Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article

Applications and theorem on common fixed point in complex valued b-metric space

  • Received: 06 February 2019 Accepted: 18 July 2019 Published: 31 July 2019
  • MSC : 47H10

  • In this paper, a common fixed point theorem for four self-mappings satisfying rational contraction has been proved in complex valued b-metric space. Then, examples are provided to verify the effectiveness and usability of our main results. Finally, we validate our results by proving both the existence and the uniqueness of a common solution of the system of Urysohn integral equations and the existence of a unique solution for linear equations system.

    Citation: Khaled Berrah, Abdelkrim Aliouche, Taki eddine Oussaeif. Applications and theorem on common fixed point in complex valued b-metric space[J]. AIMS Mathematics, 2019, 4(3): 1019-1033. doi: 10.3934/math.2019.3.1019

    Related Papers:

    [1] Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977
    [2] Amer Hassan Albargi . Common fixed point theorems on complex valued extended b-metric spaces for rational contractions with application. AIMS Mathematics, 2023, 8(1): 1360-1374. doi: 10.3934/math.2023068
    [3] Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Hassen Aydi, Manuel De La Sen . Rational contractions on complex-valued extended b-metric spaces and an application. AIMS Mathematics, 2023, 8(2): 3338-3352. doi: 10.3934/math.2023172
    [4] Saif Ur Rehman, Iqra Shamas, Shamoona Jabeen, Hassen Aydi, Manuel De La Sen . A novel approach of multi-valued contraction results on cone metric spaces with an application. AIMS Mathematics, 2023, 8(5): 12540-12558. doi: 10.3934/math.2023630
    [5] Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817
    [6] Budi Nurwahyu, Naimah Aris, Firman . Some results in function weighted b-metric spaces. AIMS Mathematics, 2023, 8(4): 8274-8293. doi: 10.3934/math.2023417
    [7] Nihal Taş, Irshad Ayoob, Nabil Mlaiki . Some common fixed-point and fixed-figure results with a function family on Sb-metric spaces. AIMS Mathematics, 2023, 8(6): 13050-13065. doi: 10.3934/math.2023657
    [8] Zili Shi, Huaping Huang, Bessem Samet, Yuxin Wang . On fixed point theorems for ordered contractions with applications. AIMS Mathematics, 2025, 10(3): 5173-5196. doi: 10.3934/math.2025238
    [9] Mohamed Gamal, Watcharaporn Cholamjiak . Fixed point theorems for weakly compatible mappings under implicit relations in quaternion valued G-metric spaces. AIMS Mathematics, 2021, 6(3): 2048-2058. doi: 10.3934/math.2021125
    [10] Muhammad Nazam, Aftab Hussain, Asim Asiri . On a common fixed point theorem in vector-valued b-metric spaces: Its consequences and application. AIMS Mathematics, 2023, 8(11): 26021-26044. doi: 10.3934/math.20231326
  • In this paper, a common fixed point theorem for four self-mappings satisfying rational contraction has been proved in complex valued b-metric space. Then, examples are provided to verify the effectiveness and usability of our main results. Finally, we validate our results by proving both the existence and the uniqueness of a common solution of the system of Urysohn integral equations and the existence of a unique solution for linear equations system.


    Banach contraction fundamental was an authority and a reference for many researchers through the last decades in the field of nonlinear analysis, it was used to establish the existence of a unique solution for a nonlinear integral equation [4]. In 1989, Bakthtin [3] initiated the motif of b-metric space after that Czerwik in [7,8] defined it such as current structure which is considere generalization of metric spaces. The complex valued b-metric spaces concept was introduced in 2013 by Rao et al. [13], which was more general than the well-known complex valued metric spaces that were introduced in 2011 by Azam et al. [2] which proved some common fixed point theorems for mapping satisfying rational inequalities which are not worthwhile in cone metric spaces [1,10,11,16]. Sundry authors have studied and proved the fixed point results for mappings with satisfying different type contraction conditions in the framework of complex valued metric (b-metric) spaces(see [5,6,9,13,17]).

    The main purpose of this paper is to present common fixed point results of four self-mappings to satisfy a rational inequality on complex valued b-metric spaces. and we establish the existence and the uniqueness of a common solution for the system of Urysohn integral equations. Also we prove the existence and the uniqueness of solution for linear system in complete complex valued b-metric space. In [2] the authors introduced the notion of complex-valued metric space and obtained a common fixed-point theorems of contraction type mappings using the partial inequality in a complex-valued metric space.

    To do so, let us recall a natural relation on C, the set of complex numbers as follows: let z1,z2 in C

    z1z2Re(z1)Re(z2)andIm(z1)Im(z2)z1<z2Re(z1)<Re(z2)andIm(z1)<Im(z2)

    In [2], the authors defined a partial order relation z1z2 on C as follows:

    z1z2if and only ifRe(z1)Re(z2)andIm(z1)Im(z2).

    As a result, one can infer that z1z2 if one of the following conditions is satisfied:

    (ⅰ) Re(z1)=Re(z2), Im(z1)<Im(z2),

    (ⅱ) Re(z1)<Re(z2), Im(z1)=Im(z2),

    (ⅲ) Re(z1)<Re(z2), Im(z1)<Im(z2),

    (ⅳ) Re(z1)=Re(z2), Im(z1)=Im(z2).

    In (ⅰ), (ⅱ) and (ⅲ) we have |z1| < |z2|. In (ⅳ) we have |z1| = |z2|, so that, |z1| |z2| In particular, z1z2 if z1z2 and one of (ⅰ), (ⅱ) and (ⅲ) is satisfied. In this case |z1| < |z2|. We will write z1z2 if only (ⅲ) is satisfied. Further,

    0z1z2z1∣<∣z2,z1z2andz2z3z1z3.

    In [2], the authors defined the complex-valued metric space (X,d) in the following way:

    Definition 1.1. Let X be a non-empty set. A mapping d:X×XC is called a complex valued metric on X if the following conditions are satisfied:

    (a) 0d(x,y) for all x,yX and d(x,y)=0 x=y,

    (b) d(x,y)=d(y,x), for all x,yX,

    (c) d(x,y)d(x,z)+d(z,y) for all x,y,zX.

    Then d is called a complex valued metric in X, and (X,d) is a complex valued metric space.

    Example 1. Let X=C define the mapping d:X×XC by:

    d(z1,z2)=∣z1z2eiθ,θ]0,π2[.

    Then (X,d) is a complex valued metric space.

