In this paper, generalized metric spaces are introduced as a common generalization of tvs-cone metric spaces, partial metric spaces and b-metric spaces, and a unified approach is proposed to some fixed point results by using generalized metric spaces. Specifically, Banach's contraction principle and Kannan type fixed point theorem, as well as other types fixed point results on generalized metric spaces are given, respectively.
Citation: Xun Ge, Songlin Yang. Some fixed point results on generalized metric spaces[J]. AIMS Mathematics, 2021, 6(2): 1769-1780. doi: 10.3934/math.2021106
In this paper, generalized metric spaces are introduced as a common generalization of tvs-cone metric spaces, partial metric spaces and b-metric spaces, and a unified approach is proposed to some fixed point results by using generalized metric spaces. Specifically, Banach's contraction principle and Kannan type fixed point theorem, as well as other types fixed point results on generalized metric spaces are given, respectively.
[1] | T. Abdeljawad, E. Karapinar, Quasicone metric spaces and generalizations of Caristi Kirk's theorem, Fixed Point Theory Appl., 2009 (2009), 1-9. |
[2] | T. Abdeljawad, E. Karapinar, K. Tas, A generalized contraction principle with control functions on partial metric spaces, Comput. Math. Appl., 63 (2012), 716-719. doi: 10.1016/j.camwa.2011.11.035 |
[3] | T. Abdeljawad, S. Rezapour, Some fixed point results in TVS-cone metric spaces, Fixed Point Theory, 14 (2013), 263-268. |
[4] | S. Aleksi$\rm\acute{c}$, Z. Kadelburg, Z. D. Mitrovi$\rm\acute{c}$, S. Radenovi$\rm\acute{c}$, A new survey: Cone metric spaces, J. Int. Math. Virtual Inst., 9 (2018), 1-27. |
[5] | S. Aleksi$\rm\acute{c}$, L. Paunovi$\rm\acute{c}$, S. N. Radenovi$\rm\acute{c}$, F. V. Vetro, Some critical remarks on the paper "A note on the metrizability of TVS-cone metric spaces", Mil. Tech. Cour., 65 (2017), 1-8. |
[6] | I. D. Arandelovi$\rm\acute{c}$, D. J. Ke$\rm\check{c}$ki$\rm\acute{c}$, On nonlinear quasi-contractions on TVS-cone metric spaces, Appl. Math. Lett., 24 (2011), 1209-1213. |
[7] | H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl., 159 (2012), 3234-3242. doi: 10.1016/j.topol.2012.06.012 |
[8] | H. Aydi, M. Bota, E. Karapinar, S. Moradi, A common fixed point for weak $\phi$-contractions on b-metric spaces, Fixed Point Theory, 13 (2012), 337-346. |
[9] | M. Bukatin, R. Kopperman, S. Matthews, H. Pajoohesh, Partial metric spaces, Am. Math. Mon., 116 (2009), 708-718. |
[10] | C. Chifu, G. Petrusel, Fixed point for multivalued contractions in b-metric spaces with applications to fractals, Taiwan. J. Math., 18 (2014), 1365-1375. doi: 10.11650/tjm.18.2014.4137 |
[11] | L. $\rm\acute{C}$iri$\rm\acute{c}$, M. Abbas, M. Rajovi$\rm\acute{c}$, B. Ali, Suzuki type fixed point theorems for generalized multi-valued mappings on a set endowed with two b-metrics, Appl. Math. Comput., 219 (2012), 1712-1723. |
[12] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav., 1 (1993), 5-11. |
[13] | W. S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal. Theory Methods Appl., 72 (2010), 2259-2261. doi: 10.1016/j.na.2009.10.026 |
[14] | W. S. Du, E. Karapinar, A note on cone b-metric and its related results: generalizations or equivalence? Fixed Point Theory Appl., 1 (2013), 1-7. |
[15] | X. Ge, A fixed point theorem for correspondences on cone metric spaces, Fixed Point Theory, 15 (2014), 79-86. |
[16] | X. Ge, S. Lin, Contractions of Nadler type on partial tvs-cone metric spaces, Colloq. Math., 138 (2015), 149-164. doi: 10.4064/cm138-2-1 |
[17] | G. Gruenhage, Generalized metric spaces, In: K. Kunen, J. E.Vaughan, eds. Handbook of Set-theoretic Topology, Amsterdam: North-Holland, 1984. |
[18] | N. Hussain, M. H. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl., 62 (2011), 1677-1684. doi: 10.1016/j.camwa.2011.06.004 |
[19] | D. Ili$\rm\acute{c}$, V. Pavlovi$\rm\acute{c}$, V. Rako$\rm\check{c}$evi$\rm\acute{c}$, Extensions of the Zamfirescu theorem to partial metric spaces, Math. Comput. Modell., 55 (2012), 801-809. |
[20] | Z. Kadelburg, S. Radenovi$\rm\acute{c}$, V. Rako$\rm\check{c}$evi$\rm\acute{c}$, Topological vector space-valued cone metric spaces and fixed point theorems, Fixed Point Theory Appl., 1 (2010), 1-17. |
[21] | Z. Kadelburg, S. Radenovi$\rm\acute{c}$, V. Rako$\rm\check{c}$evi$\rm\acute{c}$, A note on the equivalence of some metric and cone metric fixed point results, Appl. Math. Lett., 24 (2011), 370-374. |
[22] | E. Karapinar, Fixed point theorems in cone Banach spaces, Fixed Point Theory Appl., 2009 (2009), 1-9. |
[23] | E. Karapinar, Couple fixed point theorems for nonlinear contractions in cone metric spaces, Comput. Math. Appl., 59 (2010), 3656-3668. doi: 10.1016/j.camwa.2010.03.062 |
[24] | E. Karapinar, Some nonunique fixed point theorems of $\rm\acute{C}$iri$\rm\acute{c}$ type on cone metric spaces, Abstr. Appl. Anal., 2010 (2020), 123094. |
[25] | E. Karapinar, D. $\rm T\ddot{u}rko\breve{g}lu$, Best approximations theorem for a couple in cone Banach space, Fixed Point Theory Appl., 2010 (2010), 1-9. |
[26] | R. Kannan, Some results on fixed points Ⅱ, Am. Math. Mon., 76 (1969), 405-408. |
[27] | S. Lin, Y. Ge, Compact-valued continuous relations on TVS-cone metric spaces, Filomat, 27 (2013), 329-335. |
[28] | S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728 (1994), 183-197. doi: 10.1111/j.1749-6632.1994.tb44144.x |
[29] | S. Moshokoa, On partial metric spaces and partial cone metric spaces, Hacettepe Univ. Math. Stat., 46 (2017), 1069-1075. |
[30] | V. D. Nguyen, On the completion of partial metric spaces, Quaest. Math., 40 (2017), 589-597. doi: 10.2989/16073606.2017.1303004 |
[31] | S. Radenovi$\rm\acute{c}$, S. Simi$\rm\acute{c}$, N. Caki$\rm\acute{c}$, Z. Golubovi$\rm\acute{c}$, A note on tvs-cone metric fixed point theory, Math. Comput. Modell., 54 (2011), 2418-2422. |
[32] | S. Reich, Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121-124. doi: 10.4153/CMB-1971-024-9 |
[33] | B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Am. Math. Soc., 226 (1977), 257-290. doi: 10.1090/S0002-9947-1977-0433430-4 |
[34] | S. Romaguera, Fixed point theorems for generalized contractions on partial metric spaces, Topol. Appl., 159 (2012), 194-199. doi: 10.1016/j.topol.2011.08.026 |
[35] | J. R. Roshan, V. Parvaneh, I. Altun, Some coincidence point results in ordered b-metric spaces and applications in a system of integral equations, Appl. Math. Comput., 226 (2014), 723-737. |
[36] | S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11 (2014), 703-711. doi: 10.1007/s00009-013-0327-4 |
[37] | C. Zhu, W. Xu, T. Do$\rm\breve{s}$enovi$\rm\acute{c}$, Z. Golubovi$\rm\acute{c}$, Common fixed point theorems for cyclic contractive mappings in partial cone b-metric spaces and applications to integral equations, Nonlinear Anal. Modell. Control, 21 (2016), 807–827. |