By constructing an auxiliary boundary value problem, the difficulty caused by sign changing nonlinearity terms is overcome by means of the linear superposition principle. Using the Guo-Krasnosel'skii fixed point theorem, the results of the existence of positive solutions for boundary value problems of high order fractional differential equation are obtained in different parameter intervals under a more relaxed condition compared with the existing literature. As an application, we give two examples to illustrate our results.
Citation: Luchao Zhang, Xiping Liu, Zhensheng Yu, Mei Jia. The existence of positive solutions for high order fractional differential equations with sign changing nonlinearity and parameters[J]. AIMS Mathematics, 2023, 8(11): 25990-26006. doi: 10.3934/math.20231324
By constructing an auxiliary boundary value problem, the difficulty caused by sign changing nonlinearity terms is overcome by means of the linear superposition principle. Using the Guo-Krasnosel'skii fixed point theorem, the results of the existence of positive solutions for boundary value problems of high order fractional differential equation are obtained in different parameter intervals under a more relaxed condition compared with the existing literature. As an application, we give two examples to illustrate our results.
[1] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Switzerland: Gordon and Breach Science Publishers, 1993. |
[2] | R. I. Avery, A. C. Peteson, Three positive fixed points of nonlinear operators on ordered Banach spaces, Comput. Math. Appl., 42 (2001), 313–322. https://doi.org/10.1016/S0898-1221(01)00156-0 doi: 10.1016/S0898-1221(01)00156-0 |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, New York: Elsevier Science, 2006. |
[4] | H. Weitzner, G. M. Zaslavsky, Some applications of fractional equations, Commun. Nonlinear Sci., 8 (2003), 273–281. https://doi.org/10.1016/S1007-5704(03)00049-2 doi: 10.1016/S1007-5704(03)00049-2 |
[5] | Z. B. Bai, H. S. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052 |
[6] | M. El-Shahed, Positive solutions for boundary value problem of nonlinear fractional differential equation, Abstr. Appl. Anal., 2007 (2007), 010368. https://doi.org/10.1155/2007/10368 doi: 10.1155/2007/10368 |
[7] | H. R. Lian, P. G. Wang, W. G. Ge, Unbounded upper and lower solutions method for Sturm-Liouville boundary value problem on infinite intervals, Nonlinear Anal. Theor., 70 (2009), 2627–2633. https://doi.org/10.1016/j.na.2008.03.049 doi: 10.1016/j.na.2008.03.049 |
[8] | C. F. Shen, H. Zhou, L. Yang, Existence and nonexistence of positive solutions of a fractional thermostat model with a parameter, Math. Method. Appl. Sci., 39 (2016), 4504–4511. https://doi.org/10.1002/mma.3878 doi: 10.1002/mma.3878 |
[9] | L. C. Zhang, W. G. Zhang, X. P. Liu, M. Jia, Existence of positive solutions for integral boundary value problems of fractional differential equations with p-Laplacian, Adv. Differ. Equ., 2017 (2017), 36. https://doi.org/10.1186/s13662-017-1086-5 doi: 10.1186/s13662-017-1086-5 |
[10] | Y. H. Liu, X. D. Zhao, H. H. Pang, Positive solutions to a Coupled fractional differential system with $p$-Laplacian operator, Discrete Dyn. Nat. Soc., 2019 (2019), 3543670. https://doi.org/10.1155/2019/3543670 doi: 10.1155/2019/3543670 |
[11] | L. C. Zhang, W. G. Zhang, X. P. Liu, M. Jia, Positive solutions of fractional $p$-Laplacian equations with integral boundary value and two parameters, J. Inequal. Appl., 2020 (2020), 2. https://doi.org/10.1186/s13660-019-2273-6 doi: 10.1186/s13660-019-2273-6 |
[12] | J. Q. Xu, C. Y. Xue, Uniqueness and existence of positive periodic solutions of functional differential equations, AIMS Mathematics, 8 (2023), 676–690. https://doi.org/10.3934/math.2023032 doi: 10.3934/math.2023032 |
[13] | A. Lachouri, A. Ardjouni, A. Djoudi, Existence results for nonlinear sequential Caputo and Caputo-Hadamard fractional differential equations with three-point boundary conditions in Banach spaces, Filomat, 36 (2022), 4717–4727. https://doi.org/10.2298/FIL2214717L doi: 10.2298/FIL2214717L |
[14] | N. Li, H. B. Gu, Y. R. Chen, BVP for Hadamard sequential fractional hybrid differential inclusions, J. Funct. Space., 2022 (2022), 4042483. https://doi.org/10.1155/2022/4042483 doi: 10.1155/2022/4042483 |
[15] | J. Zhang, W. Zhang, V. D. Rădulescu, Double phase problems with competing potentials: concentration and multiplication of ground states, Math. Z., 301 (2022), 4037–4078. https://doi.org/10.1007/s00209-022-03052-1 doi: 10.1007/s00209-022-03052-1 |
[16] | W. Zhang, J. Zhang, Multiplicity and concentration of positive solutions for fractional unbalanced double-phase problems, J. Geom. Anal., 32 (2022), 235. https://doi.org/10.1007/s12220-022-00983-3 doi: 10.1007/s12220-022-00983-3 |
[17] | K. H. Zhao, Existence and uh-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions, Filomat, 37 (2023), 1053–1063. https://doi.org/10.2298/FIL2304053Z doi: 10.2298/FIL2304053Z |
[18] | K. H. Zhao, Solvability and GUH-stability of a nonlinear CF-fractional coupled Laplacian equations, AIMS Mathematics, 8 (2023), 13351–13367. https://doi.org/10.3934/math.2023676 doi: 10.3934/math.2023676 |
[19] | X. P. Liu, M. Jia, A class of iterative functional fractional differential equation on infinite interval, Appl. Math. Lett., 136 (2023), 108473. https://doi.org/10.1016/j.aml.2022.108473 doi: 10.1016/j.aml.2022.108473 |
[20] | A. D. Gaetano, M. Jleli, M. A. Ragusa, B. Samet, Nonexistence results for nonlinear fractional differential inequalities involving weighted fractional derivatives, Discrete Cont. Dyn. S, 16 (2023), 1300–1322. https://doi.org/10.3934/dcdss.2022185 doi: 10.3934/dcdss.2022185 |
[21] | R. P. Agrawal, H. L. Hong, C. C. Yeh, The existence of positive solutions for the Sturm-Liouville boundary value problems, Comput. Math. Appl., 35 (1998), 89–96. https://doi.org/10.1016/S0898-1221(98)00060-1 doi: 10.1016/S0898-1221(98)00060-1 |
[22] | W. G. Ge, J. L. Ren, New existence theorems of positive solutions for Sturm-Liouville boundary value problems, Appl. Math. Comput., 148 (2004), 631–644. https://doi.org/10.1016/S0096-3003(02)00921-9 doi: 10.1016/S0096-3003(02)00921-9 |
[23] | W. G. Ge, C. Y. Xue, Some fixed point theorems and existence of positive solutions of two-point boundary-value problems, Nonlinear Anal. Theor., 70 (2009), 16–31. https://doi.org/10.1016/j.na.2007.11.040 doi: 10.1016/j.na.2007.11.040 |
[24] | G. S. Li, X. P. Liu, M. Jia, Positive solutions to a type of nonlinear three-point boundary value problem with sign changing nonlinearities, Appl. Math. Comput., 57 (2009), 348–355. https://doi.org/10.1016/j.camwa.2008.10.093 doi: 10.1016/j.camwa.2008.10.093 |
[25] | Y. Q. Wang, L. S. Liu, Y. H. Wu, Positive solutions for a class of fractional boundary value problem with changing sign nonlinearity, Nonlinear Anal. Theor., 74 (2011), 6434–6441. https://doi.org/10.1016/j.na.2011.06.026 doi: 10.1016/j.na.2011.06.026 |
[26] | S. Q. Zhang, Positive solution of singular boundary value problem for nonlinear fractional differential equation with nonlinearity that changes sign, Positivity, 16 (2012), 177–193. https://doi.org/10.1007/s11117-010-0110-8 doi: 10.1007/s11117-010-0110-8 |
[27] | Z. C. Hao, Y. B. Huang, Existence of positive solutions to nonlinear fractional boundary value problem with changing sign nonlinearity and advanced arguments, Abstr. Appl. Anal., 2014 (2014), 158436. https://doi.org/10.1155/2014/158436 doi: 10.1155/2014/158436 |
[28] | J. Henderson, R. Luca, Existence of positive solutions for a singular fractional boundary value problem, Nonlinear Anal. Model., 22 (2017), 99–114. https://doi.org/10.15388/NA.2017.1.7 doi: 10.15388/NA.2017.1.7 |
[29] | J. K. He, M. Jia, X. P. Liu, H. Chen, Existence of positive solutions for a high order fractional differential equation integral boundary value problem with changing sign nonlinearity, Adv. Differ. Equ., 2018 (2018), 49. https://doi.org/10.1186/s13662-018-1465-6 doi: 10.1186/s13662-018-1465-6 |
[30] | R. P. Agarwal, R. Luca, Positive solutions for a semipositone singular Riemann-Liouville fractional differential problem, Int. J. Nonlin. Sci. Num., 20 (2019), 823–831. https://doi.org/10.1515/ijnsns-2018-0376 doi: 10.1515/ijnsns-2018-0376 |
[31] | D. Y. Liu, K. M. Zhang, Existence of positive solutions to a boundary value problem for a delayed singular hight order fractional differential equation with a sign-changed nonlinearity, J. Appl. Math. Comput., 3 (2020), 1073–1093. https://doi.org/10.11948/20190190 doi: 10.11948/20190190 |
[32] | W. X. Wang, Unique positive solutions for boundary value problem of p-Laplacian fractional differential equation with a sign-changed nonlinearity, Nonlinear Anal. Model., 27 (2022), 1110–1128. https://doi.org/10.15388/namc.2022.27.29503 doi: 10.15388/namc.2022.27.29503 |
[33] | A. Tudorache, R. Luca, Positive solutions for a fractional differential equation with sequential derivatives and nonlocal boundary conditions, Symmetry, 14 (2022), 1779. https://doi.org/10.3390/sym14091779 doi: 10.3390/sym14091779 |
[34] | M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, New York: Pergamon Press, 1964. |