    Definition 1.2. [13] Let X be a nonempty set and let s1 be given real number. A mapping d:X×XC is called a complex valued b-metric on X if the following conditions are satisfied:

    (a) 0d(x,y) for all x,yX and d(x,y)=0 x=y,

    (b) d(x,y)=d(y,x), for all x,yX,

    (c) d(x,y)s[d(x,z)+d(z,y)] for all x,y,zX.

    Then (X,d) is a complex valued b-metric space.

    Example 2. [13] Let X=C define the mapping d:X×XC by:

    d(z1,z2)=∣z1z22+iz1z22forallz1,z2X

    Then (X,d) is a complex valued b-metric space with s=2.

    Definition 1.3. [13] Suppose that (X,d) is a complex valued b-metric space and {zn} is a sequence in X and zX then

    (i) We say that a sequence {zn} converges to an element z0X if for every 0cC, there exists an integer N such that d(zn,z0)c for all nN. In this case, we write znz0.

    (ii) We say that {zn} is a Cauchy sequence if for every 0cC, there exists an integer N such that d(zn,zm)c for all n,mN.

    (iii) We say that (X,d) is complete, if every Cauchy sequence in X converges to a point in X.

    Definition 1.4. Let S and T be self mappings of a nonemplty set X. If w=Sz=Tz for some z in X, then z is called a coincidence points of S and T and w is called a point of coincidence of S and T.

    Definition 1.5. [15] Let S and T be a self-mappings of a complex valued metric space (X,d). The mappings S and T are said to be compatible if:

    limnd(STzn,TSzn)=0,

    whenever {zn} is a sequence in X such that:

    limSnzn=limTnzn=t for some tX.

    Definition 1.6. [12] Let S and T be self mappings of a nonemplty set X. S and T are said to be weakly compatible if they commute at their coincidence points, i.e, Sz=Tz for some z in X implies that STz=TSz.

    Definition 1.7. A matrix norm induced by vectors norms is given by:

    Example 3. Let X = \mathbb{C}^{n} . A vector norm in a complex valued b-metric given by:

    d_2(z, w) = \left[ \sum\limits^{n}_{i = 1}\left( |z_{i}-w_{i}|^{2}+ i |z_{i}-w_{i}|^{2} \right) \right]^{\frac{1}{2}},

    where z, w\in X such that z = (z_1, \ldots, z_{n})^{t} and w = (w_1, \ldots, w_{n})^{t}, then (X, d_2) is a complex valued b-metric space.

    Definition 1.8. [14] defined the \max function for the partial order relation by:

    \textbf{(i)} \max \lbrace z_1, z_2 \rbrace = z_2 \Leftrightarrow z_1\precsim z_2 ,

    \textbf{(ii)} z_1\precsim \max \lbrace z_1, z_3\rbrace \Rightarrow z_1\precsim z_2, or z_1\precsim z_3 ,

    \textbf{(iii)} \max \lbrace z_1, z_2\rbrace = z_2 \Leftrightarrow z_1\precsim z_2 or \lvert z_1\rvert \leq \lvert z_2\rvert.

    Using definition (8) we have the following Lemma.

    Lemma 1. [14] Let z_1, z_2, z_{3, \cdots }\in\mathbb{C} and the partial order relation \precsim is defined on \mathbb{C} , the following statements are achieve:

    (i) if z_1 \precsim \max \lbrace z_2, z_3 \rbrace then z_1 \precsim z_2 if z_3 \precsim z_2

    (ii) if z_1 \precsim \max \lbrace z_2, z_3, z_4 \rbrace then z_1\precsim z_2 if \max \lbrace z_3, z_4 \rbrace \precsim z_2 ,

    (iii) if z_1\precsim \max \left\{z_2, z_3, z_4, z_5\right\} then z_1\precsim z_2 if \max\left\{ z_3, z_4, z_5\right\} \precsim z_2, and\ so\ on .

    In this section, we prove common fixed point theorem for four mappings in a complete complex valued b-metric spaces using rational type contraction condition and we give some examples. Our first new result is the following:

    Theorem 2.1. Let (X, d) be a complete complex valued b-metric space and S, T, P, Q:X\rightarrow X be a self mappings satisfying the conditions:

    C_1 S(X)\subset Q(X) and T(X)\subset P(X) ,

    C_2 d(Sz, Tw)\precsim \frac{\lambda}{s^{2}} R(z, w), if s\geq1 and \lambda\in (0, 1) for all z, w\in X where

    \begin{eqnarray*} R(z, w) & = & \max \{ d(Pz, Qw), d(Pz, Sz), d(Qw, Tw), \\ & & \frac{1}{2}[d(Qw, Sz)+d(Pz, Tw)], \frac{d(Pz, Sz)d(Qw, Tw)}{1+d(Pz, Qw)}\}, \end{eqnarray*}

    C_3 the pair (S, P) is compatible and the pair (T, Q) is weakly compatible,

    C_4 either P or S is continuous.

    Then S, T, P and Q have a unique common fixed point in X .

    Proof. Let z_0\in X be arbitrary. From the condition C_1 , there exist z_{1}, z_{2} such that w_{0} = Q z_{1} = Sz_{0} and w_{1} = P z_{2} = Tz_{1} . We can construct successively the sequences \left\lbrace w_{n} \right\rbrace and \left\lbrace z_{n} \right\rbrace in X as follows:

    \begin{equation} w_{2n} = Q z_{2n+1} = Sz_{2n} \text{ and} \: w_{2n+1} = Pz_{2n+2} = Tz_{2n+1} \end{equation} (2.1)

    Using (2.1) in C_2 we get:

    d(w_{2n}, w_{2n+1}) = d(Sz_{2n}, Tz_{2n+1})\precsim \frac{\lambda}{s^{2}} R(z_{2n}, z_{2n+1}),

    where

    \begin{eqnarray*} R(z_{2n}, z_{2n+1}) & = & \max \lbrace d(Pz_{2n}, Qz_{2n+1}), d(Pz_{2n}, Sz_{2n}), d(Qz_{2n+1}, Tz_{2n+1}), \\ & & \frac{1}{2}[d(Qz_{2n+1}, Sz_{2n})+d(Pz_{2n}, Tz_{2n+1})], \\ & &\frac{d(Pz_{2n}, Sz_{2n})d(Qz_{2n+1}, Tz_{2n+1})}{1+d(Pz_{2n}, Qz_{2n+1})}\rbrace \\ & = & \max \lbrace d(w_{2n-1}, w_{2n}), d(w_{2n-1}, w_{2n}), d(w_{2n}, w_{2n+1}), \\ & & \frac{1}{2}[d(w_{2n}, w_{2n})+d(w_{2n-1}, w_{2n+1})], \\ & & \frac{d(w_{2n-1}, w_{2n})d(w_{2n}, w_{2n+1})}{1+d(w_{2n-1}, w_{2n})}\rbrace, \\ \end{eqnarray*}

