We introduce a Ćirić type contraction principle in a vector-valued $ b $-metric space that generalizes Perov's contraction principle. We investigate the possible conditions on the mappings $ W, E:G\rightarrow G $ ($ G $ is a non-empty set), for which these mappings admit a unique common fixed point in $ G $ subject to a nonlinear operator $ {\bf F}:\mathbb{P}^{m} \rightarrow \mathbb{R}^{m} $. We illustrate the hypothesis of our findings with examples. We consider an infectious disease model represented by the system of delay integro-differential equations and apply the obtained fixed point theorem to show the existence of a solution to this model.
Citation: Muhammad Nazam, Aftab Hussain, Asim Asiri. On a common fixed point theorem in vector-valued $ b $-metric spaces: Its consequences and application[J]. AIMS Mathematics, 2023, 8(11): 26021-26044. doi: 10.3934/math.20231326
We introduce a Ćirić type contraction principle in a vector-valued $ b $-metric space that generalizes Perov's contraction principle. We investigate the possible conditions on the mappings $ W, E:G\rightarrow G $ ($ G $ is a non-empty set), for which these mappings admit a unique common fixed point in $ G $ subject to a nonlinear operator $ {\bf F}:\mathbb{P}^{m} \rightarrow \mathbb{R}^{m} $. We illustrate the hypothesis of our findings with examples. We consider an infectious disease model represented by the system of delay integro-differential equations and apply the obtained fixed point theorem to show the existence of a solution to this model.
[1] | M. U. Ali, T. Kamran, M. Postolache, Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem, Nonlinear Anal. Model., 22 (2017), 17–30. https://doi.org/10.15388/NA.2017.1.2 doi: 10.15388/NA.2017.1.2 |
[2] | I. Altun, M. Olgun, Fixed point results for Perov type $F$-contractions and an application, J. Fixed Point Theory Appl., 22 (2020), 46. https://doi.org/10.1007/s11784-020-00779-4 doi: 10.1007/s11784-020-00779-4 |
[3] | S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[4] | M. Boriceanu, Fixed point theory on spaces with vector valued $b$-metrics, Demonstr. Math., 42 (2009), 825–836. https://doi.org/10.1515/dema-2009-0415 doi: 10.1515/dema-2009-0415 |
[5] | D. W. Boyd, J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 458–464. https://doi.org/10.2307/2035677 doi: 10.2307/2035677 |
[6] | F. Brauer, P. Driessche, J. Wu, Mathematical epidemiology, 1945. |
[7] | J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241–251. https://doi.org/10.2307/1999724 doi: 10.2307/1999724 |
[8] | S. Chandok, S. Radenović, Existence of solution for orthogonal $F$-contraction mappings via Picard-Jungck sequences, J. Anal., 30 (2022), 677–690. https://doi.org/10.1007/s41478-021-00362-1 doi: 10.1007/s41478-021-00362-1 |
[9] | Lj. B. Ćiríc, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. https://doi.org/10.2307/2040075 doi: 10.2307/2040075 |
[10] | M. Cvetković, The relation between $F$-contraction and Meir-Keeler contraction, RACSAM Rev. R. Acad. A, 117 (2023), 39. https://doi.org/10.1007/s13398-022-01373-8 doi: 10.1007/s13398-022-01373-8 |
[11] | S. Czerwik, Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti Sem. Math. Fis. Univ. Modena, 46 (1998), 263–276. |
[12] | M. Cosentino, P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers type, Filomat, 28 (2014), 715–722. https://doi.org/10.2298/FIL1404715C doi: 10.2298/FIL1404715C |
[13] | S. Hakan, A new kind of $F$-contraction and some best proximity point results for such mappings with an application, Turk. J. Math., 46 (2022), 2151–2166. https://doi.org/10.55730/1300-0098.3260 doi: 10.55730/1300-0098.3260 |
[14] | G. E. Hary, T. D. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16 (1973), 201–206. https://doi.org/10.4153/CMB-1973-036-0 doi: 10.4153/CMB-1973-036-0 |
[15] | J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359–1373. |
[16] | E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theor. Nonlinear Anal. Appl., 2 (2018), 85–87. https://doi.org/10.31197/atnaa.431135 doi: 10.31197/atnaa.431135 |
[17] | E. Karapinar, A. Fulga, R. P. Agarwal, A survey: F-contractions with related fixed point results, J. Fixed Point Theory Appl., 22 (2020), 69. https://doi.org/10.1007/s11784-020-00803-7 doi: 10.1007/s11784-020-00803-7 |
[18] | M. A. Khamsi, Generalized metric spaces: A survey, J. Fixed Point Theory Appl., 17 (2015), 455–475. https://doi.org/10.1007/s11784-015-0232-5 doi: 10.1007/s11784-015-0232-5 |
[19] | A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329. https://doi.org/10.1016/0022-247X(69)90031-6 doi: 10.1016/0022-247X(69)90031-6 |
[20] | G. Minak, A. Helvaci, I. Altun, Ćirić type generalized $F$-contractions on complete metric spaces and fixed point results, Filomat, 28 (2014), 1143–1151. https://doi.org/10.2298/FIL1406143M doi: 10.2298/FIL1406143M |
[21] | M. Nazam, H. Aydi, M. S. Noorani, H. Qawaqneh, Existence of fixed points of four maps for a new generalized $F$-contraction and an application, J. Funct. Space., 2019 (2019), 5980312. https://doi.org/10.1155/2019/5980312 doi: 10.1155/2019/5980312 |
[22] | M. Nazam, N. Hussain, A. Hussain, M. Arshad, Fixed point theorems for weakly admissible pair of $F$-contractions with application, Nonlinear Anal. Model., 24 (2019), 898–918. https://doi.org/10.15388/NA.2019.6.4 doi: 10.15388/NA.2019.6.4 |
[23] | M. Nazam, H. Aydi, C. Park, M. Arshad, Some variants of Wardowski fixed point theorem, Adv. Differ. Equ., 2021 (2021), 485. https://doi.org/10.1186/s13662-021-03640-1 doi: 10.1186/s13662-021-03640-1 |
[24] | M. Nazam, M. Arshad, M. Postolache, Coincidence and common fixed point theorems for four mappings satisfying $(\alpha_s, F)$-contraction, Nonlinear Anal. Model., 23 (2018), 664–690. https://doi.org/10.15388/NA.2018.5.3 doi: 10.15388/NA.2018.5.3 |
[25] | H. K. Pathaka, R. Rodríguez-López, Existence and approximation of solutions to nonlinear hybrid ordinary differential equations, Appl. Math. Lett., 39 (2015), 101–106. https://doi.org/10.1016/j.aml.2014.08.018 doi: 10.1016/j.aml.2014.08.018 |
[26] | A. I. Perov, A. V. Kibenko, On a certain general method for investigation of boundary value problems, Izv. Akad. Nauk SSSR Ser. Mat., 30 (1966), 249–264. |
[27] | E. Rakotch, A note on contractive mappings, Proc. Am. Math. Soc., 13 (1962), 459–465. https://doi.org/10.1090/S0002-9939-1962-0148046-1 doi: 10.1090/S0002-9939-1962-0148046-1 |
[28] | S. Reich, Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121–124. https://doi.org/10.4153/CMB-1971-024-9 doi: 10.4153/CMB-1971-024-9 |
[29] | S. Satit, A. Pinya, A remark on Secelean-Wardowski's fixed point theorems, Fixed Point Theory Algorithms Sci. Eng., 2022 (2022), 7. https://doi.org/10.1186/s13663-022-00717-8 doi: 10.1186/s13663-022-00717-8 |
[30] | T. Suzuki, Fixed point theorems for single- and set-valued $F$-contractions in $b$-metric spaces, J. Fixed Point Theory Appl., 20 (2018), 35. https://doi.org/10.1007/s11784-018-0519-4 doi: 10.1007/s11784-018-0519-4 |
[31] | R. S. Varga, Matrix iterative analysis, Springer Series in Computational Mathematics, 2000. |
[32] | D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94 |