Processing math: 74%
Research article

On Mann-type accelerated projection methods for pseudomonotone variational inequalities and common fixed points in Banach spaces

  • Received: 29 April 2023 Revised: 06 June 2023 Accepted: 15 June 2023 Published: 03 July 2023
  • MSC : 47H09, 47H10, 47J20, 47J25

  • In this paper, we investigate two Mann-type accelerated projection procedures with line search method for solving the pseudomonotone variational inequality (VIP) and the common fixed-point problem (CFPP) of finitely many Bregman relatively nonexpansive mappings and a Bregman relatively asymptotically nonexpansive mapping in p-uniformly convex and uniformly smooth Banach spaces. Under mild conditions, we show weak and strong convergence of the proposed algorithms to a common solution of the VIP and CFPP, respectively.

    Citation: Lu-Chuan Ceng, Yeong-Cheng Liou, Tzu-Chien Yin. On Mann-type accelerated projection methods for pseudomonotone variational inequalities and common fixed points in Banach spaces[J]. AIMS Mathematics, 2023, 8(9): 21138-21160. doi: 10.3934/math.20231077

    Related Papers:

    [1] Lu-Chuan Ceng, Li-Jun Zhu, Tzu-Chien Yin . Modified subgradient extragradient algorithms for systems of generalized equilibria with constraints. AIMS Mathematics, 2023, 8(2): 2961-2994. doi: 10.3934/math.2023154
    [2] Rose Maluleka, Godwin Chidi Ugwunnadi, Maggie Aphane . Inertial subgradient extragradient with projection method for solving variational inequality and fixed point problems. AIMS Mathematics, 2023, 8(12): 30102-30119. doi: 10.3934/math.20231539
    [3] Fei Ma, Jun Yang, Min Yin . A strong convergence theorem for solving pseudo-monotone variational inequalities and fixed point problems using subgradient extragradient method in Banach spaces. AIMS Mathematics, 2022, 7(4): 5015-5028. doi: 10.3934/math.2022279
    [4] Lu-Chuan Ceng, Shih-Hsin Chen, Yeong-Cheng Liou, Tzu-Chien Yin . Modified inertial subgradient extragradient algorithms for generalized equilibria systems with constraints of variational inequalities and fixed points. AIMS Mathematics, 2024, 9(6): 13819-13842. doi: 10.3934/math.2024672
    [5] Ting Xie, Dapeng Li . On the stability of projected dynamical system for generalized variational inequality with hesitant fuzzy relation. AIMS Mathematics, 2020, 5(6): 7107-7121. doi: 10.3934/math.2020455
    [6] Habib ur Rehman, Poom Kumam, Kanokwan Sitthithakerngkiet . Viscosity-type method for solving pseudomonotone equilibrium problems in a real Hilbert space with applications. AIMS Mathematics, 2021, 6(2): 1538-1560. doi: 10.3934/math.2021093
    [7] Wenlong Sun, Gang Lu, Yuanfeng Jin, Zufeng Peng . Strong convergence theorems for split variational inequality problems in Hilbert spaces. AIMS Mathematics, 2023, 8(11): 27291-27308. doi: 10.3934/math.20231396
    [8] Saudia Jabeen, Bandar Bin-Mohsin, Muhammad Aslam Noor, Khalida Inayat Noor . Inertial projection methods for solving general quasi-variational inequalities. AIMS Mathematics, 2021, 6(2): 1075-1086. doi: 10.3934/math.2021064
    [9] Limei Xue, Jianmin Song, Shenghua Wang . A modified projection and contraction method for solving a variational inequality problem in Hilbert spaces. AIMS Mathematics, 2025, 10(3): 6128-6143. doi: 10.3934/math.2025279
    [10] Hasanen A. Hammad, Habib ur Rehman, Manuel De la Sen . Accelerated modified inertial Mann and viscosity algorithms to find a fixed point of αinverse strongly monotone operators. AIMS Mathematics, 2021, 6(8): 9000-9019. doi: 10.3934/math.2021522
  • In this paper, we investigate two Mann-type accelerated projection procedures with line search method for solving the pseudomonotone variational inequality (VIP) and the common fixed-point problem (CFPP) of finitely many Bregman relatively nonexpansive mappings and a Bregman relatively asymptotically nonexpansive mapping in p-uniformly convex and uniformly smooth Banach spaces. Under mild conditions, we show weak and strong convergence of the proposed algorithms to a common solution of the VIP and CFPP, respectively.



    Let H be a real Hilbert space with inner product , and induced norm . Let CH be a convex and closed set. Let Fix(S) be the set of fixed points of a mapping S:CC, i.e., Fix(S):={xC:x=Sx}. S is said to be asymptotically nonexpansive if {θn}[0,+) s.t. limnθn=0 and for all n1,

    SnuSnv(1+θn)uv,u,vC. (1.1)

    S is nonexpansive when θn0,n1.

    Recall that the variational inequality (VIP) pursues to search zC such that

    Fz,xz0,xC,

    where F:HH is an operator. Use Ⅵ(C,F) to denote the solution set of VIP.

    Korpelevich [11] invented an extragradient method for solving VIP: The sequence {wn} is derived from an initial point w0C and

    {zn=PC(wnFwn),wn+1=PC(wnFzn),n0, (1.2)

    where (0,1L) with L being the Lipschitz constant of F. If VI(C,F), then {wn} is convergent weakly to wVI(C,F). For solving VIP, many algorithms were introduced and adapted, see [1,2,3,5,7,8,10,12,13,14,15,16,17,18,20,23,28,29,31,32]. Within the extragradient method, one needs to compute two projections onto C per iteration. If C is a general convex and closed set, this might result in a prohibitive amount of computation time. To overcome this drawback, Censor et al. [2] presented a subgradient extragradient algorithm in which a half-space is constructed. Reich et al. [13] suggested an iterate for solving the pseudomonotone variational inequality by constructing a hyperplane.

    Let C be a nonempty, closed and convex subset of a p-uniformly convex and uniformly smooth Banach space E with p,q(1,) and 1p+1q=1. Let E be the dual space of E. Let JpE and JqE be the duality mappings of E and E, respectively. Set fp(x)=xp/p,xE. Use Dfp and ΠC to denote the Bregman distance and the Bregman projection from E onto C with respect to (w.r.t) fp, respectively. Eskandani et al. [18] introduced the hybrid projection method for finding a common solution of the VIP for uniformly continuous pseudomonotone mapping F:EE and the FPP of Bregman relatively nonexpansive mapping T. Their algorithm is formulated as follows.

    Algorithm 1.1 ([18]). Let μ>0,l(0,1),λ(0,1μ) be three constants. Let x1C be an initial point.

    Step 1. Calculate yn=ΠC(JqE(JpExnλFxn)) and rλ(xn):=xnyn. If Txn=xn and rλ(xn)=0, then stop (in this case xnΩ=Fix(T)VI(C,F)); otherwise, continue to the next step.

    Step 2. Calculate tn=xnτnrλ(xn) in which τn:=ljn with jn being the smallest nonnegative integer such that

    FxnF(xnljnrλ(xn)),rλ(xn)μ2Dfp(xn,yn).

    Step 3. Calculate vn=JqE(βnJpExn+(1βn)JpE(TΠCnxn)) and xn+1=ΠC(JqE(αnJpEu+(1αn)JpEvn)), where Cn:={xC:hn(xn)0} and hn(x)=Ftn,xxn+τn2λDfp(xn,yn).

    Let n:=n+1 and return to Step 1.

    Under suitable conditions, they proved the strong convergence of Algorithm 1.1 to ΠΩu. Inspired by the above research works, the main purpose of this paper is to introduce two Mann-type accelerated projection methods for solving the VIP for a uniformly continuous pseudomonotone operator and the CFPP of finitely many Bregman relatively nonexpansive mappings and a Bregman relatively asymptotically nonexpansive mapping in p-uniformly convex and uniformly smooth Banach spaces. Under mild conditions, we prove weak and strong convergence of the proposed algorithms to a common solution of the VIP and CFPP, respectively. An illustrated example is provided to demonstrate the applicability and implementability of our suggested method. Our algorithms are more advantageous and more flexible than the above Algorithm 1.1 because they involve solving the VIP for uniformly continuous pseudomonotone operator and the CFPP of finitely many Bregman relatively nonexpansive mappings and a Bregman relatively asymptotically nonexpansive mapping. The main theorems presented in this paper are the improvement and extension of the corresponding theorems obtained in [13,17,18].

    Let {xn} be a sequence of a real Banach space E. Let ωw(xn) be the set of all weak cluster points of {xn}, i.e., ωw(xn)={xE:xnkxforsome{xnk}{xn}}.

    Let E be a Banach space and U:={uE:u=1}. (ⅰ) E is strictly convex if u+v/2<1,u,vU and uv. (ⅱ) E is uniformly convex if ε(0,2], δ>0 such that u+v/21δ,u,vU when uvε.

    E is uniformly convex for all ε(0,2], δ(ε)>0 where δ(ε)=inf{1u+v/2:u,vUwithuvε} is the modulus of convexity of E. Moreover, E is p-uniformly convex if c>0 s.t. δ(ε)cεp for all ε[0,2]. E is uniformly smooth if limτ0ρE(τ)/τ=0 where ρE(τ)=sup{(u+τv+uτv)/21:u,vU} is the modulus of smoothness of E. E is q-uniformly smooth if Cq>0 s.t. ρE(τ)Cqτq,τ>0. E is p-uniformly convex E is q-uniformly smooth. For more details, please refer to [19].

    Let r>0 and set B(0,r)={xE:xr}. Let f:ER be a function. For α(0,1) and u,vB(0,r) with uv=t. Define

    ρr(t)=inf{[αf(u)+(1α)f(v)f(αu+(1α)v)]/α(1α)},t0.

    E is uniformly convex on bounded set B(0,r) if ρr(t)>0 for all r,t>0 (see [9,18]).

    Set 1p+1q=1 where p,q(1,). The duality mapping JpE:EE is formulated below

    JpE(u)={ψE:ψ,u=upandψ=up1},uE.

    (ⅰ) E is smooth JpE is single-valued. (ⅱ) E is reflexive JpE is surjective. (ⅱ) E is strictly convex JpE is one-to-one.

    Let f:ER be a convex function. f is said to be Gâteaux differentiable at x if for each yE, limt0+f(u+tv)f(u)t exists. In this case, define f(u),v=limt0+f(u+tv)f(u)t for each vE. Suppose f:ER is Gâteaux differentiable. The Bregman distance ([21]) w.r.t. f is formulated as

    Df(u,v):=f(u)f(v)f(v),uv,u,vE.

    The Bregman distance ensures existence and uniqueness of the Bregman projection and it has also been used to generate generalized proximal point methods for convex optimization and variational inequalities, see [30]. It is easy to check that

    Df(u,v)+Df(v,w)=Df(u,w)f(v)f(w),uv,u,v,wE.

    Note that the Bregman distance w.r.t. fp is formulated by u,vE,

    Dfp(u,v)=up/pvp/pJpE(v),uv=up/p+vp/qJpE(v),u=(vpup)/qJpE(v)JpE(u),u.

    If E is p-uniformly convex and smooth Banach space E, then (see [26])

    τuvpDfp(u,v)JpE(u)JpE(v),uv,2p<,τ>0. (2.1)

    From (2.1) it is readily known that for any bounded sequence {xn}E, the following holds:

    xnuDfp(u,xn)0(n).

    Let E be a reflexive, smooth and strictly convex Banach space and CE a nonempty closed convex set. For every uE, there exists the unique element denoted by ΠCuC such that Dfp(ΠCu,u)=minvCDfp(v,u). ΠC is called the Bregman projection w.r.t. fp. Furthermore, if E is uniformly convex, then ([22,24])

    JpE(u)JpE(ΠCu),vΠCu0,vC, (2.2)

    which equivalent to

    Dfp(v,ΠCu)+Dfp(ΠCu,u)Dfp(v,u),vC. (2.3)

    Let Vfp:E×E[0,) ([18]) be a function defined by

    Vfp(u,u)=up/pu,u+uq/q,(u,u)E×E. (2.4)

    For all uE, uE and vE, we have Vfp(u,u)=Dfp(u,JqE(u)) and

    Vfp(u,u)+v,JqE(u)uVfp(u,u+v). (2.5)

    In addition, Vfp(x,) is convex. Then, for all wE,{ui}ni=1E, {ti}ni=1[0,1] and ni=1ti=1, we have

    Dfp(w,JqE(ni=1tiJpE(ui)))ni=1tiDfp(w,ui). (2.6)

    Lemma 2.1 ([24]). Let E be a uniformly convex Banach space. Let {un}E,{vn}E be two sequences and {un} is bounded. Then, limnDfp(vn,un)=0limnvnun=0.

    Let T:CC be an operator. A point xC is an asymptotic fixed point of T ([25]) if {xn}C s.t. xnx and xnTxn0. Let Fix(T) and ^Fix(T) be the set of fixed points of T and the set of asymptotic fixed points of T, respectively. T is said to be Bregman relatively asymptotically nonexpansive w.r.t. fp if Fix(T)=^Fix(T), and {θn}[0,) s.t.

    Dfp(u,Tnv)(1+θn)Dfp(u,v),n1,

    for all vC and uFix(T).

    Recall that an operator F:CE is said to be

    (ⅰ) monotone on C if FuFv,uv0,u,vC;

    (ⅱ) pseudomonotone if Fu,vu0Fv,vu0,u,vC;

    (ⅲ) L-Lipschitz continuous if L>0 s.t. FuFvLuv,u,vC;

    (ⅳ) weakly sequentially continuous if for any {xn}C, xnxFxnFx.

    Lemma 2.2 ([18]). Let E be a Banach space and f:ER be a uniformly convex function on B(0,r). Let {xk}nk=1 be a sequence in B(0,r) and {αk}nk=1 be a real number sequence in (0,1) such that nk=1αk=1. Then,

    f(nk=1αkxk)nk=1αkf(xk)αiαjρr(xixj),i,j{1,2,...,n}.

    Lemma 2.3 ([15]). Let E1 and E2 be two Banach spaces. Let DE1 be a bounded set. If F:E1E2 is uniformly continuous on D, then F(D) is bounded.

    Lemma 2.4 ([6]). Let C be a nonempty closed convex subset of a real Banach space E. Let F:CE be a continuous pseudomonotone operator. Then uVI(C,F)Fv,vu0,vC.

    Lemma 2.5. Let 2p< and let E be a smooth and p-uniformly convex Banach space with weakly sequentially continuous duality mapping JpE. Let {xn} be a sequence in E and C be a nonempty subset of E. Suppose that {Dfp(x,xn)} converges for every xC, and ωw(xn)C. Then {xn} converges weakly to a point in C.

    Proof. Since the inequality (2.1) leads to τxxnpDfp(x,xn),xC, we know that {xn} is bounded. Hence from the reflexivity of E it follows that ωw(xn). In what follows, we claim that ωw(xn) is a single-point set. Indeed, let x,yωw(xn)C with xy. Then, {xnk}{xn} and {xmk}{xn} s.t. xnkx and xmky. By the weakly sequential continuity of JpE one has that JpE(xnk)x and JpE(xmk)y. Note that Dfp(x,y)+Dfp(y,xn)=Dfp(x,xn)JpEyJpExn,xy. Since {Dfp(x,xn)} and {Dfp(y,xn)} are convergent, we obtain

    JpEyJpEx,xy=limk[JpEyJpExnk,xy]=limn[Dfp(x,y)+Dfp(y,xn)Dfp(x,xn)]=limk[JpEyJpExmk,xy]=JpEyJpEy,xy=0,

    which immediately yields JpExJpEy,xy=0. Again from (2.1) we have 0<τxypDfp(x,y)JpExJpEy,xy=0. It is impossible. So, ωw(xn) is a single-point set.

    Lemma 2.6 ([16]). Let C be a nonempty closed convex subset of a Banach space E. Define D:={xC:g(x)0} where g is a real-valued function on E. If D and g is Lipschitz continuous on C with modulus θ>0, then dist(x,D)θ1max{g(x),0},xC.

    Lemma 2.7 ([4]). Let {an} be a sequence of nonnegative numbers such that an+1(1λn)an+λnμn+νnn1, where the following hold for sequences {λn},{μn},{νn}R:

    (i) {λn}[0,1] and n=1λn=;

    (ii) lim supnμn0 and n=1|νn|<.

    Then limnan=0.

    Lemma 2.8 ([27]). Let {Φn} be a sequence of real numbers that does not decrease at infinity in the sense that, {Φnk}{Φn} s.t. Φnk<Φnk+1,k1. Let n01 and {ψ(n)}nn0 be integers sequence defined by ψ(n)=max{kn:Φk<Φk+1} satisfying {kn0:Φk<Φk+1}. Then,

    (i) ψ(n0)ψ(n0+1) and ψ(n);

    (ii) for all nn0, Φψ(n)Φψ(n)+1 and ΦnΦψ(n)+1.

    Let C be a nonempty closed convex subset of of a p-uniformly convex and uniformly smooth Banach space E. Suppose that

    (C1) the mapping T:CC is Bregman relatively asymptotically nonexpansive with {θn} and uniformly continuous.

    (C2) the mapping Ti:CC(i=1,...,N) is Bregman relatively nonexpansive and uniformly continuous and Tn:=TnmodN for integer n1 with the mod function taking values in the set {1,2,...,N}.

    (C3) the mapping F:EE is uniformly continuous and pseudomonotone such that Fzlim infn Fxn for any {xn}C with xnz.

    (C4) Ω=Ni=0Fix(Ti)VI(C,F) where T0:=T.

    Let μ>0, λ(0,1μ) and l(0,1) be three constants. Let {σn},{αn} be two sequences in (0,1) s.t. lim infnσn(1σn)>0 and lim infnαn(1αn)>0.

    Algorithm 3.1. Let x1C be an initial point.

    Step 1. Calculate wn=JqE(σnJpExn+(1σn)JpE(Tnxn)), yn=ΠC(JqE(JpEwnλFwn)) and rλ(wn):=wnyn.

    Step 2. Calculate tn=wnτnrλ(wn), where τn:=ljn with jn being the smallest nonnegative integer j such that

    FwnF(wnljrλ(wn)),wnynμ2Dfp(wn,yn). (3.1)

    Step 3. Calculate vn=JqE(αnJpEwn+(1αn)JpE(Tnwn)) and xn+1=ΠCnQn(wn), where Qn:={xC:Dfp(x,vn)(1+θn)Dfp(x,wn)}, Cn:={xC:hn(x)0} and

    hn(x)=Ftn,xwn+τn2λDfp(wn,yn). (3.2)

    Set n:=n+1 and go to Step 1.

    Lemma 3.2. Suppose that the sequence {xn} is constructed in Algorithm 3.1. Then the inequality holds: Fwn,rλ(wn)1λDfp(wn,yn).

    Proof. Using the property of ΠC, we obtain

    JpEwnλFwnJpEyn,wnyn0.

    It follows from (2.1) that

    Dfp(wn,yn)JpEwnJpEyn,wnynλFwn,wnyn.

    Lemma 3.3. The rule (3.1) and {xn} generated by Algorithm 3.1 are well defined.

    Proof. Note that limjFwnF(wnljrλ(wn)),rλ(wn)=0. If rλ(wn)=0, then it is obvious that jn=0. If rλ(wn)0, then there is jn0 fulfilling (3.1).

    It is easy to see that for every n1,Cn and Qn are closed and convex. Next, we show ΩCnQn. Take any zΩ. By (2.6) and the Bregman relatively asymptotical nonexpansivity of T, we have

    Dfp(z,vn)αnDfp(z,wn)+(1αn)Dfp(z,Tnwn)αnDfp(z,wn)+(1αn)(1+θn)Dfp(z,wn)(1+θn)Dfp(z,wn),

    which immediately yields zQn. Moreover, using Lemma 2.4, we have Ftn,tnz0. Hence

    hn(z)=Ftn,zwn+τn2λDfp(wn,yn)=Ftn,wntnFtn,tnz+τn2λDfp(wn,yn)τnFtn,rλ(wn)+τn2λDfp(wn,yn). (3.3)

    Thanks to (3.1), we have

    FwnFtn,rλ(wn)μ2Dfp(wn,yn).

    Using this and Lemma 3.2, we have

    Ftn,rλ(wn)Fwn,rλ(wn)μ2Dfp(wn,yn)(1λμ2)Dfp(wn,yn).

    Combining this and (3.3) to deduce

    hn(z)τn2(1λμ)Dfp(wn,yn)0.

    Consequently, ΩCnQn. Therefore, {xn} is well defined.

    Lemma 3.4. Let the sequence {wn} be defined by Algorithm 3.1. Then limnwnyn=0 implies that ωw(wn)VI(C,F).

    Proof. Let zωw(wn). Then, {wnk}{wn}, s.t. wnkz and limnwnkynk=0. Hence, it is known that ynkz. Since C is convex and closed and {yn}C, zC. Next, we consider two cases. If Fz=0, then zVI(C,F). If Fz0, using the assumption on F, instead of the weakly sequential continuity of F, we get 0<Fzlim infkFwnk. So, we might assume that Fwnk0,k1. Using (2.2), we obtain

    JpEwnkλFwnkJpEynk,xynk0,

    and hence

    1λJpEwnkJpEynk,xynk+Fwnk,ynkwnkFwnk,xwnk. (3.4)

    By Lemma 2.3, {Fwnk} is bounded. Note that {ynk} is also bounded as well. From (3.4) we get

    lim infkFwnk,xwnk0,xC. (3.5)

    Let {ϵk} be a sequence in (0,1) fulfilling ϵk0 as k. Let lk be the smallest positive integer satisfying

    Fwnj,ywnj+ϵk0,jlk. (3.6)

    Since {ϵk} is decreasing, {lk} is increasing. For convenience, we denote {Fwnlk} by {Fwlk}. Note that Fwlk0,k1. Put υlk=FwlkFwlkqq1. We have Fwlk,JqEυlk=1,k1. Indeed, it is clear that Fwlk,JqEυlk=Fwlk,(1Fwlkqq1)q1JqEFwlk=(1Fwlkqq1)q1Fwlkq=1,k1. So, using (3.6) one has Fwlk,y+ϵkJqEυlkwlk0,k1. Since F is pseudomonotone, we have

    F(y+ϵkJqEυlk),y+ϵkJqEυlkwlk0,yC. (3.7)

    We claim that limkϵkJqEυlk=0. In fact, since {wlk}{wnk} and ϵk0, we have

    0lim supkϵkJqEυlk=lim supkϵkFwlklim supkςklim infkFwnk=0.

    Hence one gets ϵkJqEυlk0 as k. Thus, letting k in (3.7) and from (C3), we have Fy,yz0,yC. According to Lemma 2.4 one has zVI(C,F).

    Lemma 3.5. Let the sequence {wn} be generated by Algorithm 3.1. Then,

    limnτnDfp(wn,yn)=0limnDfp(wn,yn)=0.

    Proof. Suppose that lim infnτn>0. In this case, assume that τ>0 s.t. τnτ>0,n1. Then,

    Dfp(wn,yn)=1τnτnDfp(wn,yn)1ττnDfp(wn,yn). (3.8)

    This together with limnτnDfp(wn,yn)=0, leads to limnDfp(wn,yn)=0.

    Suppose that lim infnτn=0. In this case, assume that lim supnDfp(wn,yn)=a>0. Then we know that {nk}{n} such that

    limkτnk=0andlimkDfp(wnk,ynk)=a>0.

    We define ¯tnk=1lτnkynk+(11lτnk)wnk for each k1. Applying (2.1) and noticing that limkτnkDfp(wnk,ynk)=0, we have limkτnkwnkynkp=0 and hence

    limk¯tnkwnkp=limkτp1nklpτnkwnkynkp=0. (3.9)

    It follows that

    limkFwnkF¯tnk=0. (3.10)

    So,

    FwnkF¯tnk,wnkynk>μ2Dfp(wnk,ynk). (3.11)

    Now, letting k and from (3.10) we have limkDfp(wnk,ynk)=0. It is a contradiction. Therefore, limnDfp(wn,yn)=0.

    Theorem 3.6. Suppose that E is a p-uniformly convex and uniformly smooth Banach space with weakly sequentially continuous duality mapping JpE. Let the sequence {xn} be defined by Algorithm 3.1. Then {xn} is convergent weakly to a point in Ω provided TnwnTn+1wn0.

    Proof. Take any zΩ. Using Lemma 2.2, we get

    Dfp(z,wn)=Vfp(z,σnJpExn+(1σn)JpETnxn)1pzpσnJpExn,z(1σn)JpETnxn,z+σnqJpExnq+(1σn)qJpETnxnqσn(1σn)ρbJpExnJpETnxn=1pzpσnJpExn,z(1σn)JpETnxn,z+σnqxnp+(1σn)qTnxnpσn(1σn)ρbJpExnJpETnxn=σnDfp(z,xn)+(1σn)Dfp(z,Tnxn)σn(1σn)ρbJpExnJpETnxnDfp(z,xn)σn(1σn)ρbJpExnJpETnxn.

    From (2.1) and (2.3), we obtain

    Dfp(z,xn+1)Dfp(z,wn)Dfp(xn+1,wn)=Dfp(z,wn)Dfp(ΠCnQnwn,wn)Dfp(z,wn)Dfp(ΠCnwn,wn)Dfp(z,wn)τΠCnwnwnpDfp(z,wn)τPCnwnwnp=Dfp(z,wn)τ[dist(Cn,wn)]p.

    Combining the last two inequalities, we obtain

    Dfp(z,xn+1)Dfp(z,xn)σn(1σn)ρbJpExnJpETnxnτ[dist(Cn,wn)]p. (3.12)

    This indicates that limnDfp(z,xn) exists and the sequence {xn} is bounded. It is easy to check that {Fwn},{yn},{tn},{vn},{Tnxn} and {Tnwn} are also bounded. Note that ωw(xn). Next, we show ωw(xn)Ω. Let zωw(xn). Then, {xnk}{xn} s.t. xnkz. From (3.12), we obtain

    Dfp(xn+1,vn)(1+θn)Dfp(xn+1,wn)(1+θn)[Dfp(z,wn)Dfp(z,xn+1)](1+θn)[Dfp(z,xn)Dfp(z,xn+1)].

    This implies that limnDfp(xn+1,wn)=limnDfp(xn+1,vn)=0 and hence

    limnxn+1wn=limnxn+1vn=0.

    Hence,

    limnwnvn=0. (3.13)

    Using Lemma 2.2, we get

    Dfp(z,vn)=Vfp(z,αnJpEwn+(1αn)JpETnwn)1pzpαnJpEwn,z(1αn)JpETnwn,z+αnqJpEwnq+(1αn)qJpETnwnqαn(1αn)ρbJpEwnJpETnwn=1pzpαnJpEwn,z(1αn)JpETnwn,z+αnqwnp+(1αn)qTnwnpαn(1αn)ρbJpEwnJpETnwn=αnDfp(z,wn)+(1αn)Dfp(z,Tnwn)αn(1αn)ρbJpEwnJpETnwnαn(1+θn)Dfp(z,wn)+(1αn)(1+θn)Dfp(z,wn)αn(1αn)ρbJpEwnJpETnwn=(1+θn)Dfp(z,wn)αn(1αn)ρbJpEwnJpETnwn.

    Therefore

    αn(1αn)ρbJpEwnJpETnwn(1+θn)Dfp(z,wn)Dfp(z,vn)Dfp(z,wn)Dfp(z,vn)+Dfp(wn,vn)+θnDfp(z,wn)=JpEvnJpEwn,zwn+θnDfp(z,wn).

    By (3.13), we get limnρbJpEwnJpETnwn=0 and hence limnJpEwnJpETnwn=0. So,

    limnwnTnwn=0. (3.14)

    In addition, from (3.12) we get σn(1σn)ρbJpExnJpETnxnDfp(z,xn)Dfp(z,xn+1). Noticing the existence of limnDfp(z,xn) and lim infnσn(1σn)>0, we have limnρbJpExnJpETnxn=0 and hence limnJpExnJpETnxn=0. Thus,

    limnxnTnxn=0. (3.15)

    Since wn=JqE(σnJpExn+(1σn)JpETnxn), we deduce that

    JpEwnJpExn=(1σn)JpETnxnJpExnJpETnxnJpExn0(n).

    It follows that

    limnwnxn=0andlimnxn+1xn=0. (3.16)

    Now, we prove zVI(C,F). Since {Ftn} is bounded, we know that L>0 s.t. FtnL. This ensures that for any x,yCn,

    |hn(x)|hn(y)|=|Ftn,xy|FtnxyLxy.

    This indicates that hn(x) is L-Lipschitz in Cn. Applying Lemma 2.6, we have

    dist(Cn,wn)1Lhn(wn)=τn2λLDfp(wn,yn). (3.17)

    Using (3.12) and (3.17), we have

    Dfp(z,xn)Dfp(z,xn+1)τ[τn2λLDfp(wn,yn)]p. (3.18)

    Hence limnτnDfp(wn,yn)=0. By Lemma 3.5, we get limnwnyn=0. Besides, combining (3.16) and xnkz leads to wnkz. According to Lemma 3.4, we conclude that zωw(wn)VI(C,F).

    Next, we show zNi=0Fix(Ti) with T0:=T. Indeed, we first show that limnxnTrxn=0 for r=1,...,N. Actually, according to the definition of Tn, we obtain that Tn{T1,...,TN}n1, which hence leads to Tn+i{T1,...,TN}n1,i=1,...,N. Observe that

    xnTn+ixnxnxn+i+xn+iTn+ixn+i+Tn+ixn+iTn+ixnxnxn+i+xn+iTn+ixn+i+Nj=1Tjxn+iTjxn.

    Thanks to (3.15) and (3.16), we have xn+iTn+ixn+i0 and Tjxn+iTjxn0 for i,j=1,...,N. Thus, we get limnxnTn+ixn=0 for i=1,...,N. This immediately implies that

    limnxnTrxn=0,forr=1,...,N. (3.19)

    So it follows from (3.19) and xnkz that z^Fix(Tr)=Fix(Tr) for r=1,...,N. Therefore, zNi=1Fix(Ti). In addition, observe also that

    wnTwnwnTnwn+TnwnTn+1wn+Tn+1wnTwn. (3.20)

    Noticing the uniform continuity of T on C, we conclude from (3.14) that TwnTn+1wn0. Thus, using the assumption TnwnTn+1wn0, from (3.20) we get limnwnTwn=0. Again from (3.16) and xnkz, one has that wnkz. Hence, we obtain z^Fix(T)=Fix(T). Consequently, zNi=0Fix(Ti), and hence zΩ=Ni=0Fix(Ti)VI(C,F). This means that ωw(xn)Ω. Accordingly, applying Lemma 2.5 we conclude that xnz.

    Next, we show a strong convergence result.

    Algorithm 3.7. Let x1C, μ>0,l(0,1) and λ(0,1μ). Choose {σn},{αn},{βn}(0,1) s.t. (i) lim infnσn(1σn)>0 and lim infnβn(1βn)>0, and (ii) n=1αn=, limnαn=0,limnθn/αn=0 and n=1θn<.

    Step 1. Set wn=JqE(σnJpExn+(1σn)JpE(Tnxn)), and calculate yn=ΠC(JqE(JpEwnλFwn)) and rλ(wn):=wnyn.

    Step 2. Calculate tn=wnτnrλ(wn) in which τn:=ljn with jn being the smallest nonnegative integer j fulfilling

    FwnF(wnljrλ(wn)),wnynμ2Dfp(wn,yn).

    Step 3. Set zn=ΠCn(wn), and compute vn=JqE(βnJpEwn+(1βn)JpE(Tnzn)) and xn+1=ΠC(JqE(αnJpEu+(1αn)JpEvn), where Cn:={xC:hn(x)0} and

    hn(x)=Ftn,xwn+τn2λDfp(wn,yn).

    Let n:=n+1 and go to Step 1.

    Theorem 3.8. Suppose that the conditions (C1)–(C4) are satisfied. Then, the sequence {xn} constructed in Algorithm 3.7 converges strongly to ΠΩu provided TnznTn+1zn0.

    Proof. We divide our proof into four claims.

    Claim 1. The sequence {xn} is bounded. Indeed, set ˆu=ΠΩu. According to Theorem 3.6 and Lemma 2.2, we have

    Dfp(ˆu,wn)Dfp(ˆu,xn)σn(1σn)ρbJpExnJpETnxn. (3.21)

    Using (2.3), (2.6) and (3.21), we deduce

    Dfp(ˆu,xn+1)Dfp(ˆu,JqE(αnJpEu+(1αn)JpEvn)αnDfp(ˆu,u)+(1αn)Dfp(ˆu,vn)αnDfp(ˆu,u)+(1αn)[βnDfp(ˆu,wn)+(1βn)Dfp(ˆu,Tnzn)]αnDfp(ˆu,u)+(1αn)[βnDfp(ˆu,wn)+(1βn)(1+θn)Dfp(ˆu,zn)]αnDfp(ˆu,u)+(1αn)[βnDfp(ˆu,wn)+(1βn)(1+θn)Dfp(ˆu,wn)]αnDfp(ˆu,u)+(1αn)(1+θn)Dfp(ˆu,xn)max{Dfp(ˆu,u),(1+θn)Dfp(ˆu,xn)}. (3.22)

    From (3.22) that

    Dfp(ˆu,xn+2)max{Dfp(ˆu,u),(1+θn+1)Dfp(ˆu,xn+1)}max{Dfp(ˆu,u),(1+θn+1)max{ni=2(1+θi)Dfp(ˆu,u),ni=1(1+θi)Dfp(ˆu,x1)}}max{n+1i=2(1+θi)Dfp(ˆu,u),n+1i=1(1+θi)Dfp(ˆu,x1)}.

    Noticing n=1θn<, we obtain that {Dfp(ˆu,xn)} is bounded. This together with (2.1), implies that {xn} is bounded. Hence, {Tnxn},{Fwn},{wn},{yn},{tn}, {zn},{Tnzn} and {vn} are also bounded.

    Claim 2. We show (1βn)(1+θn)Dfp(zn,wn)(1+θn)Dfp(ˆu,wn)Dfp(ˆu,xn+1)+αnJpEuJpEˆu,snˆu. Set b=supn1{wn|p1,Tnznp1}. By Lemma 2.2, we obtain

    Dfp(ˆu,vn)=Vfp(ˆu,βnJpEwn+(1βn)JpETnzn)1pˆupβnJpEwn,ˆu(1βn)JpETnzn,ˆu+βnqJpEwnq+(1βn)qJpETnznqβn(1βn)ρbJpEwnJpETnzn=1pˆupβnJpEwn,ˆu(1βn)JpETnzn,ˆu+βnqwnp+(1βn)qTnznpβn(1βn)ρbJpEwnJpETnzn=βnDfp(ˆu,wn)+(1βn)Dfp(ˆu,Tnzn)βn(1βn)ρbJpEwnJpETnznβn(1+θn)Dfp(ˆu,wn)+(1βn)(1+θn)Dfp(ˆu,zn)βn(1βn)ρbJpEwnJpETnzn(1+θn)Dfp(ˆu,wn)βn(1βn)ρbJpEwnJpETnzn. (3.23)

    Set sn=JqE(αnJpEu+(1αn)JpEvn. Using (2.5), we have

    Dfp(ˆu,xn+1)Dfp(ˆu,JqE(αnJpEu+(1αn)JpEvn)=Vfp(ˆu,αnJpEu+(1αn)JpEvn)Vfp(ˆu,αnJpEu+(1αn)JpEvnαn(JpEuJpEˆu))+αnJpEuJpEˆu,snˆuαnDfp(ˆu,ˆu)+(1αn)Dfp(ˆu,vn)+αnJpEuJpEˆu,snˆu=(1αn)Dfp(ˆu,vn)+αnJpEuJpEˆu,snˆu(1αn)[(1+θn)Dfp(ˆu,wn)βn(1βn)ρbJpEwnJpETnzn]+αnJpEuJpEˆu,snˆu=(1αn)(1+θn)Dfp(ˆu,wn)(1αn)βn(1βn)ρbJpEwnJpETnzn+αnJpEuJpEˆu,snˆu(1αn)(1+θn)Dfp(ˆu,wn)+αnJpEuJpEˆu,snˆu. (3.24)

    On the other hand, we have

    Dfp(ˆu,vn)βnDfp(ˆu,wn)+(1βn)(1+θn)Dfp(ˆu,zn)βnDfp(ˆu,wn)+(1βn)(1+θn)[Dfp(ˆu,wn)Dfp(zn,wn)](1+θn)Dfp(ˆu,wn)(1βn)(1+θn)Dfp(zn,wn).

    This together with (3.24) implies that

    Dfp(ˆu,xn+1)(1αn)Dfp(ˆu,vn)+αnJpEuJpEˆu,snˆu(1+θn)Dfp(ˆu,wn)(1βn)(1+θn)Dfp(zn,wn)+αnJpEuJpEˆu,snˆu.

    This immediately arrives at

    (1βn)(1+θn)Dfp(zn,wn)(1+θn)Dfp(ˆu,wn)Dfp(ˆu,xn+1)+αnJpEuJpEˆu,snˆu. (3.25)

    Claim 3. We show that

    (1αn)(1βn)(1+θn)τ[τn2λLDfp(wn,yn)]pαnDfp(ˆu,u)+(1+θn)Dfp(ˆu,wn)Dfp(ˆu,xn+1).

    Using the similar inferences to these of (3.18) in Theorem 3.6, we get

    Dfp(ˆu,zn)Dfp(ˆu,wn)τ[τn2λLDfp(wn,yn)]p. (3.26)

    Applying (3.26), we get

    Dfp(ˆu,xn+1)Dfp(ˆu,JqE(αnJpEu+(1αn)JpEvn))αnDfp(ˆu,u)+(1αn)Dfp(ˆu,vn)αnDfp(ˆu,u)+(1αn)[βnDfp(ˆu,wn)+(1βn)(1+θn)Dfp(ˆu,zn)]=αnDfp(ˆu,u)+(1αn)βnDfp(ˆu,wn)+(1αn)(1βn)(1+θn)Dfp(ˆu,zn)αnDfp(ˆu,u)+(1αn)βnDfp(ˆu,wn)τ[τn2λLDfp(wn,yn)]p]+(1αn)(1βn)(1+θn)[Dfp(ˆu,wn)αnDfp(ˆu,u)(1αn)(1βn)(1+θn)τ[τn2λLDfp(wn,yn)]p+(1+θn)Dfp(ˆu,wn). (3.27)

    Claim 4. Finally, we prove xnˆu as n. Note that ωw(xn). Let zωw(xn). Then, {xnk}{xn} s.t. xnkz. For each n1, we write Φn=Dfp(ˆu,xn). Put Φn=xnz2.

    Case 1. Suppose that {Φn}n=n0 is nonincreasing for some n01. Then limnΦn=d<+ and limn(ΦnΦn+1)=0. By (3.21) and (3.25) we get

    (1βn)(1+θn)Dfp(zn,wn)(1+θn)Dfp(ˆu,wn)Dfp(ˆu,xn+1)+αnJpEuJpEˆu,snˆu(1+θn)[Dfp(ˆu,xn)σn(1σn)ρbJpExnJpETnxn]Dfp(ˆu,xn+1)+αnJpEuJpEˆu,snˆu(1+θn)Dfp(ˆu,xn)Dfp(ˆu,xn+1)+αnJpEuJpEˆu,snˆu(1+θn)σn(1σn)ρbJpExnJpETnxn,

    which immediately yields

    \begin{eqnarray*} \begin{aligned} (1-\beta_n)(1+\theta_n)D_{f_p}(z_n,w_n)&+(1+\theta_n)\sigma_n(1-\sigma_n)\rho^*_b\|J^p_Ex_n-J^p_ET_nx_n\|\\ &\leq(1+\theta_n)D_{f_p}(\hat u,x_n)-D_{f_p}(\hat u,x_{n+1})+\alpha_n\langle J^p_Eu-J^p_E\hat u,s_n-\hat u\rangle\\ & = (1+\theta_n)\Phi_n-\Phi_{n+1}+\alpha_n\langle J^p_Eu-J^p_E\hat u,s_n-\hat u\rangle. \end{aligned} \end{eqnarray*}

    Since \lim_{n\to\infty}\theta_n = 0, \; \lim_{n\to\infty}\alpha_n = 0, \; \liminf_{n\to\infty}\beta_n(1-\beta_n) > 0, \; \liminf_{n\to\infty}\sigma_n(1-\sigma_n) > 0, \; \lim_{n\to\infty}\Phi_n = d and the sequences \{s_n\} is bounded, we obtain that \lim_{n\to\infty}D_{f_p}(z_n, w_n) = 0 and \lim_{n\to\infty}\|J^p_Ex_n-J^p_ET_nx_n\| = 0 . Noticing w_n = J^q_{E^*}(\sigma_nJ^p_Ex_n+(1-\sigma_n) J^p_ET_nx_n) , we also have \lim_{n\to\infty}\|J^p_Ew_n-J^p_Ex_n\| = 0 . So it follows from (2.1) that

    \begin{eqnarray} \lim\limits_{n\to\infty}\|z_n-w_n\| = \lim\limits_{n\to\infty}\|x_n-T_nx_n\| = \lim\limits_{n\to\infty}\|w_n-x_n\| = 0. \end{eqnarray} (3.28)

    Furthermore, from (3.24) we have

    \begin{eqnarray*} \begin{aligned} &(1-\alpha_n)\beta_n(1-\beta_n)\rho^*_b\|J^p_Ew_n-J^p_ET^nz_n\|\\ &\leq(1-\alpha_n)(1+\theta_n)D_{f_p}(\hat u,w_n)-D_{f_p}(\hat u,x_{n+1})+\alpha_n\langle J^p_Eu-J^p_E\hat u,s_n-\hat u\rangle. \end{aligned} \end{eqnarray*}

    By the similar inferences, we infer that \lim_{n\to\infty}\|J^p_Ew_n-J^p_ET^nz_n\| = 0 , which hence leads to \lim_{n\to\infty}\|J^p_Ev_n-J^p_Ew_n\| = 0 . Then,

    \begin{eqnarray} \lim\limits_{n\to\infty}\|w_n-T^nz_n\| = \lim\limits_{n\to\infty}\|v_n-w_n\| = 0. \end{eqnarray} (3.29)

    Combining with (3.28), we have

    \begin{eqnarray} \lim\limits_{n\to\infty}\|z_n-T^nz_n\| = \lim\limits_{n\to\infty}\|v_n-x_n\| = 0. \end{eqnarray} (3.30)

    Since s_n = J^q_{E^*}(\alpha_nJ^p_Eu+(1-\alpha_n)J^p_Ev_n) , it can be readily seen from (3.30) that

    \begin{eqnarray} \lim\limits_{n\to\infty}\|s_n-x_n\| = 0. \end{eqnarray} (3.31)

    In addition, using (2.3) and (3.23), we achieve

    \begin{eqnarray*} \begin{aligned} D_{f_p}(\hat u,x_{n+1})&\leq D_{f_p}(\hat u,s_n)-D_{f_p}(x_{n+1},s_n)\\ &\leq D_{f_p}(\hat u,J^q_{E^*}(\alpha_nJ^p_Eu+(1-\alpha_n)J^p_Ev_n)-D_{f_p}(x_{n+1},s_n)\\ &\leq\alpha_nD_{f_p}(\hat u,u)+(1-\alpha_n)D_{f_p}(\hat u,v_n)-D_{f_p}(x_{n+1},s_n)\\ &\leq\alpha_nD_{f_p}(\hat u,u)+(1-\alpha_n)(1+\theta_n)D_{f_p}(\hat u,w_n)-D_{f_p}(x_{n+1},s_n)\\ &\leq\alpha_nD_{f_p}(\hat u,u)+(1-\alpha_n)(1+\theta_n)D_{f_p}(\hat u,x_n)-D_{f_p}(x_{n+1},s_n), \end{aligned} \end{eqnarray*}

    which hence arrives at

    \begin{eqnarray*} \begin{aligned} D_{f_p}(x_{n+1},s_n)&\leq\alpha_nD_{f_p}(\hat u,u)+(1-\alpha_n)(1+\theta_n)D_{f_p}(\hat u,x_n)-D_{f_p}(\hat u,x_{n+1})\\ &\leq\alpha_nD_{f_p}(\hat u,u)+(1-\alpha_n)(1+\theta_n)\Phi_n-\Phi_{n+1}.\end{aligned} \end{eqnarray*}

    Then, \lim_{n\to\infty}D_{f_p}(x_{n+1}, s_n) = 0 and hence \lim_{n\to\infty}\|x_{n+1}-s_n\| = 0 . This together with (3.31), leads to

    \begin{eqnarray} \lim\limits_{n\to\infty}\|x_{n+1}-x_n\| = 0. \end{eqnarray} (3.32)

    Note that

    \begin{eqnarray} \|z_n-Tz_n\|\leq\|z_n-T^nz_n\|+\|T^nz_n-T^{n+1}z_n\|+\|T^{n+1}z_n-Tz_n\|. \end{eqnarray} (3.33)

    By (3.30), we have Tz_n-T^{n+1}z_n\to0 . This together with (3.33) implies that \lim_{n\to\infty} \|z_n-Tz_n\| = 0 . Again from (3.28) and x_{n_k}\rightharpoonup z^\dagger , one has that z_{n_k}\rightharpoonup z^\dagger . Hence, we obtain z^\dagger \in\widehat{{\rm Fix}}(T) = {\rm Fix}(T) . In the meantime, let us show that z\in\bigcap^N_{i = 1}{\rm Fix}(T_i) . Indeed, by the definition of T_n , we know that T_n\in\{T_1, ..., T_N\}, \; \forall n\geq1 , which hence leads to T_{n+i} \in\{T_1, ..., T_N\}, \; \forall n\geq1, i = 1, ..., N . Observe that

    \begin{eqnarray*} \begin{aligned} \|x_n-T_{n+i}x_n\|&\leq\|x_n-x_{n+i}\|+\|x_{n+i}-T_{n+i}x_{n+i}\|+\|T_{n+i}x_{n+i}-T_{n+i}x_n\|\\ &\leq\|x_n-x_{n+i}\|+\|x_{n+i}-T_{n+i}x_{n+i}\|+{ \sum^N_{j = 1}}\|T_jx_{n+i}-T_jx_n\|. \end{aligned} \end{eqnarray*}

    Since each T_j is uniformly continuous on C , we deduce from (3.28) and (3.32) that x_{n+i}-T_{n+i}x_{n+i}\to0 and T_jx_{n+i}-T_jx_n\to0 for i, j = 1, ..., N . Thus, we get \lim_{n\to \infty}\|x_n-T_{n+i}x_n\| = 0 for i = 1, ..., N . Hence, \lim_{n\to\infty}\|x_n-T_ix_n\| = 0(i = 1, ..., N) and so z^\dagger \in\widehat{{\rm Fix}}(T_i) = {\rm Fix}(T_i) for i = 1, ..., N . Consequently, z^\dagger \in\bigcap^N_{i = 0}{\rm Fix}(T_i) with T_0: = T .

    Next, we prove z^\dagger \in{\rm VI}(C, F) . Using (3.21) and (3.27), we have

    (1-\alpha_n)(1-\beta_n)(1+\theta_n)\tau[\frac{\tau_n}{2\lambda L}D_{f_p}(w_n,y_n)]^p\leq\alpha_nD_{f_p}(\hat u,u)+(1+\theta_n)D_{f_p}(\hat u,x_n)-D_{f_p}(\hat u,x_{n+1}).

    Then, \lim_{n\to\infty}\frac{\tau_n}{2\lambda L}D_{f_p}(w_n, y_n) = 0 and hence \lim_{n\to\infty}\tau_nD_{f_p}(w_n, y_n) = 0 . Using Lemma 3.5, we infer that

    \begin{eqnarray} \lim\limits_{n\to\infty}\|w_n-y_n\| = 0. \end{eqnarray} (3.34)

    By Lemma (3.34) and 3.3, we obtain that z^\dagger \in{\rm VI}(C, F) , and hence z^\dagger \in{\Omega} = \bigcap^N_{i = 0}{\rm Fix}(T_i)\cap{\rm VI}(C, F) with T_0: = T . This means that \omega _w(x_n)\subset{\Omega} . Lastly, we show that \limsup_{n\to\infty}\langle J^p_Eu-J^p_E\hat u, s_n-\hat u\rangle\leq0 . We can choose a subsequence \{x_{n_j}\} of \{x_n\} such that

    \limsup\limits_{n\to\infty}\langle J^p_Eu-J^p_E\hat u,x_n-\hat u\rangle = \lim\limits_{j\to\infty}\langle J^p_Eu-J^p_E\hat u,x_{n_j}-\hat u\rangle.

    Without loss of generality, assume that x_{n_j}\rightharpoonup\tilde z . So it follows from (2.2) and \tilde z\in{\Omega} that

    \begin{eqnarray} \limsup\limits_{n\to\infty}\langle J^p_Eu-J^p_E\hat u,x_n-\hat u\rangle = \lim\limits_{j\to\infty}\langle J^p_Eu-J^p_E\hat u,x_{n_j}-\hat u\rangle = \langle J^p_Eu-J^p_E\hat u,\tilde z-\hat u\rangle\leq0. \end{eqnarray} (3.35)

    This together with (3.31) ensures that

    \begin{eqnarray} \limsup\limits_{n\to\infty}\langle J^p_Eu-J^p_E\hat u,s_n-\hat u\rangle\leq0. \end{eqnarray} (3.36)

    Using (3.21) and (3.24), we get

    \begin{eqnarray*} \begin{aligned} D_{f_p}(x_{n+1},\hat u)&\leq(1-\alpha_n)(1+\theta_n)D_{f_p}(\hat u,x_n)+\alpha_n\langle J^p_Eu-J^p_E\hat u,s_n-\hat u\rangle\\ &\leq(1-\alpha_n)D_{f_p}(\hat u,x_n)+\alpha_n\langle J^p_Eu-J^p_E\hat u,s_n-\hat u\rangle+\theta_nD_{f_p}(\hat u,x_n). \end{aligned} \end{eqnarray*}

    Since \{D_{f_p}(\hat u, x_n)\} is bounded and \sum^\infty_{n = 1}\theta_n < \infty , one has that \sum^\infty_{n = 1}\theta_nD_{f_p}(\hat u, x_n) < \infty . Noticing \{\alpha_n\}\subset(0, 1) and \sum^\infty_{n = 1}\alpha_n = \infty , by Lemma 2.7 and (3.36), we conclude that \lim_{n\to\infty}D_{f_p}(\hat u, x_n) = 0 and \lim_{n\to\infty}\|\hat u-x_n\| = 0 .

    Case 2. Suppose that \exists\{\Phi_{n_k}\}\subset\{\Phi_n\} s.t. \Phi_{n_k} < \Phi_{n_k+1}, \; \forall k\in{\mathbb N} . Define an operator \psi:{\mathbb N}\to{\mathbb N} by

    \psi(n): = \max\{k\leq n:\Phi_k < \Phi_{k+1}\}.

    Based on Lemma 2.8, we have

    \begin{eqnarray} \Phi_{\psi(n)}\leq\Phi_{\psi(n)+1}\quad{\rm and}\quad\Phi_n\leq\Phi_{\psi(n)+1}. \end{eqnarray} (3.37)

    From (3.21) and (3.25), we have

    \begin{eqnarray*} \begin{aligned} &(1-\beta_{\psi(n)})(1+\theta_{\psi(n)})D_{f_p}(z_{\psi(n)},w_{\psi(n)})+(1+\theta_{\psi(n)})\sigma_{\psi(n)}(1-\sigma_{\psi(n)}) \rho^*_b\|J^p_Ex_{\psi(n)}-J^p_ET_{\psi(n)}x_{\psi(n)}\|\\ &\leq(1+\theta_{\psi(n)})D_{f_p}(\hat u,x_{\psi(n)})-D_{f_p}(\hat u,x_{{\psi(n)}+1})+\alpha_{\psi(n)}\langle J^p_Eu-J^p_E\hat u,s_{\psi(n)}-\hat u\rangle\\ & = (1+\theta_{\psi(n)})\Phi_{\psi(n)}-\Phi_{{\psi(n)}+1}+\alpha_{\psi(n)}\langle J^p_Eu-J^p_E\hat u,s_{\psi(n)}-\hat u\rangle. \end{aligned} \end{eqnarray*}

    Noticing w_{\psi(n)} = J^q_{E^*}(\sigma_{\psi(n)}J^p_Ex_{\psi(n)}+(1-\sigma_{\psi(n)})J^p_ET_{\psi(n)}x_{\psi(n)}) , we deduce that

    \begin{eqnarray} \lim\limits_{n\to\infty}\|z_{\psi(n)}-w_{\psi(n)}\| = \lim\limits_{n\to\infty}\|x_{\psi(n)}-T_{\psi(n)}x_{\psi(n)}\| = \lim\limits_{n\to\infty}\|w_{\psi(n)}-x_{\psi(n)}\| = 0. \end{eqnarray} (3.38)

    Furthermore, by (3.21) and (3.24), we obtain

    \begin{eqnarray*} \begin{aligned} &(1-\alpha_{\psi(n)})\beta_{\psi(n)}(1-\beta_{\psi(n)})\rho^*_b\|J^p_Ew_{\psi(n)}-J^p_ET^{\psi(n)}z_{\psi(n)}\|\\ &\leq(1-\alpha_{\psi(n)})(1+\theta_{\psi(n)})D_{f_p}(\hat u,x_{\psi(n)})-D_{f_p}(\hat u,x_{{\psi(n)}+1})+\alpha_{\psi(n)}\langle J^p_Eu-J^p_E\hat u,s_{\psi(n)}-\hat u\rangle. \end{aligned} \end{eqnarray*}

    Since v_{\psi(n)} = J^q_{E^*}(\beta_{\psi(n)}J^p_Ew_{\psi(n)}+(1-\beta_{\psi(n)})J^p_ET^{\psi(n)}z_{\psi(n)}) , by (3.38) we get

    \begin{eqnarray} \lim\limits_{n\to\infty}\|z_{\psi(n)}-T^{\psi(n)}z_{\psi(n)}\| = \lim\limits_{n\to\infty}\|v_{\psi(n)}-x_{\psi(n)}\| = 0. \end{eqnarray} (3.39)

    Noticing s_{\psi(n)} = J^q_{E^*}(\alpha_{\psi(n)}J^p_Eu+(1-\alpha_{\psi(n)})J^p_Ev_{\psi(n)}) , from (3.39) we get

    \begin{eqnarray} \lim\limits_{n\to\infty}\|s_{\psi(n)}-x_{\psi(n)}\| = 0. \end{eqnarray} (3.40)

    Using (3.37) and exploiting the similar inferences to those in the proof of Case 1, we conclude that \lim_{n\to\infty}\|x_{\psi(n)+1}-x_{\psi(n)}\| = 0 , \lim_{n\to\infty}\|x_{\psi(n)}-T_rx_ {\psi(n)}\| = 0 for r = 1, ..., N ,

    \begin{eqnarray} \lim\limits_{n\to\infty}\|z_{\psi(n)}-Tz_{\psi(n)}\| = \lim\limits_{n\to\infty}\|w_{\psi(n)}-y_{\psi(n)}\| = 0, \end{eqnarray} (3.41)

    and

    \begin{eqnarray} \limsup\limits_{n\to\infty}\langle J^p_Eu-J^p_E\hat u,s_{\psi(n)}-\hat u\rangle\leq0. \end{eqnarray} (3.42)

    Using (3.21) and (3.24) we have

    \begin{eqnarray} \Phi_{\psi(n)+1}\leq(1-\alpha_{\psi(n)})\Phi_{\psi(n)}+\theta_{\psi(n)}\Phi_{\psi(n)}+\alpha_{\psi(n)}\langle J^p_Eu-J^p_E\hat u,s_{\psi(n)}-\hat u\rangle. \end{eqnarray} (3.43)

    Combining with (3.37), we have

    \begin{eqnarray*} \begin{aligned} \alpha_{\psi(n)}\Phi_{\psi(n)}&\leq\Phi_{\psi(n)}-\Phi_{\psi(n)+1}+\theta_{\psi(n)}\Phi_{\psi(n)}+\alpha_{\psi(n)}\langle J^p_Eu-J^p_E\hat u,s_{\psi(n)}-\hat u\rangle\\ &\leq\theta_{\psi(n)}\Phi_{\psi(n)}+\alpha_{\psi(n)}\langle J^p_Eu-J^p_E\hat u,s_{\psi(n)}-\hat u\rangle. \end{aligned} \end{eqnarray*}

    Since \frac{\theta_{\psi(n)}}{\alpha_{\psi(n)}}\to0 , from (3.42) we deduce that

    \begin{eqnarray} \lim\limits_{n\to\infty}\Phi_{\psi(n)} = 0. \end{eqnarray} (3.44)

    From (3.42), (3.43) and (3.44), we get that

    \begin{eqnarray} \lim\limits_{n\to\infty}\Phi_{\psi(n)+1} = 0. \end{eqnarray} (3.45)

    Now from (3.37), we deduce \lim_{n\to\infty}D_{f_p}(\hat u, x_n) = \lim_{n\to\infty}\Phi_n = 0 . Hence \lim_{n\to\infty}\|x_n-\hat u\| = 0 .

    Putting F = 0 in Algorithm 3.1, we have the following corollary.

    Corollary 3.9. Let E be a p -uniformly convex and uniformly smooth Banach space with weakly sequentially continuous duality mapping J^p_E . Let T:C\to C be a uniformly continuous and Bregman relatively asymptotically nonexpansive mapping with and T_i:C\to C ( i = 1, ..., N ) be a uniformly continuous and Bregman relatively nonexpansive mapping. Assume that {\Omega}: = \bigcap^N_{i = 0}{\rm Fix}(T_i)\neq\emptyset with T_0: = T . For an initial x_1\in C , let \{x_n\} be the sequence constructed by

    \begin{eqnarray*} \begin{cases} w_n = J^q_{E^*}(\sigma_nJ^p_Ex_n+(1-\sigma_n)J^p_E(T_nx_n)),\\ v_n = J^q_{E^*}(\alpha_nJ^p_Ew_n+(1-\alpha_n)J^p_E(T^nw_n)),\\ Q_n = \{x\in C:D_{f_p}(x,v_n)\leq(1+\theta_n)D_{f_p}(x,w_n)\},\\ x_{n+1} = \Pi_{Q_n}(w_n),\quad\forall n\geq1, \end{cases} \end{eqnarray*}

    where \{\sigma_n\}, \{\alpha_n\}\subset(0, 1) s.t. \liminf_{n\to\infty}\sigma_n(1-\sigma_n) > 0 and \liminf_{n\to\infty}\alpha_n(1-\alpha_n) > 0 . Then, \{x_n\} converges weakly to a point in {\Omega} provided T^nw_n-T^{n+1}w_n\to0 .

    Setting T = I in Algorithm 3.7, we obtain the following algorithm and corollary.

    Algorithm 3.10. Let x_1\in C , \mu > 0, \; l\in(0, 1) and \lambda\in(0, \frac{1}{\mu}) . Choose \{\sigma_n\}, \{\alpha_n\}, \{\beta_n\}\subset(0, 1) s.t. (i) \liminf_ {n\to\infty}\sigma_n(1-\sigma_n) > 0 and \liminf_{n\to\infty}\beta_n(1-\beta_n) > 0 , and (ii) \sum^\infty_{n = 1}\alpha_n = \infty and \lim_{n\to\infty}\alpha_n = 0 .

    Step 1. Set w_n = J^q_{E^*}(\sigma_nJ^p_Ex_n+(1-\sigma_n)J^p_E(T_nx_n)) , and compute y_n = \Pi_C(J^q_{E^*}(J^p_Ew_n-\lambda Fw_n)) and r_\lambda(w_n): = w_n-y_n .

    Step 2. Calculate t_n = w_n-\tau_nr_\lambda(w_n) in which \tau_n: = l^{j_n} with j_n being the smallest nonnegative integer j fulfilling

    \langle Fw_n-F(w_n-l^jr_\lambda(w_n)),w_n-y_n\rangle\leq\frac{\mu}{2}D_{f_p}(w_n,y_n).

    Step 3. Compute v_n = J^q_{E^*}(\beta_nJ^p_Ew_n+(1-\beta_n)J^p_E(\Pi_{C_n}w_n)) and x_{n+1} = \Pi_C(J^q_{E^*}(\alpha_nJ^p_Eu+(1-\alpha_n)J^p_Ev_n) , where C_n: = \{x\in C:h_n(x)\leq0\} and

    h_n(x) = \langle Ft_n,x-w_n\rangle+\frac{\tau_n}{2\lambda}D_{f_p}(w_n,y_n).

    Set n: = n+1 and go to Step 1.

    Corollary 3.11. Suppose that (C1)–(C4) are satisfied. Then, \{x_n\} constructed in Algorithm 3.7 converges strongly to \Pi_{\Omega}u .

    In this section, we provide an illustrated example to demonstrate the applicability and implementability of our proposed method. We first provide an example of Lipschitz continuous and pseudomonotone monotone mapping F , Bregman relatively asymptotically nonexpansive mapping T and Bregman relatively nonexpansive mapping T_1 with \Omega = {\rm Fix}(T_1)\cap{\rm Fix}(T)\cap{\rm VI}(C, F)\neq\emptyset .

    Let C = [-3, 3] and H = {\bf R} with the inner product \langle a, b\rangle = ab and induced norm \|\cdot\| = |\cdot| . The initial point x_1 is randomly chosen in C . Put \mu = 1, \; l = \lambda = \frac{1}{3} and \sigma_n = \frac{1}{2} .

    Let F:H\to H and T, T_1:C\to C be defined as Fx: = \frac{1}{1+|\sin x|}-\frac{1}{1+|x|} , Tx: = \frac{3}{4}\sin x and T_1x: = \sin x for all x\in C . Now, we first show that F is pseudomonotone and Lipschitz continuous. Indeed, for all x, y\in H we have

    \begin{eqnarray*} \begin{aligned} \|Fx-Fy\|& = |\frac{1}{1+\|\sin x\|}-\frac{1}{1+\|x\|}-\frac{1}{1+\|\sin y\|}+\frac{1}{1+\|y\|}|\\ &\leq|\frac{\|y\|-\|x\|}{(1+\|x\|)(1+\|y\|)}|+|\frac{\|\sin y\|-\|\sin x\|}{(1+\|\sin x\|)(1+\|\sin y\|)}|\\ &\leq\|x-y\|+\|\sin x-\sin y\|\\ &\leq2\|x-y\|. \end{aligned} \end{eqnarray*}

    This implies that F is Lipschitz continuous. Next, we show that F is pseudomonotone. For each x, y\in H , it is easy to see that

    \langle Fx,y-x\rangle = (\frac{1}{1+|\sin x|}-\frac{1}{1+|x|})(y-x)\geq0

    which implies that

    \langle Fy,y-x\rangle = (\frac{1}{1+|\sin y|}-\frac{1}{1+|y|})(y-x)\geq0.

    Furthermore, it is easy to check that T is asymptotically nonexpansive with \theta_n = (\frac{3}{4})^n\; \forall n\geq1 , and for each \{p_n\}\subset C one has \|T^{n+1}p_n-T^np_n\|\to0 as n\to\infty . Indeed, we observe that

    \|T^nx-T^ny\|\leq{\frac{3}{4}}\|T^{n-1}x-T^{n-1}y\|\leq\cdots\leq(\frac{3}{4})^n\|x-y\|\leq(1+\theta_n)\|x-y\|,

    and

    \begin{eqnarray*} \begin{aligned} \|T^{n+1}p_n-T^np_n\|&\leq(\frac{3}{4})^{n-1}\|T^2p_n-Tp_n\|\\ & = (\frac{3}{4})^{n-1}\|\frac{3}{4}\sin(Tp_n)-\frac{3}{4}\sin p_n\|\\ &\leq2(\frac{3}{4})^n\to0\; \; (n\to\infty). \end{aligned} \end{eqnarray*}

    It is clear that {\rm Fix}(T) = \{0\} and T is also Bregman relatively asymptotically nonexpansive with \theta_n = (\frac{3}{4})^n\; \forall n\geq1 . In addition, it is clear that {\rm Fix}(T_1) = \{0\} and T_1 is Bregman relatively nonexpansive. Therefore, \Omega = {\rm Fix}(T_1)\cap{\rm Fix}(T)\cap{\rm VI}(C, A) = \{0\}\neq\emptyset .

    Example 4.1. Putting \alpha_n = \frac{n}{2(n+1)}, \forall n\geq1 , we can rewrite Algorithm 3.1 as follows:

    \begin{eqnarray*} \begin{cases} w_n = \frac{1}{2}x_n+\frac{1}{2}T_1x_n,\\ y_n = P_C(w_n-\frac{1}{3}Fw_n),\\ t_n = (1-\tau_n)w_n+\tau_ny_n,\\ v_n = \frac{n}{2(n+1)}w_n+\frac{n+2}{2(n+1)}T^nw_n,\\ Q_n = \{x\in C:|x-v_n|^2\leq(1+(\frac{3}{4})^n)|x-w_n|^2\},\\ x_{n+1} = P_{C_n\cap Q_n}w_n,\forall n\geq1, \end{cases} \end{eqnarray*}

    where for each n\geq1 , C_n and \tau_n are chosen as in Algorithm 3.1. Then, by Theorem 3.6, we deduce that \{x_n\} converges to 0\in \Omega = {\rm Fix}(T_1)\cap{\rm Fix}(T)\cap {\rm VI}(C, A) .

    Example 4.2. Putting \alpha_n = \frac{1}{2(n+1)} and \beta_n = \frac{n}{2(n+1)}, \forall n\geq1 , we can rewrite Algorithm 3.7 as follows:

    \begin{eqnarray*} \begin{cases} w_n = \frac{1}{2}x_n+\frac{1}{2}T_1x_n,\\ y_n = P_C(w_n-\frac{1}{3}Fw_n),\\ t_n = (1-\tau_n)w_n+\tau_ny_n,\\ v_n = \frac{n}{2(n+1)}w_n+\frac{n+2}{2(n+1)}T^nP_{C_n}w_n,\\ x_{n+1} = P_C(\frac{1}{2(n+1)}u+\frac{2n+1}{2(n+1)}v_n),\forall n\geq1, \end{cases} \end{eqnarray*}

    where for each n\geq1 , C_n and \tau_n are chosen as in Algorithm 3.7. Then, by Theorem 3.8, we obtain that \{x_n\} converges to 0\in \Omega = {\rm Fix}(T_1)\cap{\rm Fix}(T)\cap {\rm VI}(C, A) .

    In this paper, we investigate iterative algorithms for solving the variational inequality and the common fixed-point problem in p -uniformly convex and uniformly smooth Banach spaces. With the help of accelerated projection methods and line search technique, we construct two algorithms for finding a common solution of the pseudomonotone variational inequality and the common fixed-point problem of finitely many Bregman relatively nonexpansive mappings and a Bregman relatively asymptotically nonexpansive mapping. We provide convergence analysis of the proposed algorithms by using standard conditions and new techniques.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Yeong-Cheng Liou was supported in part by the MOST Project in Taiwan (110-2410-H-037-001) and the grant from NKUST and KMU joint R & D Project (110KK002).

    The authors declare no conflict of interest.



    [1] L. C. Ceng, A. Petrusel, X. Qin, J. C. Yao, Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints, Optimization, 70 (2021), 1337–1358. https://doi.org/10.1080/02331934.2020.1858832 doi: 10.1080/02331934.2020.1858832
    [2] Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148 (2011), 318–335. https://doi.org/10.1007/s10957-010-9757-3 doi: 10.1007/s10957-010-9757-3
    [3] Y. Yao, N. Shahzad, J. C. Yao, Convergence of Tseng-type self-adaptive algorithms for variational inequalities and fixed point problems, Carpathian J. Math., 37 (2021), 541–550. https://doi.org/10.37193/CJM.2021.03.15 doi: 10.37193/CJM.2021.03.15
    [4] H. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240–256. https://doi.org/10.1112/S0024610702003332 doi: 10.1112/S0024610702003332
    [5] L. He, Y. L. Cui, L. C. Ceng, T. Y. Zhao, D. Q. Wang, H. Y. Hu, Strong convergence for monotone bilevel equilibria with constraints of variational inequalities and fixed points using subgradient extragradient implicit rule, J. Inequal. Appl., 2021 (2021), 146. https://doi.org/10.1186/s13660-021-02683-y doi: 10.1186/s13660-021-02683-y
    [6] R. W. Cottle, J. C. Yao, Pseudo-monotone complementarity problems in Hilbert space, J. Optim. Theory Appl., 75 (1992), 281–295. https://doi.org/10.1007/BF00941468 doi: 10.1007/BF00941468
    [7] Y. Yao, M. Postolache, J. C. Yao, Iterative algorithms for generalized variational inequalities, U.P.B. Sci. Bull., Series A, 81 (2019), 3–16.
    [8] D. V. Thong, D. V. Hieu, Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems, Numer. Algor., 80 (2019), 1283–1307. https://doi.org/10.1007/s11075-018-0527-x doi: 10.1007/s11075-018-0527-x
    [9] K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, New York: Marcel Dekker, 1984.
    [10] L. C. Ceng, C. F. Wen, Systems of variational inequalities with hierarchical variational inequality constraints for asymptotically nonexpansive and pseudocontractive mappings, RACSAM, 113 (2019), 2431–2447. https://doi.org/10.1007/s13398-019-00631-6 doi: 10.1007/s13398-019-00631-6
    [11] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747–756.
    [12] L. C. Ceng, A. Petrusel, X. Qin, J. C. Yao, Pseudomonotone variational inequalities and fixed points, Fixed Point Theory, 22 (2021), 543–558.
    [13] S. Reich, D. V. Thong, Q. L. Dong, X. H. Li, V. T. Dung, New algorithms and convergence theorems for solving variational inequalities with non-Lipschitz mappings, Numer. Algor., 87 (2021), 527–549. https://doi.org/10.1007/s11075-020-00977-8 doi: 10.1007/s11075-020-00977-8
    [14] Y. Yao, O. S. Iyiola, Y. Shehu, Subgradient extragradient method with double inertial steps for variational inequalities, J. Sci. Comput., 90 (2022), 71. https://doi.org/10.1007/s10915-021-01751-1 doi: 10.1007/s10915-021-01751-1
    [15] A. N. Iusem, M. Nasri, Korpelevich's method for variational inequality problems in Banach spaces, J. Glob. Optim., 50 (2011), 59–76.
    [16] Y. He, A new double projection algorithm for variational inequalities, J. Comput. Appl. Math., 185 (2006), 166–173. https://doi.org/10.1016/j.cam.2005.01.031 doi: 10.1016/j.cam.2005.01.031
    [17] L. C. Ceng, J. C. Yao, Y. Shehu, On Mann-type subgradient-like extragradient method with linear-search process for hierarchical variational inequalities for asymptotically nonexpansive mappings, Mathematics, 9 (2021), 3322. https://doi.org/10.3390/math9243322 doi: 10.3390/math9243322
    [18] G. Z. Eskandani, R. Lotfikar, M. Raeisi, Hybrid projection methods for solving pseudomonotone variational inequalities in Banach spaces, Fixed Point Theory, In press.
    [19] Y. Takahashi, K. Hashimoto, M. Kato, On sharp uniform convexity, smoothness, and strong type, cotype inequalities, J. Nonlinear Convex Anal., 3 (2002), 267–281.
    [20] L. J. Zhu, Y. Yao, Algorithms for approximating solutions of split variational inclusion and fixed point problems, Mathematics, 11 (2023), 641. https://doi.org/10.3390/math11030641 doi: 10.3390/math11030641
    [21] D. Reem, S. Reich, A. De Pierro, Re-examination of Bregman functions and new properties of their divergences, Optimization, 68 (2019), 279–348. https://doi.org/10.1080/02331934.2018.1543295 doi: 10.1080/02331934.2018.1543295
    [22] D. Butnariu, E. Resmerita, Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., 2006 (2006), 084919. https://doi.org/10.1155/AAA/2006/84919 doi: 10.1155/AAA/2006/84919
    [23] X. Zhao, Y. Yao, Modified extragradient algorithms for solving monotone variational inequalities and fixed point problems, Optimization, 69 (2020), 1987–2002. https://doi.org/10.1080/02331934.2019.1711087 doi: 10.1080/02331934.2019.1711087
    [24] D. Butnariu, A. N. Iusem, E. Resmerita, Total convexity for powers of the norm in uniformly convex Banach spaces, J. Convex Anal., 7 (2000), 319–334.
    [25] S. Reich, A weak convergence theorem for the alternating method with Bregman distances, In: Theory and applications of nonlinear operators, New York: Marcel Dekker, 1996,313–318.
    [26] F. Schöpfer, T. Schuster, A. K. Louis, An iterative regularization method for the solution of the split feasibility problem in Banach spaces, Inverse Probl., 24 (2008), 055008, 20. https://doi.org/10.1088/0266-5611/24/5/055008 doi: 10.1088/0266-5611/24/5/055008
    [27] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899–912.
    [28] S. Jabeen, M. A. Noor, K. I. Noor, Inertial methods for solving system of quasi variational inequalities, J. Adv. Math. Stud., 15 (2022), 1–10.
    [29] J. Zheng, J. Chen, X. Ju, Fixed-time stability of projection neurodynamic network for solving pseudomonotone variational inequalities, Neurocomputing, 505 (2022), 402–412. https://doi.org/10.1016/j.neucom.2022.07.034 doi: 10.1016/j.neucom.2022.07.034
    [30] J. Chen, Z. Wan, L. Yuan, Y. Zheng, Approximation of fixed points of weak Bregman relatively nonexpansive mappings in Banach spaces, Int. J. Math. Math. Sci., 2011 (2011), 420192. https://doi.org/10.1155/2011/420192 doi: 10.1155/2011/420192
    [31] B. Tan, X. Qin, J. C. Yao, Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems, J. Glob. Optim., 82 (2022), 523–557. https://doi.org/10.1007/s10898-021-01095-y doi: 10.1007/s10898-021-01095-y
    [32] B. Tan, S. Y. Cho, J. C. Yao, Accelerated inertial subgradient extragradient algorithms with non-monotonic step sizes for equilibrium problems and fixed point problems, J. Nonlinear Var. Anal., 6 (2022), 89–122. https://doi.org/10.23952/jnva.6.2022.1.06 doi: 10.23952/jnva.6.2022.1.06
  • This article has been cited by:

    1. Habib ur Rehman, Debdas Ghosh, Jen-Chih Yao, Xiaopeng Zhao, Extragradient methods with dual inertial steps for solving equilibrium problems, 2024, 103, 0003-6811, 2941, 10.1080/00036811.2024.2330509
    2. Rose Maluleka, Godwin Chidi Ugwunnadi, Maggie Aphane, Inertial Method for Solving Pseudomonotone Variational Inequality and Fixed Point Problems in Banach Spaces, 2023, 12, 2075-1680, 960, 10.3390/axioms12100960
    3. Mohammad Eslamian, Ahmad Kamandi, A novel method for hierarchical variational inequality with split common fixed point constraint, 2024, 70, 1598-5865, 1837, 10.1007/s12190-024-02024-4
    4. Lu-Chuan Ceng, Debdas Ghosh, Habib ur Rehman, Jen-Chih Yao, Xiaopeng Zhao, On quasi-inertial double extragradient-type iterations for variational inequalities and Bregman relatively asymptotically nonexpansive mapping, 2024, 1389-4420, 10.1007/s11081-024-09929-w
    5. Nguyen Buong, A first order dynamical system and its discretization for a class of variational inequalities, 2025, 458, 03770427, 116341, 10.1016/j.cam.2024.116341
    6. Lu-Chuan Ceng, Cong-Shan Wang, Xie Wang, Liu-Fang Zheng, Hui-Ying Hu, Yun-Shui Liang, On triple-adaptive projection method for bilevel split variational inequalities with CFPP constraint of finite Bregman relatively demicontractions in Banach spaces, 2024, 137, 10075704, 108172, 10.1016/j.cnsns.2024.108172
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1345) PDF downloads(76) Cited by(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog