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Abstract: In this paper, we study nonnegative weak solutions of the quasilinear elliptic equation
div(A(x, u,∇u)) = B(x, u,∇u), in a bounded open set Ω, whose coefficients belong to a generalized
Morrey space. We show that log(u + δ), for u a nonnegative solution and δ an arbitrary positive real
number, belongs to BMO(B), where B is an open ball contained in Ω. As a consequence, this equation
has the strong unique continuation property. For the main proof, we use approximation by smooth
functions to the weak solutions to handle the weak gradient of the composite function which involves
the weak solutions and then apply Fefferman’s inequality in generalized Morrey spaces, recently proved
by Tumalun et al. [1].
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1. Introduction

Zamboni, in his paper [2], proved that the equation Lu = -div(M∇u) + G · ∇u + Vu = 0, in an
open bounded set Ω, has the strong unique continuation property, where M is n × n bounded elliptic
matrix, G2 and V belong to the Morrey space Lq,n−2q(Rn). By this it is meant that every nonnegative
weak solution u of Lu = 0 which vanishes with infinite order at a point in Ω satisfies u = 0 in a
ball contained in Ω. Independently, Chanillo and Sawyer [3] proved the strong unique continuation
property holds for the inequality |∆u| ≤ |V ||u|, assuming V belongs to the Morrey space Lq,n−2q(Rn).
Recently, Tumalun et al. [1] generalized these results by proving the equation Lu = 0 has the strong
unique continuation property, where G2 and V belong to the generalized Morrey space Lq,Φ(Rn), where
Φ satisfies some certain conditions.

In 2001, Zamboni [4] obtained the strong unique continuation property for nonnegative solutions
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of the quasilinear elliptic equation of the form div(A(x, u,∇u)) = B(x, u,∇u), assuming that suitable
powers of the coefficients belong to the Morrey space Lq,n−2q(Rn). The special case of this Zamboni’s
result can be seen in [5], where they assume that the suitable powers of the coefficients belong to the
Lebesgue Spaces L

n
p (Rn). There are also some results regarding to the strong unique continuation

property with different setting elliptic equations or the function spaces contain coefficients of the
equations (see [6, 7] for example).

One of the important tools used by the above authors is Fefferman’s inequality (see Theorem 2.1). In
his paper [8], Fefferman proved a weighted embedding, that is now known as Fefferman’s inequality,
where the potential belongs to the Lq,n−2q(Rn). Chiarenza and Frasca [9] then proved the inequality
assuming the potential in Lq,n−pq(Rn) for 1 < p < n. For the general case, Tumalun et al. [1]
recently proved the inequality assuming the potential belongs to the generalized Morrey space Lq,Φ(Rn).
Fefferman’s inequality also holds for potential belongs to some function spaces called Stummel-Kato
classes [1, 2, 4]. However, the Morrey spaces are generally independent to the Stummel-Kato classes
and contain the Stummel-Kato classes in certain cases [1, 10, 11].

In this paper, we will prove the strong unique continuation property for nonnegative solutions of
the quasilinear elliptic equation of the form div(A(x, u,∇u)) = B(x, u,∇u), assuming that suitable
powers of the coefficients belong to the generalized Morrey space Lq,Φ(Rn). It is important to point
out that in [4–7] they started their main proof, regarding to the strong unique continuation property for
nonnegative solutions of the (degenerate) quasilinear elliptic equation, by using the test function ϕpu1−p

(for 1 < p < n) in the weak solution definition, where ϕ is a smooth function and u the nonnegative
weak solution belongs to the Sobolev space W1,p

0 (Ω). This arises two problems. The first problem is
u1−p may be undefined since u can be equal to zero in a subset of Ω which has non zero Lebesgue
measure. Meanwhile, the second problem is that there are no tools to handle the weak derivatives
of u1−p. We overcome this difficulties by adding the weak solution with an arbitrary positive real
number and approximating the weak solution with a sequence of the smooth functions (see the proof
of Theorem 4.4).

2. Morrey spaces and Fefferman’s inequality

Let 1 ≤ q < ∞ and Φ : (0,∞) → (0,∞). The generalized Morrey space Lq,Φ(Rn) is the collection
of all functions f ∈ Lq

loc(R
n) satisfying

∥ f ∥Lq,Φ := sup
x∈Rn,r>0

 1
Φ(r)

∫
|x−y|<r

| f (y)|qdy


1
q

< ∞.

This spaces were introduced by Nakai [12]. If Φ(r) = 1, then Lp,Φ(Rn) = Lp(Rn). If Φ(r) = rn, then
Lp,Φ(Rn) = L∞(Rn). If Φ(r) = rλ, where 0 < λ < n, then Lp,Φ(Rn) = Lp,λ(Rn) is the classical Morrey
space introduced in [13]. For the last few years, there are many papers which discuss the inclusion
between Morrey spaces and the applications of Morrey spaces in elliptic partial differential equations,
that can be seen for example in [14–21].

Let 1 < q < n and 1 < p < n
q . We assume the following conditions for Φ throughout this paper.
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There exists a positive K > 0 such that:

s ≤ t ⇒ Φ(s) ≤ KΦ(t) and
Φ(s)

sn ≥ K
Φ(t)

tn ,

and, for every δ > 0,
∞∫
δ

Φ(t)

t(n+1)− p
2 (q+1)

dt ≤ Kδ
p
2 (1−q).

Using the assumptions on Φ, Tumalun et al. [1] proved the following theorem.

Theorem 2.1. If V ∈ Lq,Φ(Rn), then, there exists a positive K > 0 such that for every ϕ ∈ C∞0 (Rn),∫
Rn
|V(x)||ϕ(x)|pdx ≤ K∥V∥Lq,Φ

∫
Rn
|∇ϕ(x)|pdx. (2.1)

Theorem 2.1 is called Fefferman’s inequality. Setting Φ(t) = tn−qp, t > 0 (one can check that Φ
satisfies all conditions above), then Theorem 2.1 recovers the results in [8, 9].

3. Bounded mean oscillation space

Let R > 0 and x0 ∈ R
n. The set B = B(x0,R) = {y ∈ Rn : |y − x0| < R} is called a ball in Rn. A

locally integrable function f on Rn is said to be of bounded mean oscillation on a ball B ⊆ Rn, we
write f ∈ BMO(B), if there exists a positive constant K such that for every ball B′ ⊆ B,

1
|B′|

∫
B′
| f (y) − fB′ |dy ≤ K,

where fB′ =
1
|B′ |

∫
B′

f (x)dx and |B′| is the Lebesgue measure of the ball B′ in Rn.
The following is known as the John-Nirenberg Theorem. We refer to [22] for its proof.

Theorem 3.1. Let B be a ball in Rn. If f ∈ BMO(B), then there exist β > 0 and K > 0 such that for
every ball B′ ⊆ B, ∫

B′
exp(β| f (x) − fB′ |) ≤ K|B′|.

Theorem 3.1 has an application to prove the following property which is stated in [1] without proof.
Now, we are going to proof that property for the reader convenience.

Theorem 3.2. Let f : Ω → R and B(x0, 2R) ⊆ Ω. If log( f ) ∈ BMO(B(x0,R)), then there exists M > 0
such that

∫
B(x0,R)

f (y)γdy ≤ M
∫

B(x0,
R
2 )

f (y)γdy,

for some 0 < γ ≤ 1.
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Proof. Let B = B(x0,R). By Theorem 3.1, there exist β > 0 and K > 0 such that(∫
B

exp(β| log( f ) − log( f )B|) dy
)2

≤ K2|B|2. (3.1)

Assume that β < 1. Using (3.1), we compute(∫
B

f (y)βdy
) (∫

B
f (y)−βdy

)
=

(∫
B

exp(β log( f (y)))dy
) (∫

B
exp(−β log( f (y)))dy

)
=

(∫
B

exp(β(log( f (y)) − log( f (y))B))dy
) (∫

B
exp(−β(log( f (y)) − log( f (y))B))dy

)
≤

(∫
B

exp(β| log( f (y)) − log( f (y))B|) dy
)2

≤ K2|B|2,

which yields (∫
B

f (y)−βdy
) 1

2

≤ K|B|
(∫

B
f (y)βdy

)− 1
2

. (3.2)

Applying Hölder’s inequality and (3.2), we obtain∣∣∣∣∣B (
x0,

R
2

)∣∣∣∣∣ = ∫
B(x0,

R
2 )

f (y)
β
2 f (y)−

β
2 dy

≤

∫
B(x0,

R
2 )

f (y)βdy
 1

2
∫

B(x0,
R
2 )

f (y)−βdy
 1

2

≤

∫
B(x0,

R
2 )

f (y)βdy
 1

2
(∫

B
f (y)−βdy

) 1
2

≤

∫
B(x0,

R
2 )

f (y)βdy
 1

2

K|B|
(∫

B
f (y)βdy

)− 1
2

. (3.3)

From (3.3), we have ∫
B

f (y)βdy ≤ 22nK2
∫

B(x0,
R
2 )

f (y)βdy. (3.4)

By setting γ = β, M = 22nK2, and observing the inequality (3.4), the theorem has proved. Assume
that β ≥ 1. We set γ = 1 and use (3.1) to get(∫

B
exp(γ| log( f ) − log( f )B|) dy

)2

≤

(∫
B

exp(β| log( f ) − log( f )B|) dy
)2

≤ K2|B|2. (3.5)

Processing the inequality (3.5) as previously method, we have the conclusion of the theorem. □
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4. Quasilinear elliptic equations and strong unique continuation property

Let Ω be an open bounded subset of Rn and 1 < p < ∞. Consider the following equation:div(A(x, u,∇u)) = B(x, u,∇u), in Ω,
u = 0, on ∂Ω,

(4.1)

where A = A(x, s, ξ) : Ω × R × Rn → Rn and B = B(x, s, ξ) : Ω × R × Rn → R are two continuous
functions and satisfy: 

|A(x, u, ξ)| ≤ a|ξ|p−1 + b(x)|u|p−1

|B(x, u, ξ)| ≤ c(x)|ξ|p−1 + d(x)|u|p−1

ξA(x, u, ξ) ≥ |ξ|p − d(x)|u|p,

(4.2)

for almost all x ∈ Ω, for all u ∈ R, and for all ξ ∈ Rn. In (4.2), we assume p ∈ (1, n), a is a positive
constant and b, c and d are measurable functions defined onΩwhose extensions with zero value outside
of Ω are such that

bp/(p−1), cp, d ∈ Lq,Φ(Rn). (4.3)

Definition 4.1. A function u ∈ W1,p
0 (Ω) is a weak solution of (4.1) if

∫
Ω

(A(x, u(x),∇u(x))∇ϕ(x) + B(x, u(x),∇u(x))ϕ(x)) dx = 0 (4.4)

for every ϕ ∈ C∞0 (Ω).
We remark that the integral appearing in Definition 4.1 is finite because of the assumptions (4.2)

and (4.3), Theorem 2.1.

Definition 4.2. Let w ∈ L1(Ω) and w ≥ 0 in Ω. The function w is said to vanish with infinite order at
x0 ∈ Ω if

lim
R→0

1
|B(x0,R)|k

∫
B(x0,R)

w(x)dx = 0, ∀k > 0.

One interesting example of a strictly positive function that vanishes with infinite order at some point
in its domain was given by [1]. More precisely, let Ω = B(0, 1) ⊆ Rn and w : Ω→ R defined by

w(x) =

exp(−|x|−1)|x|−(n+1), x ∈ Ω\{0}
1, x = 0.

We can show that this function vanishes with infinite order at 0 ∈ Ω.

Definition 4.3. The Eq (4.1) is said to have the strong unique continuation property in Ω if for every
nonnegative weak solution u which vanishes with infinite order at some x0 ∈ Ω satisfies u ≡ 0 in
B(x0,R) ⊆ Ω, for some R > 0.

If a function vanishes with infinity order at some x0 ∈ Ω and satisfies the doubling integrability
over some neighborhood of x0, then the function must be identically to zero in the neighborhood. This
property is stated in the following lemma.
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Lemma 4.1. Let w ∈ L1(Ω), w ≥ 0, B(x0,R) ⊆ Ω, and 0 < γ ≤ 1. Assume that there exists a constant
C > 0 satisfying

∫
B(x0,R)

w(y)γdy ≤ C
∫

B(x0,
R
2 )

w(y)γdy.

If w vanishes with infinity order at x0, then, w ≡ 0 in B(x0,R).

Proof. Assume that 0 < γ < 1. We note that the proof of γ = 1 can be done by a similar method.
According to the hypothesis, for every j ∈ N, we have∫

B(x0,R)
w(y)γdy ≤ C1

∫
B(x0,2−1R)

w(y)γdy

≤ C2
∫

B(x0,2−2R)
w(y)γdy

...

≤ C j
∫

B(x0,2− jR)
w(y)γdy.

Hölder’s inequality implies that(∫
B(x0,R)

wγ(y)dy
) 1
γ

≤ C
j
γ |B(x0, 2− jR)|

1
γ
|B(x0, 2− jR)|k

|B(x0, 2− jR)|k+1

∫
B(x0,2− jR)

w(y)dy, (4.5)

where we choose k > 0 such that C
1
γ2−nk = 1. Then, (4.5) gives(∫

B(x0,R)
wγ(y)dy

) 1
γ

≤ (vnrn)
1
γ+k(2−

n
γ ) j 1
|B(x0, 2− jR)|k+1

∫
B(x0,2− jR)

w(y)dy, (4.6)

where vn is the Lebesgue measure of unit ball in Rn. Letting j → ∞, we obtain from (4.6) that wγ ≡ 0
on B(x0,R). Therefore, w ≡ 0 on B(x0,R). □

The following theorem is the main property that will be used to prove the strong unique continuation
property of (4.1).

Theorem 4.4. Let u ≥ 0 be the weak solution of (4.1) and B(x0, 2R) ⊆ Ω. Then log(u + δ) ∈
BMO(B(x0,R)) for every δ > 0.

Proof. Let u be a non negative weak solution of (4.1) and δ > 0. Since u ∈ W1,p
0 (Ω), then there exists

a sequence {uk}k∈N in C∞0 (Ω), such that lim
k→∞
∥uk − u∥W1,p(Ω) = 0. Therefore, we may assume that uk → u

and ∇uk → ∇u a.e. in Ω. Moreover, there exist g, h ∈ Lp(Ω) such that |uk| ≤ g and |∇uk| ≤ h a.e. in Ω,
and uk + δ > u ≥ 0, for every k ∈ N (see [23]).

Let x0 ∈ Ω, B(x0, r) ⊆ B(x0,R), and p′ = p/(p − 1). Let ϕ ∈ C∞0 (B(x0, 2r)). We start to prove the
convergent of a sequence whose term is defined by∫

Ω

A(x, u(x),∇u(x))∇
(
ϕ(x)p(uk(x) + δ)1−p

)
dx, (4.7)
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for every k ∈ N. By expanding the integrand in (4.7), we get

A(x, u(x),∇u(x))∇
(
ϕ(x)p(uk(x) + δ)1−p

)
= pA(x, u(x),∇u(x))∇ϕ(x)ϕ(x)p−1(uk(x) + δ)1−p

− (p − 1)A(x, u(x),∇u(x))∇(uk(x) + δ)(uk(x) + δ)−pϕ(x)p. (4.8)

From (4.8), we have

|A(x, u(x),∇u(x))∇
(
ϕ(x)p(uk(x) + δ)1−p

)
|

≤ p|A(x, u(x),∇u(x))||∇ϕ(x)||ϕ(x)|p−1|uk(x) + δ|1−p

+ (p − 1)|A(x, u(x),∇u(x))||∇(uk(x) + δ)||uk(x) + δ|−p|ϕ(x)|p. (4.9)

Now, we will prove that the terms in the right hand side of (4.9) are bounded by an integrable
function which is independent from k ∈ N. Using assumption in (4.2), we have

p|A(x, u(x),∇u(x))||∇ϕ(x)||ϕ(x)|p−1|uk(x) + δ|1−p

≤ pδ1−p(max |∇ϕ|)(max |ϕ|)p−1a|∇u(x)|p−1

+ p(max |∇ϕ|)(max |ϕ|)p−1b(x)|u(x)|p−1|uk(x) + δ|1−p

≤ pδ1−p(max |∇ϕ|)(max |ϕ|)p−1a|∇u(x)|p−1 + p(max |∇ϕ|)(max |ϕ|)p−1b(x), (4.10)

and

(p − 1)|A(x, u(x),∇u(x))||∇(uk(x) + δ)||uk(x) + δ|−p|ϕ(x)|p

≤ (p − 1)(max |ϕ|)p|∇(uk(x) + δ)||uk(x) + δ|−pa|∇u(x)|p−1

+ (p − 1)(max |ϕ|)p|∇(uk(x) + δ)||uk(x) + δ|−pb(x)|u(x)|p−1

≤ (p − 1)δ−p(max |ϕ|)pa|∇uk(x)||∇u(x)|p−1

+ (p − 1)δ−1(max |ϕ|)p|∇uk(x)|b(x)
≤ (p − 1)δ−p(max |ϕ|)pah(x)|∇u(x)|p−1 + (p − 1)δ−1(max |ϕ|)ph(x)b(x), (4.11)

a.e. in Ω. Since bp′ ∈ Lq,Φ, which means b ∈ Lp′q(Ω) ⊆ Lp′(Ω), then the right hand side of (4.10) is
integrable, that is,∫

Ω

(
K1|∇u(x)|p−1 + K2b(x)

)
dx ≤ K1|Ω|

1
p ∥∇u∥p−1

Lp(Ω) + K2|Ω|
1
p ∥b∥Lp′ (Ω) < ∞,

which is obtained by Hölder’s inequality, where K1 = pδ1−p(max |∇ϕ|)(max |ϕ|)p−1a and K2 =

p(max |∇ϕ|)(max |ϕ|)p−1. Similarly, the right hand side of (4.11) is also integrable, that is,∫
Ω

(
K3h(x)|∇u(x)|p−1 + K4h(x)b(x)

)
dx

≤ K3∥h∥Lp(Ω)∥∇u∥p−1
Lp(Ω) + K4∥h∥Lp(Ω)∥b∥Lp′ (Ω) < ∞,

since h ∈ LpΩ, where K3 = (p − 1)δ−p(max |ϕ|)pa and K4 = (p − 1)δ−1(max |ϕ|)p. Therefore, we have
proved that the right hand side of (4.9) is bounded by the integrabel functions in the right hand side
of (4.10) and (4.11). We note that

A(x, u(x),∇u(x))∇
(
ϕ(x)p(u(x) + δ)1−p

)
AIMS Mathematics Volume 8, Issue 11, 26007–26020.
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= lim
k→∞

A(x, u(x),∇u(x))∇
(
ϕ(x)p(uk(x) + δ)1−p

)
= pA(x, u(x),∇u(x))∇ϕ(x)ϕ(x)p−1(u(x) + δ)1−p

− (p − 1)A(x, u(x),∇u(x))∇(u(x) + δ)(u(x) + δ)−pϕ(x)p. (4.12)

By using (4.8). We can use the Lebesgue Dominated Convergent Theorem (LDCT), by
observing (4.12) and using the fact that |A(x, u(x),∇u(x))∇

(
ϕ(x)p(uk(x) + δ)1−p

)
| is bounded by the

integrable functions, to obtain∫
Ω

A(x, u(x),∇u(x))∇
(
ϕ(x)p(u(x) + δ)1−p

)
dx

= lim
k→∞

∫
Ω

A(x, u(x),∇u(x))∇
(
ϕ(x)p(uk(x) + δ)1−p

)
dx

= p
∫
Ω

A(x, u(x),∇u(x))∇ϕ(x)ϕ(x)p−1(u(x) + δ)1−pdx

− (p − 1)
∫
Ω

A(x, u(x),∇u(x))∇(u(x) + δ)(u(x) + δ)−pϕ(x)pdx. (4.13)

Now, we will prove the convergent of a sequence whose term is defined by∫
Ω

B(x, u(x),∇u(x))ϕ(x)p(uk(x) + δ)1−pdx, (4.14)

for every k ∈ N. By the assumption in (4.2), we have

|B(x, u(x),∇u(x))ϕ(x)p(uk(x) + δ)1−p|

≤ c(x)|∇u(x)|p−1|ϕ(x)|p|uk(x) + δ|1−p + d(x)|u(x)|p−1|ϕ(x)|p|uk(x) + δ|1−p. (4.15)

The first and second term in the right hand side of (4.15) are respectively bounded by
K5c(x)|∇u(x)|p−1 and d(x)|ϕ(x)|p, where K5 = δ

1−p(max |ϕ|)p. Hölder’s inequality implies∫
Ω

K5c(x)|∇u(x)|p−1 ≤ K5∥c∥Lp(Ω)∥∇u∥p−1
Lp(Ω) < ∞,

since cp ∈ Lq,Φ, which means c ∈ Lpq(Ω) ⊆ Lp(Ω). Meanwhile, Fefferman’s inequality implies∫
Ω

d(x)|ϕ(x)|p ≤ K0∥d∥Lp,Φ∥∇ϕ∥
p
Lp(Ω) < ∞,

since d ∈ Lq,Φ. It is clear that

B(x, u(x),∇u(x))ϕ(x)p(u(x) + δ)1−p = lim
k→∞

B(x, u(x),∇u(x))ϕ(x)p(uk(x) + δ)1−p.

Thus, we can use the LDCT to get

lim
k→∞

∫
Ω

B(x, u(x),∇u(x))ϕ(x)p(uk(x) + δ)1−pdx

AIMS Mathematics Volume 8, Issue 11, 26007–26020.
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=

∫
Ω

B(x, u(x),∇u(x))ϕ(x)p(u(x) + δ)1−pdx. (4.16)

Using ϕp(x)(uk(x) + δ)1−p as a test function in (4.4), we have

−

∫
Ω

A(x, u(x),∇u(x))∇
(
ϕp(x)(uk(x) + δ)1−p

)
dx

=

∫
Ω

B(x, u(x),∇u(x))ϕp(x)(uk(x) + δ)1−pdx. (4.17)

Taking the limit in (4.17), then, using (4.13) and (4.16), we get

(p − 1)
∫
Ω

A(x, u(x),∇u(x))∇(u(x) + δ)(u(x) + δ)−pϕ(x)pdx

=

∫
Ω

B(x, u(x),∇u(x))ϕ(x)p(u(x) + δ)1−pdx

+ p
∫
Ω

A(x, u(x),∇u(x))∇ϕ(x)ϕ(x)p−1(u(x) + δ)1−pdx. (4.18)

By using (4.2), the left hand side of (4.18) estimates as follows

(p − 1)
∫
Ω

A(x, u(x),∇u(x))∇(u(x) + δ)(u(x) + δ)−pϕ(x)pdx

≥ (p − 1)
∫
Ω

|∇(u(x) + δ)|p|u(x) + δ|−p|ϕ(x)|pdx

− (p − 1)
∫
Ω

d(x)|u(x)|p|u(x) + δ|−p|ϕ(x)|pdx

≥ (p − 1)
∫
Ω

|∇ log(u(x) + δ)|p|ϕ(x)|pdx − (p − 1)
∫
Ω

d(x)|ϕ(x)|pdx. (4.19)

Substituting (4.19) to (4.18) gives us

(p − 1)
∫
Ω

|∇ log(u(x) + δ)|p|ϕ(x)|pdx

≤ (p − 1)
∫
Ω

d(x)|ϕ(x)|pdx +
∫
Ω

B(x, u(x),∇u(x))ϕ(x)p(u(x) + δ)1−pdx

+ p
∫
Ω

A(x, u(x),∇u(x))∇ϕ(x)ϕ(x)p−1(u(x) + δ)1−pdx. (4.20)

Let ϵ > 0 be fixed latter. By using (4.2), the second term in the right hand side of (4.20) is estimated
as follows ∫

Ω

B(x, u(x),∇u(x))ϕ(x)p(u(x) + δ)1−pdx

≤

∫
Ω

c(x)|∇u(x)|p−1|ϕ(x)|p|u(x) + δ|1−pdx +
∫
Ω

d(x)|u(x)|p−1|ϕ(x)|p|u(x) + δ|1−pdx

≤

∫
Ω

c(x)|∇(u(x) + δ)|p−1|ϕ(x)|p|u(x) + δ|1−pdx +
∫
Ω

d(x)|ϕ(x)|pdx. (4.21)
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Young’s inequality implies∫
Ω

c(x)|∇(u(x) + δ)|p−1|ϕ(x)|p|u(x) + δ|1−pdx

≤ ϵ

∫
Ω

c(x)p|ϕ(x)|pdx + K6(ϵ)
∫
Ω

|∇ log(u(x) + δ)|p|ϕ(x)|pdx, (4.22)

where K6 = K6(ϵ) = (ϵ−
1

p−1 p−
1

p−1 )( p−1
p ). We infer from (4.21) and (4.22) that∫

Ω

B(x, u(x),∇u(x))ϕ(x)p(u(x) + δ)1−pdx

≤ ϵ

∫
Ω

c(x)p|ϕ(x)|pdx + K6(ϵ)
∫
Ω

|∇ log(u(x) + δ)|p|ϕ(x)|pdx +
∫
Ω

d(x)|ϕ(x)|pdx. (4.23)

We remain to estimate the last term of (4.20). We have from (4.2) that

p
∫
Ω

A(x, u(x),∇u(x))∇ϕ(x)ϕ(x)p−1(u(x) + δ)1−pdx

≤ pa
∫
Ω

|∇u(x)|p−1|∇ϕ(x)||ϕ(x)|p−1|u(x) + δ|1−pdx

+ p
∫
Ω

b(x)|u(x)|p−1|∇ϕ(x)||ϕ(x)|p−1|u(x) + δ|1−pdx

≤ pa
∫
Ω

|∇u(x)|p−1|∇ϕ(x)||ϕ(x)|p−1|u(x) + δ|1−pdx

+ p
∫
Ω

b(x)|∇ϕ(x)||ϕ(x)|p−1dx. (4.24)

Again, Young’s inequality implies

pa
∫
Ω

|∇u(x)|p−1|∇ϕ(x)||ϕ(x)|p−1|u(x) + δ|1−pdx

≤ ϵ(pa)p
∫
Ω

|∇ϕ(x)|pdx + K6(ϵ)
∫
Ω

|∇(u(x) + δ)|p|u(x) + δ|−p|ϕ(x)|pdx

= ϵ(pa)p
∫
Ω

|∇ϕ(x)|pdx + K6(ϵ)
∫
Ω

|∇ log(u(x) + δ)|p|ϕ(x)|pdx, (4.25)

and

p
∫
Ω

b(x)|∇ϕ(x)||ϕ(x)|p−1dx ≤ ϵpp
∫
Ω

|∇ϕ(x)|pdx + K6(ϵ)
∫
Ω

b(x)
p

p−1 |ϕ(x)|pdx. (4.26)

Substituting (4.25) and (4.26) into (4.24) yields

p
∫
Ω

A(x, u(x),∇u(x))∇ϕ(x)ϕ(x)p−1(u(x) + δ)1−pdx

≤ ϵ(pa)p
∫
Ω

|∇ϕ(x)|pdx + K6(ϵ)
∫
Ω

|∇ log(u(x) + δ)|p|ϕ(x)|pdx
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+ ϵpp
∫
Ω

|∇ϕ(x)|pdx + K6(ϵ)
∫
Ω

b(x)
p

p−1 |ϕ(x)|pdx

≤ (ϵ(pa)p + ϵpp)
∫
Ω

|∇ϕ(x)|pdx + K6(ϵ)
∫
Ω

|∇ log(u(x) + δ)|p|ϕ(x)|pdx

+ K6(ϵ)
∫
Ω

b(x)
p

p−1 |ϕ(x)|pdx. (4.27)

Substituting (4.23) and (4.27) into (4.20), we have

(p − 1)
∫
Ω

|∇ log(u(x) + δ)|p|ϕ(x)|pdx

≤ ϵ

∫
Ω

c(x)p|ϕ(x)|pdx + 2K6(ϵ)
∫
Ω

|∇ log(u(x) + δ)|p|ϕ(x)|pdx + p
∫
Ω

d(x)|ϕ(x)|pdx

+ (ϵ(pa)p + ϵpp)
∫
Ω

|∇ϕ(x)|pdx + K6(ϵ)
∫
Ω

b(x)
p

p−1 |ϕ(x)|pdx. (4.28)

Choose ϵ = ( 2
p )p−1 2

p , and set K7 = p − 1 − 2K6(ϵ), K8 = ( 2
p )p−1 2

p , K9 = p, and K10 = ϵ(pa)p + ϵpp.
Note that K7 > 0. The inequality (4.28) reduces to

K7

∫
Ω

|∇ log(u(x) + δ)|p|ϕ(x)|pdx

≤ K8

∫
Ω

c(x)p|ϕ(x)|pdx + K9

∫
Ω

d(x)|ϕ(x)|pdx + K10

∫
Ω

|∇ϕ(x)|pdx

+ K6

∫
Ω

b(x)
p

p−1 |ϕ(x)|pdx. (4.29)

By applying Theorem 2.1 in the right hand side of (4.29), we get

K7

∫
Ω

|∇ log(u(x) + δ)|p|ϕ(x)|pdx ≤ K11

∫
Ω

|∇ϕ(x)|pdx, (4.30)

where K11 = K8K∥cp∥Lq,Φ + K9K∥d∥Lq,Φ + K10 + K6K∥bp′∥Lq,Φ . Now, we choose ϕ such that ϕ = 1 in
B(x0, r), 0 ≤ ϕ ≤ 1, and |∇ϕ| ≤ 2/r. Then, by (4.30), we have∫

B(x0,r)
|∇ log(u(x) + δ)|pdx ≤

2pK11

K7rp

∫
B(x0,2r)

1dx = K12
|B(x0, r)|

rp , (4.31)

where K12 =
2n2pK11

K7
. By Hölder’s inequality and (4.31), we obtain

∫
B(x0,r)

|∇ log(u(x) + δ)|dx ≤
(∫

B(x0,r)
|∇ log(u(x) + δ)|pdx

) 1
p
(∫

B(x0,r)
1dx

)1− 1
p

≤

(
K12
|B(x0, r)|

rp

) 1
p

|B(x0, r)|1−
1
p

= K13
|B(x0, r)|

r
, (4.32)
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where K13 = K
1
p

12. We infer from Poincaré’s inequality and (4.32) that∫
B(x0,r)

∣∣∣log(u(x) + δ) − log(u + δ)B(x0,r)

∣∣∣ dx ≤ K14r
∫

B(x0,r)
|∇ log(u(x) + δ)|dx

≤ K14rK13
|B(x0, r)|

r
= K15|B(x0, r)|, (4.33)

where K14 = K14(n) is the positive constant which appears in the Poincaré inequality and K15 = K14K13.
Since (4.33) holds for arbitrary B(x0, r) ⊆ B(x0,R), then, log(u + δ) ∈ BMO(B(x0,R)). □

Theorem 4.4 combining with Theorem 3.2 and Lemma 4.1 give us the strong unique continuation
property of the Eq (4.1). This property is stated and proved in the next theorem.

Theorem 4.5. The Eq (4.1) has the strong unique continuation property in Ω.

Proof. Let x0 ∈ Ω, B(x0, 2R) ⊆ Ω, u be a non negative weak solution of (4.1) which vanishes with
infinite order at x0, and {δ j} be a sequence of positive real numbers such that δ j → 0 as j → ∞.
According to Theorem 4.4, we have log(u + δ j) ∈ BMO(B(x0,R)). Applying Theorem 3.2, there exists
M > 0 such that ∫

B(x0,R)
(u(y) + δ j)γdy ≤ M

∫
B(x0,

R
2 )

(u(y) + δ j)γdy,

for some 0 < γ ≤ 1. Letting j→ ∞ in the last inequality, then∫
B(x0,R)

u(y)γdy ≤ M
∫

B(x0,
R
2 )

u(y)γdy.

From Lemma 4.1 we conclude that w ≡ 0 in B(x0,R). This completes the proof. □

5. Conclusions

The strong unique continuation property for the nonnegative weak solutions of the quasilinear
elliptic Eq (4.1), where the suitable powers of the coefficients belong to some generalized Morrey
spaces, is proved in this paper. We provide the rigourous proof that can be used in many similar
situations and may be useful to other audience.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

We would like to thank the editors and reviewers for their useful suggestions.
This research is supported by DRTPM Ministry of Education, Culture, Research and Technology,

Republic of Indonesia in 2023 (contract number 141/E5/PG.02.00.PL/2023) and Universitas Negeri
Manado in 2023 (contract number 373/UN41.9/TU/2023).

AIMS Mathematics Volume 8, Issue 11, 26007–26020.



26019

Conflict of interest

The authors declare no conflict of interest.

References

1. N. K. Tumalun, D. I. Hakim, H. Gunawan, Some function spaces and their applications to
elliptic partial differential equations, Mat. Vesn., 75 (2023), 71–86. https://doi.org/10.57016/MV-
cdyn1783

2. P. Zamboni, Some function spaces and elliptic partial differential equations, Le Matematiche, 42
(1987), 171–178.

3. S. Chanillo, E. Sawyer, Unique continuation for ∆ + v and the C. Fefferman-Phong class, T. Am.
Math. Soc., 318 (1990), 275–300. http://doi.org/10.2307/2001239

4. P. Zamboni, Unique continuation for non-negative solutions of quasilinear elliptic equations, B.
Aust. Math. Soc., 64 (2001), 149–156. https://doi.org/10.1017/S0004972700019766

5. R. E. Castillo, H. Rafeiro, E. M. Rojas, Unique continuation of quasilinear elliptic equation on
Lebesgue spaces Lp, Azerbaijan J. Math., 11 (2021), 136–153.

6. G. Di Fazio, P. Zamboni, Unique continuation for positive solutions of degenerate elliptic
equations, Math. Nachr., 283 (2010), 994–999. https://doi.org/10.1002/mana.200710064

7. G. Di Fazio, M. S. Fanciullo, P. Zamboni, Unique continuation for degenerate quasilinear elliptic
equations and sum operators, AAAP: Physical, Mathematical and Natural Sciences, 98 (2020), A5.
https://doi.org/10.1478/AAPP.98S2A5

8. C. L. Fefferman, The uncertainty principle, B. Am. Math. Soc., 9 (1983), 129–206.

9. F. Chiarenza, M. Frasca, A remark on a paper by C. Fefferman, P. Am. Math. Soc., 108 (1990),
407–409. https://doi.org/10.2307/2048289

10. N. Tumalun, H. Gunawan, Morrey spaces are embedded between weak Morrey
spaces and Stummel classes, J. Indones. Math. Soc., 25 (2019), 203–209.
https://doi.org/10.22342/jims.25.3.817.203-209

11. N. K. Tumalun, D. I. Hakim, H. Gunawan, Inclusion between generalized Stummel classes and
other function spaces, Math. Inequal. Appl., 23 (2020), 547–562. http://doi.org/10.7153/mia-2020-
23-45

12. E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the
Riesz potentials on generalized Morrey spaces, Math. Nachr., 166 (1994), 96–103.
https://doi.org/10.1002/mana.19941660108

13. C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, T. Am. Math.
Soc., 43 (1938), 126–166. https://doi.org/10.2307/1989904

14. P. E. A. Tuerah, N. K. Tumalun, Some notes on the inclusion between Morrey spaces, J. Math.
Inequal., 16 (2022), 355–362. http://doi.org/10.7153/jmi-2022-16-26

15. N. K. Tumalun, P. E. A. Tuerah, A regularity of the weak solution gradient of the Dirichlet problem
for divergent form elliptic equations in Morrey spaces, Aust. J. Math. Anal. Appl, 18 (2021), 14.

AIMS Mathematics Volume 8, Issue 11, 26007–26020.

http://dx.doi.org/https://doi.org/10.57016/MV-cdyn1783
http://dx.doi.org/https://doi.org/10.57016/MV-cdyn1783
http://dx.doi.org/http://doi.org/10.2307/2001239
http://dx.doi.org/https://doi.org/10.1017/S0004972700019766
http://dx.doi.org/https://doi.org/10.1002/mana.200710064
http://dx.doi.org/https://doi.org/10.1478/AAPP.98S2A5
http://dx.doi.org/https://doi.org/10.2307/2048289
http://dx.doi.org/https://doi.org/10.22342/jims.25.3.817.203-209
http://dx.doi.org/http://doi.org/10.7153/mia-2020-23-45
http://dx.doi.org/http://doi.org/10.7153/mia-2020-23-45
http://dx.doi.org/https://doi.org/10.1002/mana.19941660108
http://dx.doi.org/https://doi.org/10.2307/1989904
http://dx.doi.org/http://doi.org/10.7153/jmi-2022-16-26


26020

16. G. R. Cirmi, S. D’Asero, S. Leonardi, Morrey estimates for a class of noncoercive
elliptic systems with VMO-coefficients, Rend. Lincei Mat. Appl., 32 (2021), 317–334.
http://doi.org/10.4171/RLM/938

17. N. K. Tumalun, P. E. A. Tuerah, A regularity of Dirichlet problem with the data
belongs to generalized Morrey spaces, AIP Conference Proceedings, 2614 (2023), 040057.
https://doi.org/10.1063/5.0125918

18. N. K. Tumalun, An existence and uniqueness of the weak solution of the Dirichlet
problem with the data in Morrey spaces, Barekeng: J. Math. App., 16 (2022), 829–834.
https://doi.org/10.30598/barekengvol16iss3pp829-834

19. R. P. Agarwal, A. M. Alghamdi, S. Gala, M. A. Ragusa, On the regularity criterion on one
velocity component for the micropolar fluid equations, Math. Model. Anal., 28 (2023), 271–284.
https://doi.org/10.3846/mma.2023.15261

20. A. Scapellato, Riesz potential, Marcinkiewicz integral and their commutators on mixed Morrey
spaces, Filomat, 34 (2020), 931–944. https://doi.org/10.2298/FIL2003931S

21. L. W. Wang, The commutators of multilinear maximal and fractional-type operators on
central Morrey spaces with variable exponent, J. Funct. Space., 2022 (2022), 4875460.
https://doi.org/10.1155/2022/4875460
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