    we have:

    \begin{eqnarray} \frac{1}{2}d(w_{2n-1}, w_{2n+1})& \precsim & \frac{1}{2}[d(w_{2n-1}, w_{2n})+d(w_{2n}, w_{2n+1})]\\ &\precsim & \max \lbrace d(w_{2n-1}, w_{2n}), d(w_{2n}, w_{2n+1})\rbrace \end{eqnarray} (2.2)

    and we have

    d(w_{2n-1}, w_{2n})\precsim 1+d(w_{2n-1}, w_{2n}),

    which is implies

    \begin{equation} \frac{d(w_{2n-1}, w_{2n})d(w_{2n}, w_{2n+1})}{1+d(w_{2n-1}, w_{2n})} \precsim d(w_{2n}, w_{2n+1}), \end{equation} (2.3)

    from (2.2) and (2.3) we get:

    R(z_{2n}, z_{2n+1}) = \max \lbrace d(w_{2n-1}, w_{2n}), d(w_{2n}, w_{2n+1})\rbrace

    with

    d(w_{2n}, w_{2n+1}) = d(Sz_{2n}, Tz_{2n+1})\precsim \frac{\lambda}{s^{2}} R(z_{2n}, z_{2n+1}).

    If

    R(z_{2n}, z_{2n+1}) = d(w_{2n}, w_{2n+1}),

    then,

    d(w_{2n}, w_{2n+1})\precsim \frac{\lambda}{s^{2}} d(w_{2n}, w_{2n+1}), \:\: \text{therefore} \:\: \left( 1-\frac{\lambda}{s^{2}}\right) d(w_{2n}, w_{2n+1})\precsim 0 ,

    which is a contradiction, since \lambda\in(0, 1), s\geq 1 . We conclude that d(w_{2n}, w_{2n+1})\precsim \frac{\lambda}{s^{2}} d(w_{2n-1}, w_{2n}) .

    Similarly we get d(w_{2n+1}, w_{2n+2})\precsim \frac{\lambda}{s^{2}} d(w_{2n}, w_{2n+1}).

    It follows that

    d(w_{n}, w_{n+1})\precsim \frac{\lambda}{s^{2}} d(w_{n-1}, w_{n})\precsim \cdots \precsim \left( \frac{\lambda}{s^{2}}\right) ^{n} d(w_{0}, w_{1}),

    which implies

    \vert d(w_{n}, w_{n+1}) \vert \leq \frac{\lambda}{s^{2}} \vert d(w_{n-1}, w_{n}) \vert \leq \cdots \leq \left( \frac{\lambda}{s^{2}}\right) ^{n} \vert d(w_{0}, w_{1})\vert,

    for m < n we have:

    \begin{eqnarray*} \vert d(w_{n}, w_{m}) \vert & \leq & s \left( \frac{\lambda}{s^{2}}\right)^{n} \vert d(w_{0}, w_{1}) \vert + s^{2} \left( \frac{\lambda}{s^{2}}\right)^{n+1}\vert d(w_{0}, w_{1}) \vert +s^{3} \left( \frac{\lambda}{s^{2}}\right)^{n+2} \vert d(w_{0}, w_{1}) \vert + \\ & & \cdots + s^{m-n-1} \left( \frac{\lambda}{s^{2}}\right)^{m-2} \vert d(w_{0}, w_{1}) \vert + s^{m-n} \left( \frac{\lambda}{s^{2}}\right)^{m-1} \vert d(w_{0}, w_{1}) \vert\\ & = & \sum^{m-n}_{i = 1}s^{i} \left( \frac{\lambda}{s^{2}} \right)^{i+n-1} \vert d(w_{0}, w_{1}) \vert. \end{eqnarray*}

    Therefore,

    \begin{eqnarray*} \vert d(w_{n}, w_{m}) \vert & \leq & \sum^{m-n}_{i = 1}s^{i+n-1} \left( \frac{\lambda}{s^{2}}\right)^{i+n-1} \vert d(w_{0}, w_{1}) \vert = \sum^{m-1}_{t = n}s^{t} \left( \frac{\lambda}{s^{2}}\right)^{t} \vert d(w_{0}, w_{1}) \vert, \\ & \leq & \sum^{\infty}_{i = 1} \left( \frac{\lambda}{s}\right)^{t} \vert d(w_{0}, w_{1}) \vert = \frac{\left( \frac{\lambda}{s}\right) ^{n}}{\left( 1-\frac{\lambda}{s}\right) } \vert d(w_{0}, w_{1}) \vert, \\ \end{eqnarray*}

    hence,

    \begin{equation*} \vert d(w_{n}, w_{m}) \vert \leq \frac{\left( \frac{\lambda}{s}\right)^{n}}{\left( 1-\frac{\lambda}{s}\right) } \vert d(w_{0}, w_{1}) \vert \rightarrow 0 \: \text{as} \: n\rightarrow\infty. \end{equation*}

    Thus, \lbrace w_{n} \rbrace is a Cauchy sequence in X . Since X is complete, so there exists some u \in X such that w_{n}\rightarrow u as n\rightarrow\infty . For its sub-sequences we also have Q z_{2n+1}\rightarrow u, Sz_{2n}\rightarrow u, Pz_{2n+1}\rightarrow u and Tz_{2n}\rightarrow u

    from C_4 if P is continuous

    as P is continuous, then PPz_{2n}\rightarrow Pu and PSz_{2n}\rightarrow Pu , as n\rightarrow\infty . Also, since the pair (S, P) is compatible, this implies that SPz_{2n}\rightarrow Pu . Indeed,

    d(SPz_{2n}, Pu)\precsim s[d(SPz_{2n}, PSz_{2n})+d(PSz_{2n}, Pu)] .

    So,

    \vert d(SPz_{2n}, Pu)\vert\leq s \vert d(SPz_{2n}, PSz_{2n})\vert+s \vert d(PSz_{2n}, Pu) \vert \rightarrow 0 \, \text{as}\, n\rightarrow\infty .

    We prove Pu = u . On the contrary we suppose that Pu\neq u

    d(Pu, u)\precsim s d(Pu, SPz_{2n})+s^{2}d(SPz_{2n}, Tz_{2n+1})+s^{2}d(Tz_{2n+1}, u) .

    using C_2 with z = Pz_{2n}, w = z_{2n+1} , we get:

    \begin{equation*} d(SPz_{2n}, Tz_{2n+1}) \precsim \lambda R(Pz_{2n}, z_{2n+1}), \end{equation*}

    where

    \begin{eqnarray*} R(Pz_{2n}, z_{2n+1})& = &\max \lbrace d(PPz_{2n}, Qz_{2n+1}), d(PPz_{2n}, SPz_{2n}), d(Qz_{2n+1}, Tz_{2n+1}), \\ & & \frac{1}{2}[d(Pz_{2n+1}, SPz_{2n})+d(QPz_{2n}, Tz_{2n+1})], \\ & &\frac{d(PPz_{2n}, SPz_{2n})d(Qz_{2n+1}, Tz_{2n+1})}{1+d(PPz_{2n}, Qz_{2n+1})} \rbrace , \\ \end{eqnarray*}

    let n\rightarrow\infty we get:

    \begin{eqnarray*} R(Pu, u)& = & \max \lbrace d(Pu, u), d(Pu, Pu), d(u, Pu), \\ & & \frac{1}{2}[d(Pu, Pu)+d(Pu, u)], \frac{d(Pu, Pu)d(u, u)}{1+d(Pu, u)} \rbrace = d(Pu, u). \\ \end{eqnarray*}

    Further,

    \vert d(Pu, u) \vert \leq \frac{\lambda}{s^{2}} \vert d(Pu, u) \vert.

    So, (1-\frac{\lambda}{s^{2}}) \vert d(Pu, u) \vert \leq 0, which is a contradiction that is \vert d(Pu, u) \vert = 0 then Pu = u .

    We prove Su = u . On the contrary we suppose that Su\neq u

    d(Su, u)\precsim s d(Pu, Tz_{2n+1})+s d(Tz_{2n+1}, u).

    Using C_2 with z = u, w = z_{2n+1} , we get: d(Su, Tz_{2n+1})\precsim \frac{\lambda}{s^{2}} R(u, z_{2n+1}) where

    \begin{eqnarray*} R(u, z_{2n+1}) & = & \max \lbrace d(Pu, Qz_{2n+1}), d(Pu, Su), d(Qz_{2n+1}, Tz_{2n+1}), \\ & & \frac{1}{2}[d(Qz_{2n+1}, Su)+d(Pu, Tz_{2n+1})], \\ & & \frac{d(Pu, Su)d(Qz_{2n+1}, Tz_{2n+1})}{1+d(Pu, Qz_{2n+1})} \rbrace , \\ \end{eqnarray*}

    let n\rightarrow\infty we get:

    \begin{eqnarray*} R(u, u)& = & \max \lbrace d(u, u), d(u, Su), d(u, u), \\ & & \frac{1}{2}[d(u, Su)+d(u, u)], \frac{d(u, Su)d(u, u)}{1+d(u, u)} \rbrace = d(Su, u). \\ \end{eqnarray*}

    Then, d(Su, u) \precsim \frac{\lambda}{s^{2}} d(Su, u) , further, \vert d(Su, u) \vert \leq \frac{\lambda}{s^{2}} \vert d(Su, u) \vert, which is a contradiction that is \vert d(Su, u) \vert = 0 then, Su = u . We prove Qu = Tu , as S(X)\subset Q(X) , so there exists v\in X such that u = Su = Qv . First, we shall show that Qv = Tv for this we get:

    d(Qv, Tv) = d(Su, Tv)\precsim \frac{\lambda}{s^{2}} R(u, v)

    where,

    \begin{eqnarray*} R(u, v)& = & \max \lbrace d(Pu, Qv), d(Pu, Su), d(Qv, Tv), \\ & & \frac{1}{2}[d(Qv, Su)+d(Pu, Tv)], \frac{d(Pu, Su)d(Qv, Tv)}{1+d(Pu, Qv)} \rbrace , \\ \end{eqnarray*}

    then,

    \begin{eqnarray*} R(u, v) & = & \max \lbrace d(Qv, Qv), d(u, u), d(Qv, Tv), \\ & & \frac{1}{2}[d(Qv, Qv)+d(Qv, Tv)], \frac{d(u, u)d(Qv, Tv)}{1+d(Qv, Qv)} \rbrace . \\ \end{eqnarray*}

    Then, d(Qv, Tv)\precsim \frac{\lambda}{s^{2}} d(Qv, Tv) , further, \vert d(Qv, Tv) \vert \leq \frac{\lambda}{s^{2}} \vert d(Qv, Tv) \vert , which is a contradiction that is \vert d(Qv, Tv) \vert = 0 , then, Qv = Tv = u . As the pair (T, Q) is weakly compatible, so we have TQv = QTv , therefore Qu = Tu .

    We prove u = Tu , On the contrary we suppose that Tu\neq u ,

    d(u, Tu) = d(Su, Tu)\precsim \frac{\lambda}{s^{2}} R(u, u),

    where,

    \begin{eqnarray*} R(u, u) & = & \max \lbrace d(Pu, Qu), d(Pu, Su), d(Qu, Tu), \\ & & \frac{1}{2}[d(Qu, Su)+d(Pu, Tu)], \frac{d(Pu, Su)d(Qu, Tu)}{1+d(Pu, Qu)} \rbrace , \\ \end{eqnarray*}

    then,

    \begin{eqnarray*} R(u, v)& = & \max \lbrace d(u, Tu), d(u, u), d(Tu, Tu), \\ & &\frac{1}{2}[d(Tu, u)+d(Tu, Tu)], \frac{d(u, u)d(Tu, Tu)}{1+d(u, Tu)} \rbrace .\\ \end{eqnarray*}

    Then, d(u, u)\precsim \frac{\lambda}{s^{2}} d(u, u), further, \vert d(u, Tu) \vert \leq \frac{\lambda}{s^{2}} \vert d(u, Tu) \vert, which is a contradiction that is \vert d(u, Tu) \vert = 0 then u = Tu .

    Now we prove that Qu = u , On the contrary we suppose that Qu\neq u, , we have:

    d(u, Qu) = d(Su, QTu) = d(Su, TQu),

    from C_2 we get:

    d(u, Qu) = d(Su, TQu)\precsim \frac{\lambda}{s^{2}} R(u, Qu)

    where,

    \begin{eqnarray*} R(u, Qu)& = & \max \lbrace d(Pu, QQu), d(Pu, Su), d(QQu, TQu), \\ & & \frac{1}{2}[d(QQu, Su)+d(Pu, TQu)], \frac{d(Pu, Su)d(QQu, TQu)}{1+d(Pu, QQu)} \rbrace \\ & = &\max \lbrace d(u, Qu), d(u, u), d(Qu, Qu), \\ & & \frac{1}{2}[d(Qu, u)+d(u, Qu)], \frac{d(u, u)d(Qu, Qu)}{1+d(u, Qu)} \rbrace = d(u, Qu).\\ \end{eqnarray*}

    Further, \vert d(u, Qu) \vert \leq \frac{\lambda}{s^{2}} \vert d(u, Qu)\vert, which is contradiction that is \vert d(u, Qu) \vert = 0 then u = Qu .

    On conclude Su = Tu = Pu = Qu = u when P is continuous, we get the same results when S is continuous.

    Now we prove the uniqueness, Let u^{*} be another common fixed point of S, T, P and Q , then

    Su^{*} = Tu^{*} = Pu^{*} = Qu^{*} = u^{*}

    Putting z = u, w = u^{*} in C_2 , we get: d(u, u^{*}) = d(Su, Tu^{*})\precsim \frac{\lambda}{s^{2}} R(u, u^{*}) , where,

    \begin{eqnarray*} R(u, u^{*}) & = & \max \lbrace d(Pu, Qu^{*}), d(Pu, Su), d(Qu^{*}, Tu^{*}), \\ & & \frac{1}{2}[d(Qu^{*}, Su)+d(Pu, Tu^{*})], \frac{d(Pu, Su)d(Qu^{*}, Tu^{*})}{1+d(Pu, Qu^{*})} \rbrace \\ & = & \max \lbrace d(u, u^{*}), d(u, u), d(u^{*}, u^{*}), \\ & & \frac{1}{2}[d(u^{*}, u)+d(u, u^{*})], \frac{d(u, u)d(u^{*}, u^{*})}{1+d(u, u^{*})} \rbrace .\\ \end{eqnarray*}

    Further, \vert d(u, u^{*}) \vert \leq \frac{\lambda}{s^{2}} \vert d(u, u^{*}) \vert, which is a contradiction that is \vert d(u, u^{*}) \vert = 0 , which implies that u = u^{*} . Thus u is the unique common fixed point of S, T, P and Q in X .

    Corollary 1. Let (X, d) be a complete complex valued b-metric space, if we put S = T and P = Q = I with exceeding the \max of the rest of terms, we confirm the inequality of contraction of T in the complete complex valued b-metric space. So we get: d(Tz, Tw)\precsim \frac{\lambda}{s^{2}}d(z, w) , where, \lambda\in(0, 1), s\geq 1 for all z, w\in X. Then, T have unique fixed point in X .

    Example 4. Let X = [0.1] , for all z, w\in X . Define d:\: X\times X \rightarrow \mathbb{C} a complex valued b-metric with s = 2 by:

    d(z, w) = \left| z-w \right|^{2}+i \left| z-w \right|^{2} .

    Now define the mappings S, T, P, Q:X\rightarrow X by:

    Sz = \frac{z}{32}, \: Tz = \frac{z^{2}}{48}, \: Pz = \frac{z}{2}, \: Qz = \frac{z^{2}}{3},

    .

    \begin{eqnarray*} d(Sz, Tw) & = & \left[ \left| \frac{z}{32}-\frac{w^{2}}{48} \right|^{2}+i \left| \frac{z}{32}-\frac{w^{2}}{48} \right|^{2}\right] = \frac{1}{256}\left[\left| \frac{z}{2}-\frac{w^{2}}{3} \right|^{2}+i \left| \frac{z}{2}-\frac{w^{2}}{3} \right|^{2}\right], \\ d(Pz, Qw) & = & \left[\left| \frac{z}{2}-\frac{w^{2}}{3} \right|^{2}+i \left| \frac{z}{2}-\frac{w^{2}}{3} \right|^{2}\right], \\ d(Sz, Tw) & = & \frac{1}{256}d(Pz, Qw), \end{eqnarray*}

    Thus all the conditions of Theorem 2.1 are satisfied where \lambda = \frac{1}{64} and s = 2 . Then legibly '0' is the unique common fixed point of the mappings S, T, P and Q .

    Example 5. Let X = B(0, r), r > 1 , for all z, w\in X . Define d:\: X\times X \rightarrow \mathbb{C} by:

    d(z(u), w(u)) = \frac{i}{2\pi } \left| \int_\Gamma \frac{z(u)}{u}-\int_\Gamma \frac{w(u)}{u} \right|^{2},

    a complete complex valued b-metric where \Gamma is a closed path in X containing a zero. We prove that d is a complex b-metric with s = 2

    \begin{eqnarray*} d(z(u), w(u)) & = & \frac{i}{2\pi} \left| \int_\Gamma \frac{z(u)}{u}-\int_\Gamma \frac{w(u)}{u} \right|^{2}, \\ & = & \frac{i}{2\pi} \left| \int_\Gamma \frac{z(u)}{u}-\int_\Gamma \frac{x(u)}{u}+\int_\Gamma \frac{x(u)}{u}-\int_\Gamma \frac{w(u)}{u} \right|^{2}, \\ & \precsim & \frac{i}{2\pi}\left| \int_\Gamma \frac{z(u)}{u}-\int_\Gamma \frac{x(u)}{u}\right|^{2}+\frac{i}{2\pi}\left|\int_\Gamma \frac{x(u)}{u}-\int_\Gamma \frac{w(u)}{u} \right|^{2}+ \\ & & 2 \frac{i}{2\pi}\left| \int_\Gamma \frac{z(u)}{u}-\int_\Gamma \frac{x(u)}{u}\right| \left|\int_\Gamma \frac{x(u)}{u}-\int_\Gamma \frac{w(u)}{u} \right|, \\ & \precsim & \frac{i}{2\pi}\left| \int_\Gamma \frac{z(u)}{u}-\int_\Gamma \frac{x(u)}{u}\right|^{2}+\frac{i}{2\pi}\left|\int_\Gamma \frac{x(u)}{u}-\int_\Gamma \frac{w(u)}{u} \right|^{2}+ \\ & & \frac{i}{2\pi}\left| \int_\Gamma \frac{z(u)}{u}-\int_\Gamma \frac{x(u)}{u}\right|^{2}+\frac{i}{2\pi}\left|\int_\Gamma \frac{x(u)}{u}-\int_\Gamma \frac{w(u)}{u} \right|^{2}, \\ & \precsim & 2 \left\{ \frac{i}{2\pi}\left| \int_\Gamma \frac{z(u)}{u}-\int_\Gamma \frac{x(u)}{u}\right|^{2}+\frac{i}{2\pi}\left|\int_\Gamma \frac{x(u)}{u}-\int_\Gamma \frac{w(u)}{u} \right|^{2} \right\}, \\ d(z(u), w(u))& \precsim & 2 \left\{d(z(u), x(u))+d(x(u), w(u))\right\}. \end{eqnarray*}

    Now we define the mappings S, T, P, Q:X \rightarrow X by:

    Sz(u) = u, Tz(u) = e^{\frac{u}{2}}, Pz(u) = e^{u} -1, Qz(u) = u^{2}+\frac{1}{2}u.

    Using the Cauchy formula when the mappings S, T, P and Q are analytics we get:

    \begin{eqnarray*} d(Sz(u), Tw(u))& = & \frac{i}{2\pi } \left| \int_\Gamma \frac{u}{u}-\int_\Gamma \frac{e^{u} -1}{u} \right|^{2} = 0, \\ d(Pz(u), Qw(u))& = & \frac{i}{2\pi } \left| \int_\Gamma \frac{e^{\frac{u}{2}}}{u}-\int_\Gamma \frac{u^{2}+\frac{1}{2}u}{u} \right|^{2} = \frac{ (2\pi)^{2} i}{2\pi }, \\ d(Pz(u), Sz(u))& = & \frac{i}{2\pi } \left| \int_\Gamma \frac{e^{\frac{u}{2}}}{u}-\int_\Gamma \frac{u}{u} \right|^{2} = 0 , \\ d(Qw(u), Tw(u))& = & \frac{i}{2\pi } \left| \int_\Gamma \frac{u^{2}+\frac{1}{2}u}{u}-\int_\Gamma \frac{e^{u} -1}{u} \right|^{2} = 0 , \\ d(Qw(u), Sz(u)) & = & \frac{i}{2\pi } \left| \int_\Gamma \frac{u^{2}+\frac{1}{2}u}{u}-\int_\Gamma \frac{u}{u} \right|^{2} = 0 , \\ d(Pz(u), Tw(u))& = & \frac{i}{2\pi } \left| \int_\Gamma \frac{e^{\frac{u}{2}}}{u}-\int_\Gamma \frac{e^{u} -1}{u} \right|^{2} = \frac{ (2\pi)^{2} i}{2\pi } , \\ R(z(u), w(u)) & = & \max \lbrace 2\pi i, 0 \rbrace = 2\pi i . \end{eqnarray*}

    Further,

    0 = d(Sz(u), Tw(u)) \precsim \frac{ \pi \lambda i}{2}.

    Thus all the conditions of Theorem 2.1 are satisfied then the mappings S, T, P and Q have a unique common fixed point in X .

    Our first new results in this section is the following:

    Theorem 3.1. Let X = C ([a, b], \mathbb{R}^n), a > 0 and d:X\times X\rightarrow \mathbb{C} is defined as follows:

    \begin{equation*} d(z, w) = \max\limits_{u\in[a, b]} \Vert z(u)-w(u) \Vert_{\infty} \sqrt{1+a^{2}} e^{itan^{-1}a} . \end{equation*}

    Consider the Urysohn integral equations

    \begin{equation*} z(u) = \int^b_a K_{1}(t, s, z(u))ds+g(u), \end{equation*} (1)
    \begin{equation*} z(u) = \int^b_a K_{2}(t, s, z(u))ds+h(u), \end{equation*} (2)

    where u\in[a, b]\subset\mathbb{R} \: and \: z, g, h\in X .

    Assume that K_{1}, K_{2}:[a, b]\times[a, b]\times \mathbb{R}^{n}\rightarrow \mathbb{R}^{n} such that F_{z}, G_{z} \in X for each z\in X , where

    \begin{equation*} F_{z}(u) = \int^b_a K_{1}(t, s, z(u))ds, \: G_{z}(u) = \int^b_a K_{2}(t, s, z(u))ds \: \: for\ all \: u\in[a, b]. \end{equation*}

    If there exist s\geq 1, \:\lambda\in(0, 1) such that the inequality:

    \begin{equation} A(z, w)(u) \precsim \frac{\lambda}{s^{2}}R(z, w)(u), \end{equation} (3.1)

    where,

    \begin{eqnarray*} R(z, w)& = & \max \lbrace D(z, w)(u), B(z, w)(u), C(z, w)(u), \\ & & \frac{1}{2}[B(z, w)(u)+C(z, w)(u)], \frac{B(z, w)(u) C(z, w)(u)}{1+D(z, w)(u)}\rbrace , \end{eqnarray*}

    and

    \begin{eqnarray*} A(z, w)(u)& = & \Vert F_z (u)-G_w (u)+g(u)-h(u) \Vert \sqrt{1+a^{2}} e^{i{tan^{-1}a}}, \\ B(z, w)(u)& = & \Vert z (u)-F_z(u)-g(u) \Vert \sqrt{1+a^{2}} e^{i{tan^{-1}a}}, \\ C(z, w)(u)& = & \Vert w (u)-G_w(u)-h(u) \Vert \sqrt{1+a^{2}} e^{i{tan^{-1}a}}, \\ D(z, w)(u)& = & \Vert z(u)-w(u)\Vert\sqrt{1+a^{2}}e^{itan^{-1}a}, \end{eqnarray*}

    holds for all z, w\in X . then, the system of Urysohn integral equations has a unique common solution in X .

    Proof. Define S, T:X\rightarrow X by:

    Sz = F_z+g, Tz = G_z+h.

    Then,

    \begin{eqnarray*} d(Sz, Tw) & = & \max\limits_{u\in[a, b]} \Vert F_z (u)-G_w (u)+g(u)-h(u) \Vert_{\infty} \sqrt{1+a^{2}} e^{i{tan^{-1}a}}, \\ d(z, Sz) & = & \max\limits_{u\in[a, b]} \Vert z (u)-F_z(u)-g(u) \Vert_{\infty} \sqrt{1+a^{2}} e^{i{tan^{-1}a}}, \\ d(w, Tw)& = & \max\limits_{u\in[a, b]} \Vert w (u)-G_w(u)-h(u) \Vert_{\infty} \sqrt{1+a^{2}} e^{i{tan^{-1}a}}, \\ d(z, w)& = & \max\limits_{u\in[a, b]} \Vert z(u)-w(u) \Vert_{\infty}\sqrt{1+a^{2}} e^{itan^{-1}a}. \end{eqnarray*}

    From assumption 3.1 , for each u\in[a, b] we have:

    \begin{eqnarray*} A(z, w)(u) & \precsim & \frac{\lambda}{s^{2}}R(z, w)(u), \\ & \precsim & \frac{\lambda}{s^{2}} \max \lbrace D(z, w)(u), B(z, w)(u), C(z, w)(u), \\ & & \frac{1}{2}\left[ B(z, w)(u)+C(z, w)(u)\right] , \frac{B(z, w)(u)C(z, w)(u)}{1+D(z, w)(u)}\rbrace , \end{eqnarray*}

    which implies that

    \begin{eqnarray*} \max\limits_{u\in[a, b]}A(z, w)(u) & \precsim & \frac{\lambda}{s^{2}}\max\limits_{u\in[a, b]} \max \lbrace D(z, w)(u), B(z, w)(u), C(z, w)(u), \\ & & \frac{1}{2}\left[ B(z, w)(u)+C(z, w)(u)\right] , \frac{B(z, w)(u)C(z, w)(u)}{1+D(z, w)(u)} \rbrace \\ & \precsim & \frac{\lambda}{s^{2}} \max \lbrace \max\limits_{u\in[a, b]} D(z, w)(u), \max\limits_{u\in[a, b]}B(z, w)(u), \\ & & \max\limits_{u\in[a, b]}C(z, w)(u), \frac{1}{2}[\max\limits_{u\in[a, b]}B(z, w)(u)+\max\limits_{u\in[a, b]}C(z, w)(u)], \\ & & \frac{ \max\nolimits_{u\in[a, b]}B(z, w)(u) \max\nolimits_{u\in[a, b]}C(z, w)(u)} {1+\max\nolimits_{u\in[a, b]}D(z, w)(u)}\rbrace. \end{eqnarray*}

    Therefore,

    \begin{eqnarray*} d(Sz, Tw)& \precsim & \frac{\lambda}{s^{2}} \max \lbrace d(z, w), d(z, Sz), d(w, Tw), \\ & & \frac{1}{2}\left[ d(w, Sz)+d(z, Tw)\right] , \frac{d(z, Sz)d(w, Tw)}{1+d(z, w)}\rbrace.\\ \end{eqnarray*}

    Thus all the conditions of Theorem 2.1 with P = Q = I_{X} are satisfied. Therefore, the system of Urysohn integral equations has a unique common solution in X .

    In this section we give an application using the Corollary 1 in (X = \mathbb{C}^{n}, d_2) the complete complex valued b-metric space where,

    d_2(z, w) = \left[ \sum\limits^{n}_{i = 1}\left( |z_{i}-w_{i}|^{2}+ i |z_{i}-w_{i}|^{2} \right) \right]^{\frac{1}{2}},

    Theorem 4.1. Let (X = \mathbb{C}^{n}, d_2) a complex valued b-metric space where z = (z_1, \ldots, z_{n})^{t}\in X and w = (w_1, \ldots, w_{n})^{t}\in X, if \beta < \frac{1}{n} where,

    \begin{equation*} \beta_{ij} = \begin{cases} a_{ij}\; \; \; \; \; \; \; \; \; \; \; \; \; \: if \: i\neq j \\ a_{ij} + 1\; \; \; \; \; \; \; \; \: if \: i = j \end{cases} \: \; \; \; \; and \; \; \; \; \: \beta = \max \left \{ \beta_{ij} \right \}, \forall 1\leq i, j \leq n. \end{equation*}

    then, the following linear system of n equations and n unknowns AZ = B has a unique solution.

    \begin{equation*} \begin{cases} a_{11} z_1 + a_{12} z_2 + \ldots + & a_{1n} z_{n} = b_1\\ a_{21} z_1 + a_{22} z_2 + \ldots + & a_{2n} z_{n} = b_2\\ \vdots\\ a_{n1} z_1 + a_{n2} z_2 + \ldots + & a_{nn} z_{n} = b_{n} \end{cases} \Leftrightarrow \left( \begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & & & \\ a_{n1} & a_{n2} & \ldots & a_{nn} \\ \end{array} \right) \left( \begin{array}{c} z_1 \\ z_2 \\ \vdots \\ z_{n} \\ \end{array} \right) = \left( \begin{array}{c} b_1 \\ b_2 \\ \vdots \\ b_{n} \\ \end{array} \right). \end{equation*}

    Where z = (z_1, \ldots, z_{n})^{t}\in X and a_{ij} \in \mathbb{R} where 1\leq i, j \leq n and b_1, b_2, b_{n} \in \mathbb{C}

    Proof. Define T:X\rightarrow X by Tz = (A+I)Z-B. for proving that linear system AZ = B have a unique solution, its enough to prove that T is a contraction.

    Since

    \begin{eqnarray*} d_2(Tz, Tw)& = & \left[ \sum^{n}_{i = 1}\left( |(Tz)_{i}-(Tw)_{i}|^{2}+ i |(Tz)_{i}-(Tw)_{i}|^{2} \right) \right]^{\frac{1}{2}}, \\ & = & \left[ \sum^{n}_{i = 1} \left( \left| \sum^{n}_{j = 1}\beta_{ij}(z_{j}-w_{j})\right|^{2}+ i \left| \sum^{n}_{j = 1}\beta_{ij}(z_{j}-w_{j}) \right|^{2} \right) \right ]^{\frac{1}{2}}, \\ \end{eqnarray*}

    where,

    \begin{equation*} \beta_{ij} = \begin{cases} a_{ij}\; \; \; \; \; \; \; \; \; \: \text{if} \: i\neq j \\ a_{ij} + 1\; \; \; \; \: \text{if} \: i = j \end{cases} \: \; \; \; \; \text{and} \: \beta = \max \left \{ \beta_{ij} \right \}, \forall 1\leq i, j \leq n. \end{equation*}

    Then,

    \begin{eqnarray*} d_2(Tz, Tw) & \precsim & \left[ \left( \sum^{n}_{i = 1} \max\limits_{ 1\leq i, j \leq n} \beta_{ij}^{2} \right ) \left ( \left|\sum^{n}_{j = 1}(z_{j}-w_{j})\right|^{2}+ i \left| \sum^{n}_{j = 1}(z_{j}-w_{j}) \right|^{2} \right)\right]^{\frac{1}{2}}, \\ & \precsim & \left( n \beta^{2} \right)^{\frac{1}{2}}\left[ n \left ( \left|\sum^{n}_{j = 1}(z_{j}-w_{j})\right|^{2}+ i \left| \sum^{n}_{j = 1}(z_{j}-w_{j}) \right|^{2} \right)\right]^{\frac{1}{2}}, \\ & \precsim & n \beta \left[ \left ( \left|\sum^{n}_{j = 1}(z_{j}-w_{j})\right|^{2}+ i \left| \sum^{n}_{j = 1}(z_{j}-w_{j}) \right|^{2} \right)\right]^{\frac{1}{2}}, \\ & = & n \beta d_2(z, w). \end{eqnarray*}

    So, we get finally that:

    d_2(Tz, Tw)\precsim n \beta d_2(z, w) or \beta = \max \left\{ | a_{ij} |, | a_{ij} + 1 | \; \; \; \; \forall 1\leq i, j \leq n\right\}.

    We conclude that T is contraction mapping. by applying Corollary 1, the linear system has a unique solution.

    The authors are thankful to the learned referees for their valuable comments which helped in bringing this paper to its present form. Khaled Berrah acknowledges the financial support of Larbi Tebessi University, Tebessa, Algeria.

    The authors declare that there is no conflicts of interest in this paper.



    [1] S. Aleksic, Z. Kadelburg, Z. D. Mitrovic, et al. A new survey: Cone metric spaces, ArXiv Preprint, ArXiv: 1805.04795.
    [2] A. Akbar, B. Fisher and M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Func. Anal. Opt., 32 (2011), 243-253. doi: 10.1080/01630563.2011.533046
    [3] I. Bakhtin, The contraction mapping principle in quasimetric spaces, Func. An., Gos. Ped. Inst. Unianowsk., 30 (1989), 26-37.
    [4] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181. doi: 10.4064/fm-3-1-133-181
    [5] K. Berrah, A. Aliouche and T. Oussaeif, Common fixed point theorems under Pata's contraction in complex valued metric spaces and an application to integral equations, Bol. Soc. Mat. Mex., (2019), 2296-4495.
    [6] S. Bhatt, S. Chaukiyal and R. C. Dimri, Common fixed point of mappings satisfying rational inequality in complex valued metric space, Int. J. Pure. Appl. Maths., 73 (2011), 159-164.
    [7] S. Czerwik, Contraction mappings in b-metric spaces, Acta Mat. Inf. Uni. Ostraviensis, 1 (1993), 5-11.
    [8] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263-276.
    [9] A. K. Dubey and M. Tripathi, Common Fixed Point Theorem in Complex Valued b -Metric Space for Rational Contractions, J. Inf. Math. Sci., 7 (2015), 149-161.
    [10] R. George, H. A. Nabwey, R. Rajagopalan, et al. Rectangular cone b-metric spaces over Banach algebra and contraction principle, Fixed Point Theory Appl., 2017 (2017), 14.
    [11] H. Huang, G. Deng and S. Radenović, Some topological properties and fixed point results in cone metric spaces over Banach algebras, Positivity,23 (2019), 21-34. doi: 10.1007/s11117-018-0590-5
    [12] G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces,4 (1996), 199-215.
    [13] K. P. R. Rao, P. R. Swamy and J. R. Prasad, A common fixed point theorem in complex valued b-metric spaces, Bull. Maths. Stat. res.,1 (2013), 1-8.
    [14] F. Rouzkard and M. Imdad, Some common fixed point theorems on complex valued metric spaces, Comput. Math. Appl.,64 (2012), 1866-1874. doi: 10.1016/j.camwa.2012.02.063
    [15] R. K. Verma and H. K. Pathak, Common fixed point theorems for a pair of mappings in complex-Valued metric spaces, J. Maths. Comput. Sci.,6 (2013), 18-26. doi: 10.22436/jmcs.06.01.03
    [16] F. Vetro and S. Radenović, Some results of Perov type in rectangular cone metric spaces, J. Fix. Point Theory A.,20 (2018), 41.
    [17] W. Sintunavarat and P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J. Inequal. Appl.,2012 (2012), 84.
  • This article has been cited by:

    1. Hasanen A. Hammad, Hassen Aydi, Yaé Ulrich Gaba, V. Vijayakumar, Exciting Fixed Point Results on a Novel Space with Supportive Applications, 2021, 2021, 2314-8888, 1, 10.1155/2021/6613774
    2. Pakhshan M. Hasan, Nejmaddin A. Sulaiman, Fazlollah Soleymani, Ali Akgül, The existence and uniqueness of solution for linear system of mixed Volterra-Fredholm integral equations in Banach space, 2020, 5, 2473-6988, 226, 10.3934/math.2020014
    3. Rashad A. R. Bantan, Saif Ur Rehman, Shahid Mehmood, Waleed Almutiry, Amani Abdullah Alahmadi, Mohammed Elgarhy, Santosh Kumar, An Approach of Integral Equations in Complex-Valued b -Metric Space Using Commuting Self-Maps, 2022, 2022, 2314-8888, 1, 10.1155/2022/5862251
    4. Khaled Berrah, Taki eddine Oussaeif, Abdelkrim Aliouche, Common fixed point theorems of Meir-Keeler contraction type in complex valued metric space and an application to dynamic programming, 2022, 25, 0972-0502, 445, 10.1080/09720502.2021.1932862
    5. Dinanath Barman, Krishnadhan Sarkar, Kalishankar Tiwary, Fixed point theorems in complex valued b-metric spaces, 2023, 27, 1450-5932, 85, 10.5937/MatMor2301085B
    6. Ala Eddine Taier, Ranchao Wu, Naveed Iqbal, Boundary Value Problem of Nonlinear Fractional Differential Equations of Mixed Volterra-Fredohlm Integral Equations in Banach Space, 2024, 12, 2330-006X, 1, 10.11648/j.ajam.20241201.11
    7. Muhammad Sarwar, Syed Khayyam Shah, Zoran D. Mitrović, Aiman Mukheimer, Nabil Mlaiki, Almost Ćirić Type Contractions and Their Applications in Complex Valued b-Metric Spaces, 2023, 12, 2075-1680, 794, 10.3390/axioms12080794
    8. Syed Shah Khayyam, Muhammad Sarwar, Asad Khan, Nabil Mlaiki, Fatima M. Azmi, Solving Integral Equations via Fixed Point Results Involving Rational-Type Inequalities, 2023, 12, 2075-1680, 685, 10.3390/axioms12070685
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4903) PDF downloads(988) Cited by(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog