Research article Special Issues

Modified subgradient extragradient algorithms for systems of generalized equilibria with constraints

  • Received: 15 June 2022 Revised: 22 October 2022 Accepted: 09 November 2022 Published: 14 November 2022
  • MSC : 47H09, 47H10, 47J20, 47J25

  • In this paper, we introduce the modified Mann-like subgradient-like extragradient implicit rules with linear-search process for finding a common solution of a system of generalized equilibrium problems, a pseudomonotone variational inequality problem and a fixed-point problem of an asymptotically nonexpansive mapping in a real Hilbert space. The proposed algorithms are based on the subgradient extragradient rule with linear-search process, Mann implicit iteration approach, and hybrid deepest-descent technique. Under mild restrictions, we demonstrate the strong convergence of the proposed algorithms to a common solution of the investigated problems, which is a unique solution of a certain hierarchical variational inequality defined on their common solution set.

    Citation: Lu-Chuan Ceng, Li-Jun Zhu, Tzu-Chien Yin. Modified subgradient extragradient algorithms for systems of generalized equilibria with constraints[J]. AIMS Mathematics, 2023, 8(2): 2961-2994. doi: 10.3934/math.2023154

    Related Papers:

  • In this paper, we introduce the modified Mann-like subgradient-like extragradient implicit rules with linear-search process for finding a common solution of a system of generalized equilibrium problems, a pseudomonotone variational inequality problem and a fixed-point problem of an asymptotically nonexpansive mapping in a real Hilbert space. The proposed algorithms are based on the subgradient extragradient rule with linear-search process, Mann implicit iteration approach, and hybrid deepest-descent technique. Under mild restrictions, we demonstrate the strong convergence of the proposed algorithms to a common solution of the investigated problems, which is a unique solution of a certain hierarchical variational inequality defined on their common solution set.



    加载中


    [1] Y. Yao, Y. C. Liou, S. M. Kang, Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method, Comput. Math. Appl., 59 (2010), 3472–3480. https://doi.org/10.1016/j.camwa.2010.03.036 doi: 10.1016/j.camwa.2010.03.036
    [2] L. O. Jolaoso, Y. Shehu, J. C. Yao, Inertial extragradient type method for mixed variational inequalities without monotonicity, Math. Comput. Simul., 192 (2022), 353–369. https://doi.org/10.1016/j.matcom.2021.09.010 doi: 10.1016/j.matcom.2021.09.010
    [3] Q. L. Dong, L. Liu, Y. Yao, Self-adaptive projection and contraction methods with alternated inertial terms for solving the split feasibility problem, J. Nonlinear Convex Anal., 23 (2022), 591–605.
    [4] L. C. Ceng, A. Petrusel, X. Qin, J. C. Yao, Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints, Optimization, 70 (2021), 1337–1358. https://doi.org/10.1080/02331934.2020.1858832 doi: 10.1080/02331934.2020.1858832
    [5] Y. Yao, M. Postolache, J. C. Yao, Strong convergence of an extragradient algorithm for variational inequality and fixed point problems, U.P.B. Sci. Bull., Ser. A, 82 (2020), 3–12.
    [6] L. C. Ceng, C. Y. Wang, J. C. Yao, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Methods Oper. Res., 67 (2008), 375–390. https://doi.org/10.1007/s00186-007-0207-4 doi: 10.1007/s00186-007-0207-4
    [7] Y. Yao, N. Shahzad, J. C. Yao, Convergence of Tseng-type self-adaptive algorithms for variational inequalities and fixed point problems, Carpathian J. Math., 37 (2021), 541–550. https://doi.org/10.37193/CJM.2021.03.15 doi: 10.37193/CJM.2021.03.15
    [8] H. K. Xu, T. H. Kim, Convergence of hybrid steepest-descent methods for variational inequalities, J. Optim. Theory Appl., 119 (2003), 185–201. https://doi.org/10.1023/B:JOTA.0000005048.79379.b6 doi: 10.1023/B:JOTA.0000005048.79379.b6
    [9] L. He, Y. L. Cui, L. C. Ceng, Strong convergence for monotone bilevel equilibria with constraints of variational inequalities and fixed points using subgradient extragradient implicit rule, J. Inequal. Appl., 2021 (2021), 146. https://doi.org/10.1186/s13660-021-02683-y doi: 10.1186/s13660-021-02683-y
    [10] L. M. Deng, R. Hu, Y. P. Fang, Projection extragradient algorithms for solving nonmonotone and non-Lipschitzian equilibrium problems in Hilbert spaces, Numer. Algor., 86 (2021), 191–221. https://doi.org/10.1007/s11075-020-00885-x doi: 10.1007/s11075-020-00885-x
    [11] J. Balooee, M. Postolache, Y. Yao, System of generalized nonlinear variational-like inequalities and nearly asymptotically nonexpansive mappings: graph convergence and fixed point problems, Ann. Funct. Anal., 13 (2022), 68. https://doi.org/10.1007/s43034-022-00212-6 doi: 10.1007/s43034-022-00212-6
    [12] S. V. Denisov, V. V. Semenov, L. M. Chabak, Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators, Cybern. Syst. Anal., 51 (2015), 757–765. https://doi.org/10.1007/s10559-015-9768-z doi: 10.1007/s10559-015-9768-z
    [13] G. Cai, Y. Shehu, O. S. Iyiola, Strong convergence results for variational inequalities and fixed point problems using modified viscosity implicit rules, Numer. Algor., 77 (2018), 535–558. https://doi.org/10.1007/s11075-017-0327-8 doi: 10.1007/s11075-017-0327-8
    [14] J. Yang, H. Liu, Z. Liu, Modified subgradient extragradient algorithms for solving monotone variational inequalities, Optimization, 67 (2018), 2247–2258. https://doi.org/10.1080/02331934.2018.1523404 doi: 10.1080/02331934.2018.1523404
    [15] P. T. Vuong, On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities, J. Optim. Theory Appl., 176 (2018), 399–409. https://doi.org/10.1007/s10957-017-1214-0 doi: 10.1007/s10957-017-1214-0
    [16] Y. Yao, H. Li, M. Postolache, Iterative algorithms for split equilibrium problems of monotone operators and fixed point problems of pseudo-contractions, Optimization, 71 (2022), 2451–2469. https://doi.org/10.1080/02331934.2020.1857757 doi: 10.1080/02331934.2020.1857757
    [17] D. V. Thong, D. V. Hieu, Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems, Numer. Algor., 80 (2019), 1283–1307. https://doi.org/10.1007/s11075-018-0527-x doi: 10.1007/s11075-018-0527-x
    [18] Y. Shehu, O. S. Iyiola, Strong convergence result for monotone variational inequalities, Numer. Algor., 76 (2017), 259–282. https://doi.org/10.1007/s11075-016-0253-1 doi: 10.1007/s11075-016-0253-1
    [19] K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Marcel Dekker, New York, 1984.
    [20] D. V. Thong, Q. L. Dong, L. L. Liu, N. A. Triet, N. P. Lan, Two new inertial subgradient extragradient methods with variable step sizes for solving pseudomonotone variational inequality problems in Hilbert spaces, J. Comput. Appl. Math., 245 (2021), 1–23.
    [21] P. T. Vuong, Y. Shehu, Convergence of an extragradient-type method for variational inequality with applications to optimal control problems, Numer. Algor., 81 (2019), 269–291. https://doi.org/10.1007/s11075-018-0547-6 doi: 10.1007/s11075-018-0547-6
    [22] Y. Shehu, Q. L. Dong, D. Jiang, Single projection method for pseudo-monotone variational inequality in Hilbert spaces, Optimization, 68 (2019), 385–409. https://doi.org/10.1080/02331934.2018.1522636 doi: 10.1080/02331934.2018.1522636
    [23] D. V. Thong, D. V. Hieu, Modified subgradient extragradient method for variational inequality problems, Numer. Algor., 79 (2018), 597–610. https://doi.org/10.1007/s11075-017-0452-4 doi: 10.1007/s11075-017-0452-4
    [24] R. Kraikaew, S. Saejung, Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 163 (2014), 399–412. https://doi.org/10.1007/s10957-013-0494-2 doi: 10.1007/s10957-013-0494-2
    [25] Y. Yao, Y. Shehu, X. H. Li, Q. L. Dong, A method with inertial extrapolation step for split monotone inclusion problems, Optimization, 70 (2021), 741–761. https://doi.org/10.1080/02331934.2020.1857754 doi: 10.1080/02331934.2020.1857754
    [26] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747–756.
    [27] L. C. Ceng, M. J. Shang, Hybrid inertial subgradient extragradient methods for variational inequalities and fixed point problems involving asymptotically nonexpansive mappings, Optimization, 70 (2021), 715–740. https://doi.org/10.1080/02331934.2019.1647203 doi: 10.1080/02331934.2019.1647203
    [28] Y. Yao, O. S. Iyiola, Y. Shehu, Subgradient extragradient method with double inertial steps for variational inequalities, J. Sci. Comput., 90 (2022), 71. https://doi.org/10.1007/s10915-021-01751-1 doi: 10.1007/s10915-021-01751-1
    [29] S. Reich, D. V. Thong, Q. L. Dong, X. H. Li, V. T. Dung, New algorithms and convergence theorems for solving variational inequalities with non-Lipschitz mappings, Numer. Algor., 87 (2021), 527–549. https://doi.org/10.1007/s11075-020-00977-8 doi: 10.1007/s11075-020-00977-8
    [30] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899–912. https://doi.org/10.1007/s11228-008-0102-z doi: 10.1007/s11228-008-0102-z
    [31] C. Zhang, Z. Zhu, Y. Yao, Q. Liu, Homotopy method for solving mathematical programs with bounded box-constrained variational inequalities, Optimization, 68 (2019), 2293–2312. https://doi.org/10.1080/02331934.2019.1647199 doi: 10.1080/02331934.2019.1647199
    [32] A. N. Iusem, M. Nasri, Korpelevich's method for variational inequality problems in Banach spaces, J. Global Optim., 50 (2011), 59–76. https://doi.org/10.1007/s10898-010-9613-x doi: 10.1007/s10898-010-9613-x
    [33] Y. R. He, A new double projection algorithm for variational inequalities, J. Comput. Appl. Math., 185 (2006), 166–173. https://doi.org/10.1016/j.cam.2005.01.031 doi: 10.1016/j.cam.2005.01.031
    [34] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123–145.
    [35] L. C. Ceng, J. C. Yao, A relaxed extragradient-like method for a generalized mixed equilibrium problem, a general system of generalized equilibria and a fixed point problem, Nonlinear Anal., 72 (2010), 1922–1937. https://doi.org/10.1016/j.na.2009.09.033 doi: 10.1016/j.na.2009.09.033
    [36] Y. Yao, M. Postolache, J. C. Yao, An iterative algorithm for solving the generalized variational inequalities and fixed points problems, Mathematics, 7 (2019), 61. https://doi.org/10.3390/math7010061 doi: 10.3390/math7010061
    [37] X. Zhao, Y. Yao, Modified extragradient algorithms for solving monotone variational inequalities and fixed point problems, Optimization, 69 (2020), 1987–2002. https://doi.org/10.1080/02331934.2019.1711087 doi: 10.1080/02331934.2019.1711087
    [38] M. Farid, Two algorithms for solving mixed equilibrium problems and fixed point problems in Hilbert spaces, Ann. Univ. Ferrara., 68 (2022), 237. https://doi.org/10.1007/s11565-021-00380-8 doi: 10.1007/s11565-021-00380-8
    [39] M. Alansari, R. Ali, M. Farid, Strong convergence of an inertial iterative algorithm for variational inequality problem, generalized equilibrium problem, and fixed point problem in a Banach space, J. Ineqal. Appl., 2020 (2020), 42. https://doi.org/10.1186/s13660-020-02313-z doi: 10.1186/s13660-020-02313-z
    [40] M. Farid, W. Cholamjiak, R. Ali, K. R. Kazmi, A new shrinking projection algorithm for a generalized mixed variational-like inequality problem and asymptotically quasi-$\phi$-nonexpansive mapping in a Banach space, RACSAM, 115 (2021), 114. https://doi.org/10.1007/s13398-021-01049-9 doi: 10.1007/s13398-021-01049-9
    [41] M. Farid, R. Ali, W. Cholamjiak, An inertial iterative algorithm to find common solution of a split generalized equilibrium and a variational inequality problem in Hilbert spaces, J. Math., 2021 (2021), 3653807. https://doi.org/10.1155/2021/3653807 doi: 10.1155/2021/3653807
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1530) PDF downloads(129) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog