Research article

On a common fixed point theorem in vector-valued $ b $-metric spaces: Its consequences and application

  • Received: 07 July 2023 Revised: 28 August 2023 Accepted: 28 August 2023 Published: 08 September 2023
  • MSC : 45J05, 47H10, 54H25

  • We introduce a Ćirić type contraction principle in a vector-valued $ b $-metric space that generalizes Perov's contraction principle. We investigate the possible conditions on the mappings $ W, E:G\rightarrow G $ ($ G $ is a non-empty set), for which these mappings admit a unique common fixed point in $ G $ subject to a nonlinear operator $ {\bf F}:\mathbb{P}^{m} \rightarrow \mathbb{R}^{m} $. We illustrate the hypothesis of our findings with examples. We consider an infectious disease model represented by the system of delay integro-differential equations and apply the obtained fixed point theorem to show the existence of a solution to this model.

    Citation: Muhammad Nazam, Aftab Hussain, Asim Asiri. On a common fixed point theorem in vector-valued $ b $-metric spaces: Its consequences and application[J]. AIMS Mathematics, 2023, 8(11): 26021-26044. doi: 10.3934/math.20231326

    Related Papers:

  • We introduce a Ćirić type contraction principle in a vector-valued $ b $-metric space that generalizes Perov's contraction principle. We investigate the possible conditions on the mappings $ W, E:G\rightarrow G $ ($ G $ is a non-empty set), for which these mappings admit a unique common fixed point in $ G $ subject to a nonlinear operator $ {\bf F}:\mathbb{P}^{m} \rightarrow \mathbb{R}^{m} $. We illustrate the hypothesis of our findings with examples. We consider an infectious disease model represented by the system of delay integro-differential equations and apply the obtained fixed point theorem to show the existence of a solution to this model.



    加载中


    [1] M. U. Ali, T. Kamran, M. Postolache, Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem, Nonlinear Anal. Model., 22 (2017), 17–30. https://doi.org/10.15388/NA.2017.1.2 doi: 10.15388/NA.2017.1.2
    [2] I. Altun, M. Olgun, Fixed point results for Perov type $F$-contractions and an application, J. Fixed Point Theory Appl., 22 (2020), 46. https://doi.org/10.1007/s11784-020-00779-4 doi: 10.1007/s11784-020-00779-4
    [3] S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [4] M. Boriceanu, Fixed point theory on spaces with vector valued $b$-metrics, Demonstr. Math., 42 (2009), 825–836. https://doi.org/10.1515/dema-2009-0415 doi: 10.1515/dema-2009-0415
    [5] D. W. Boyd, J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 458–464. https://doi.org/10.2307/2035677 doi: 10.2307/2035677
    [6] F. Brauer, P. Driessche, J. Wu, Mathematical epidemiology, 1945.
    [7] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241–251. https://doi.org/10.2307/1999724 doi: 10.2307/1999724
    [8] S. Chandok, S. Radenović, Existence of solution for orthogonal $F$-contraction mappings via Picard-Jungck sequences, J. Anal., 30 (2022), 677–690. https://doi.org/10.1007/s41478-021-00362-1 doi: 10.1007/s41478-021-00362-1
    [9] Lj. B. Ćiríc, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. https://doi.org/10.2307/2040075 doi: 10.2307/2040075
    [10] M. Cvetković, The relation between $F$-contraction and Meir-Keeler contraction, RACSAM Rev. R. Acad. A, 117 (2023), 39. https://doi.org/10.1007/s13398-022-01373-8 doi: 10.1007/s13398-022-01373-8
    [11] S. Czerwik, Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti Sem. Math. Fis. Univ. Modena, 46 (1998), 263–276.
    [12] M. Cosentino, P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers type, Filomat, 28 (2014), 715–722. https://doi.org/10.2298/FIL1404715C doi: 10.2298/FIL1404715C
    [13] S. Hakan, A new kind of $F$-contraction and some best proximity point results for such mappings with an application, Turk. J. Math., 46 (2022), 2151–2166. https://doi.org/10.55730/1300-0098.3260 doi: 10.55730/1300-0098.3260
    [14] G. E. Hary, T. D. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16 (1973), 201–206. https://doi.org/10.4153/CMB-1973-036-0 doi: 10.4153/CMB-1973-036-0
    [15] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359–1373.
    [16] E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theor. Nonlinear Anal. Appl., 2 (2018), 85–87. https://doi.org/10.31197/atnaa.431135 doi: 10.31197/atnaa.431135
    [17] E. Karapinar, A. Fulga, R. P. Agarwal, A survey: F-contractions with related fixed point results, J. Fixed Point Theory Appl., 22 (2020), 69. https://doi.org/10.1007/s11784-020-00803-7 doi: 10.1007/s11784-020-00803-7
    [18] M. A. Khamsi, Generalized metric spaces: A survey, J. Fixed Point Theory Appl., 17 (2015), 455–475. https://doi.org/10.1007/s11784-015-0232-5 doi: 10.1007/s11784-015-0232-5
    [19] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329. https://doi.org/10.1016/0022-247X(69)90031-6 doi: 10.1016/0022-247X(69)90031-6
    [20] G. Minak, A. Helvaci, I. Altun, Ćirić type generalized $F$-contractions on complete metric spaces and fixed point results, Filomat, 28 (2014), 1143–1151. https://doi.org/10.2298/FIL1406143M doi: 10.2298/FIL1406143M
    [21] M. Nazam, H. Aydi, M. S. Noorani, H. Qawaqneh, Existence of fixed points of four maps for a new generalized $F$-contraction and an application, J. Funct. Space., 2019 (2019), 5980312. https://doi.org/10.1155/2019/5980312 doi: 10.1155/2019/5980312
    [22] M. Nazam, N. Hussain, A. Hussain, M. Arshad, Fixed point theorems for weakly admissible pair of $F$-contractions with application, Nonlinear Anal. Model., 24 (2019), 898–918. https://doi.org/10.15388/NA.2019.6.4 doi: 10.15388/NA.2019.6.4
    [23] M. Nazam, H. Aydi, C. Park, M. Arshad, Some variants of Wardowski fixed point theorem, Adv. Differ. Equ., 2021 (2021), 485. https://doi.org/10.1186/s13662-021-03640-1 doi: 10.1186/s13662-021-03640-1
    [24] M. Nazam, M. Arshad, M. Postolache, Coincidence and common fixed point theorems for four mappings satisfying $(\alpha_s, F)$-contraction, Nonlinear Anal. Model., 23 (2018), 664–690. https://doi.org/10.15388/NA.2018.5.3 doi: 10.15388/NA.2018.5.3
    [25] H. K. Pathaka, R. Rodríguez-López, Existence and approximation of solutions to nonlinear hybrid ordinary differential equations, Appl. Math. Lett., 39 (2015), 101–106. https://doi.org/10.1016/j.aml.2014.08.018 doi: 10.1016/j.aml.2014.08.018
    [26] A. I. Perov, A. V. Kibenko, On a certain general method for investigation of boundary value problems, Izv. Akad. Nauk SSSR Ser. Mat., 30 (1966), 249–264.
    [27] E. Rakotch, A note on contractive mappings, Proc. Am. Math. Soc., 13 (1962), 459–465. https://doi.org/10.1090/S0002-9939-1962-0148046-1 doi: 10.1090/S0002-9939-1962-0148046-1
    [28] S. Reich, Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121–124. https://doi.org/10.4153/CMB-1971-024-9 doi: 10.4153/CMB-1971-024-9
    [29] S. Satit, A. Pinya, A remark on Secelean-Wardowski's fixed point theorems, Fixed Point Theory Algorithms Sci. Eng., 2022 (2022), 7. https://doi.org/10.1186/s13663-022-00717-8 doi: 10.1186/s13663-022-00717-8
    [30] T. Suzuki, Fixed point theorems for single- and set-valued $F$-contractions in $b$-metric spaces, J. Fixed Point Theory Appl., 20 (2018), 35. https://doi.org/10.1007/s11784-018-0519-4 doi: 10.1007/s11784-018-0519-4
    [31] R. S. Varga, Matrix iterative analysis, Springer Series in Computational Mathematics, 2000.
    [32] D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1080) PDF downloads(98) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog