Research article

An application of generalized Morrey spaces to unique continuation property of the quasilinear elliptic equations

  • Received: 24 June 2023 Revised: 25 July 2023 Accepted: 22 August 2023 Published: 08 September 2023
  • MSC : 26D10, 35J62, 46E30

  • In this paper, we study nonnegative weak solutions of the quasilinear elliptic equation $ \text{div}(A(x, u, \nabla u)) = B(x, u, \nabla u) $, in a bounded open set $ \Omega $, whose coefficients belong to a generalized Morrey space. We show that $ \log (u + \delta) $, for $ u $ a nonnegative solution and $ \delta $ an arbitrary positive real number, belongs to $ \text{BMO}(B) $, where $ B $ is an open ball contained in $ \Omega $. As a consequence, this equation has the strong unique continuation property. For the main proof, we use approximation by smooth functions to the weak solutions to handle the weak gradient of the composite function which involves the weak solutions and then apply Fefferman's inequality in generalized Morrey spaces, recently proved by Tumalun et al. [1].

    Citation: Nicky K. Tumalun, Philotheus E. A. Tuerah, Marvel G. Maukar, Anetha L. F. Tilaar, Patricia V. J. Runtu. An application of generalized Morrey spaces to unique continuation property of the quasilinear elliptic equations[J]. AIMS Mathematics, 2023, 8(11): 26007-26020. doi: 10.3934/math.20231325

    Related Papers:

  • In this paper, we study nonnegative weak solutions of the quasilinear elliptic equation $ \text{div}(A(x, u, \nabla u)) = B(x, u, \nabla u) $, in a bounded open set $ \Omega $, whose coefficients belong to a generalized Morrey space. We show that $ \log (u + \delta) $, for $ u $ a nonnegative solution and $ \delta $ an arbitrary positive real number, belongs to $ \text{BMO}(B) $, where $ B $ is an open ball contained in $ \Omega $. As a consequence, this equation has the strong unique continuation property. For the main proof, we use approximation by smooth functions to the weak solutions to handle the weak gradient of the composite function which involves the weak solutions and then apply Fefferman's inequality in generalized Morrey spaces, recently proved by Tumalun et al. [1].



    加载中


    [1] N. K. Tumalun, D. I. Hakim, H. Gunawan, Some function spaces and their applications to elliptic partial differential equations, Mat. Vesn., 75 (2023), 71–86. https://doi.org/10.57016/MV-cdyn1783 doi: 10.57016/MV-cdyn1783
    [2] P. Zamboni, Some function spaces and elliptic partial differential equations, Le Matematiche, 42 (1987), 171–178.
    [3] S. Chanillo, E. Sawyer, Unique continuation for $\Delta+v$ and the C. Fefferman-Phong class, T. Am. Math. Soc., 318 (1990), 275–300. http://doi.org/10.2307/2001239 doi: 10.2307/2001239
    [4] P. Zamboni, Unique continuation for non-negative solutions of quasilinear elliptic equations, B. Aust. Math. Soc., 64 (2001), 149–156. https://doi.org/10.1017/S0004972700019766 doi: 10.1017/S0004972700019766
    [5] R. E. Castillo, H. Rafeiro, E. M. Rojas, Unique continuation of quasilinear elliptic equation on Lebesgue spaces $L_p$, Azerbaijan J. Math., 11 (2021), 136–153.
    [6] G. Di Fazio, P. Zamboni, Unique continuation for positive solutions of degenerate elliptic equations, Math. Nachr., 283 (2010), 994–999. https://doi.org/10.1002/mana.200710064 doi: 10.1002/mana.200710064
    [7] G. Di Fazio, M. S. Fanciullo, P. Zamboni, Unique continuation for degenerate quasilinear elliptic equations and sum operators, AAAP: Physical, Mathematical and Natural Sciences, 98 (2020), A5. https://doi.org/10.1478/AAPP.98S2A5 doi: 10.1478/AAPP.98S2A5
    [8] C. L. Fefferman, The uncertainty principle, B. Am. Math. Soc., 9 (1983), 129–206.
    [9] F. Chiarenza, M. Frasca, A remark on a paper by C. Fefferman, P. Am. Math. Soc., 108 (1990), 407–409. https://doi.org/10.2307/2048289 doi: 10.2307/2048289
    [10] N. Tumalun, H. Gunawan, Morrey spaces are embedded between weak Morrey spaces and Stummel classes, J. Indones. Math. Soc., 25 (2019), 203–209. https://doi.org/10.22342/jims.25.3.817.203-209 doi: 10.22342/jims.25.3.817.203-209
    [11] N. K. Tumalun, D. I. Hakim, H. Gunawan, Inclusion between generalized Stummel classes and other function spaces, Math. Inequal. Appl., 23 (2020), 547–562. http://doi.org/10.7153/mia-2020-23-45 doi: 10.7153/mia-2020-23-45
    [12] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr., 166 (1994), 96–103. https://doi.org/10.1002/mana.19941660108 doi: 10.1002/mana.19941660108
    [13] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, T. Am. Math. Soc., 43 (1938), 126–166. https://doi.org/10.2307/1989904 doi: 10.2307/1989904
    [14] P. E. A. Tuerah, N. K. Tumalun, Some notes on the inclusion between Morrey spaces, J. Math. Inequal., 16 (2022), 355–362. http://doi.org/10.7153/jmi-2022-16-26 doi: 10.7153/jmi-2022-16-26
    [15] N. K. Tumalun, P. E. A. Tuerah, A regularity of the weak solution gradient of the Dirichlet problem for divergent form elliptic equations in Morrey spaces, Aust. J. Math. Anal. Appl, 18 (2021), 14.
    [16] G. R. Cirmi, S. D'Asero, S. Leonardi, Morrey estimates for a class of noncoercive elliptic systems with VMO-coefficients, Rend. Lincei Mat. Appl., 32 (2021), 317–334. http://doi.org/10.4171/RLM/938 doi: 10.4171/RLM/938
    [17] N. K. Tumalun, P. E. A. Tuerah, A regularity of Dirichlet problem with the data belongs to generalized Morrey spaces, AIP Conference Proceedings, 2614 (2023), 040057. https://doi.org/10.1063/5.0125918 doi: 10.1063/5.0125918
    [18] N. K. Tumalun, An existence and uniqueness of the weak solution of the Dirichlet problem with the data in Morrey spaces, Barekeng: J. Math. App., 16 (2022), 829–834. https://doi.org/10.30598/barekengvol16iss3pp829-834 doi: 10.30598/barekengvol16iss3pp829-834
    [19] R. P. Agarwal, A. M. Alghamdi, S. Gala, M. A. Ragusa, On the regularity criterion on one velocity component for the micropolar fluid equations, Math. Model. Anal., 28 (2023), 271–284. https://doi.org/10.3846/mma.2023.15261 doi: 10.3846/mma.2023.15261
    [20] A. Scapellato, Riesz potential, Marcinkiewicz integral and their commutators on mixed Morrey spaces, Filomat, 34 (2020), 931–944. https://doi.org/10.2298/FIL2003931S doi: 10.2298/FIL2003931S
    [21] L. W. Wang, The commutators of multilinear maximal and fractional-type operators on central Morrey spaces with variable exponent, J. Funct. Space., 2022 (2022), 4875460. https://doi.org/10.1155/2022/4875460 doi: 10.1155/2022/4875460
    [22] L. Pick, A. Kufner, O. John, S. Fučik, Function spaces, Berlin: De Gryuter, 2013. https://doi.org/10.1515/9783110250428
    [23] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011. https://doi.org/10.1007/978-0-387-70914-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(991) PDF downloads(64) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog