin, J. C. Yao, Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems, J. Glob. Optim., 82 (2022), 523–557. https://doi.org/10.1007/s10898-021-01095-y doi: 10.1007/s10898-021-01095-y
    [32] B. Tan, S. Y. Cho, J. C. Yao, Accelerated inertial subgradient extragradient algorithms with non-monotonic step sizes for equilibrium problems and fixed point problems, J. Nonlinear Var. Anal., 6 (2022), 89–122. https://doi.org/10.23952/jnva.6.2022.1.06 doi: 10.23952/jnva.6.2022.1.06
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(978) PDF downloads(69) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog