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Abstract: We introduce a Ćirić type contraction principle in a vector-valued b-metric space that
generalizes Perov’s contraction principle. We investigate the possible conditions on the mappings
W, E : G → G (G is a non-empty set), for which these mappings admit a unique common fixed
point in G subject to a nonlinear operator F : Pm → Rm. We illustrate the hypothesis of our findings
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1. Introduction

In the field of metric fixed point theory, the Banach contraction principle [3] is regarded as a key
fixed point theorem. The introduction of a new contraction principle is the core part of the metric
fixed-point theory. Such a new contraction principle not only contributes in theory but also ensures
the existence of solutions to mathematical models. In an effort to introduce a new contraction
principle, Rakotch [27] introduced a new contraction principle that involved a function instead of a
Lipschitz constant in the Banach contraction principle. Then, Boyd and Wong [5] generalized the
Rakotch contraction principle. In a similar effort, Kannan [16] introduced a contraction principle that
characterizes the metric completeness and gave a new direction in metric fixed point theory that led
many mathematicians to introduce various contraction principles. Among the classical contraction
principles, most famous are: the Meir and Keeler contraction principle [19], Chatterjea contraction
principle, Reich contraction principle [28], Hardy and Rogers contraction principle [14], Ćirić
contraction principle [9] and Caristi contraction principle [7].

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231326


26022

Wardowski [32] (2012) generalized the Banach contraction principle by using an auxiliary
nonlinear function F : (0,∞) → (−∞,∞) that satisfied three conditions. In the literature, this new
contraction principle is known as the F-contraction principle. This idea proved another milestone in
metric fixed point theory. The F-contraction principle has been revisited and generalized in many
abstract spaces (see [8, 10, 13, 21, 23, 24, 29] and references therein).

On the other hand, metric generalization also has a significant impact on metric fixed point theory.
Many mathematicians have contributed in this direction, producing many generalizations of a metric
space (see [18]). Perov [26], by extending the co-domain of the metric function from R to Rn, gave
a vector version of the metric and hence produced another generalization of the Banach contraction
principle. Altun, et al. (2020) [2] obtained an extension of Wardowski [32] fixed point theorem in the
vector-valued metric spaces as follows:

Theorem 1.1. [2] Every self-mapping T on a complete vector-valued metric space (X, d) that satisfies
the inequality

d(T (q),T (h)) ≻ 0⇒ I ⊕ F(d(T (q),T (h))) ⪯ F(d(q, h))∀ q, h ∈ X,

admits a unique fixed point, provided F satisfies (AF1) − (AF3) and I = (τi)m
i=1 ⪰ 0;

the operator F : Pm → Rm satisfies the following conditions:

(AF1) ∀ Q,W ∈ Pm with Q ⪯ W, and we have F(Q) ⪯ F(W);
(AF2) ∀ {vn : n ∈ N} ⊂ Pm, and we have

lim
n→∞

v(i)
n = 0 if and only if lim

n→∞
u(i)

n = −∞, for each i;

(AF3) ∃ κ ∈ (0, 1) satisfying limvi→0+(vi)κui = 0.

Recently, Mı́nak, et al. [20] and Cosentino, et al. [12] have established some fixed point theorems
for the existence of fixed points of Ćirić type and Hardy-Rogers type F-contractions, respectively. The
significance of the fixed point results on Ćirić type and Hardy-Rogers type F-contractions [12, 20]
requires more research work in generalized metric spaces. The vector valued distance function (being
a column matrix) has many applications in Matrix Analysis and hence in Engineering, so, to broaden
the scope of the fixed point results on Ćirić type and Hardy-Rogers type F-contractions, in this paper,
we decided to revisit these notions in a vector-valued b-metric space (G,A, s) (defined in next section)
and to investigate the possible conditions on the mappings W, and E for which these mappings admit
a unique common fixed point. Note that for s = 1, we have a vector valued metric space. We will see
that the Theorem 1.1 and some results in [22] are special cases of results presented in this paper.

Integro-differential equations have found applications in epidemiology, the mathematical modeling
of epidemics, particularly when the models contain age-structure [6]. The Kermack-McKendrick
theory of infectious disease transmission is one particular example where age-structure in the
population is incorporated into the modeling framework. Following the work in [25], we will show
the existence of a solution to the system of delay integro-differential equations that represent an
Infectious Disease Model:

l(t) =
∫ t

t−L
W(h, l(h), l

′

(h)) dh,
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q(t) =
∫ t

t−L
E(h, q(h), q

′

(h)) dh,

where

(a) l(t), q(t) : the prevalence of infection at time t in the population.
(b) 0 < L : the amount of time a person can still spread disease.
(c) l

′

(h), q
′

(h) : the current rate of infectivity.
(d) W(h, l(h), l

′

(h)), E(h, q(h), q
′

(h)) : the rate of newly acquired infections per unit of time.

We are aimed at applying Theorem 5.1 to show the existence of a solution to a system of delay integro-
differential equations.

2. Preliminaries and related results

In this section, we present a summary of prerequisites and notations to be considered in the sequel.
Let Rm =

{
v = (xi)m

i=1 = (x1, x2, · · · , xm) | ∀i xi ∈ R
}

represents all matrices of order m × 1 (which will
be called vectors), and then (Rm,⊕,⊙) is a linear space with ⊕ and ⊙ defined by

v ⊕ w = (xi + yi)m
i=1 for all v = (xi)m

i=1 and w = (yi)m
i=1 ∈ R

m,

k ⊙ v = (k · xi)m
i=1 for all v = (xi)m

i=1 ∈ R
m and k ∈ R.

Note that + and · represent the usual addition and multiplication of scalars. By using the above
operations, we can define the difference of vectors as v ⊖ w = v ⊕ (−1) ⊙ w. Define the relations ⪯
and ≺ on Rm by

v ⪯ w⇔ xi ≤ yi and v ≺ w⇔ xi < yi, ∀i. (2.1)

The relation ⪯ defines a partial-order on Rm. Let Pm denote the set of positive definite vectors, that is,
if v = (xi)m

i=1 ≻ 0 (zero vector of order m × 1), and v = (xi)m
i=1 ∈ R

m, then v = (xi)m
i=1 ∈ P

m. Also,
let Rm

0 =
{
v = (xi)m

i=1 = (x1, x2, · · · , xm) | ∀i xi ∈ [0,∞)
}
. The two vectors are considered equal if their

corresponding coordinates are equal.

Definition 2.1. [31] (1) Let V = [vi j] be an m × m complex matrix having eigenvalues λi, 1 ≤ i ≤ n.
Then, the spectral radius ρ(V) of matrix V is defined by ρ(V) = max1≤i≤m |λi|.

(2) The matrix V converges to zero, if the sequence {Vn; n ∈ N} converges to zero matrix O.

Theorem 2.1. [31] Let V be any complex matrix of order m × m, then V is convergent if and only
if ρ(V) < 1.

Perov [26] applied Theorem 2.1 to obtain the following result in vector-valued metric spaces.

Theorem 2.2. [26] Every self-mapping J defined on a complete vector-valued metric space (X,d)
satisfying the inequality

d(J(g), J(h)) ⪯ Ad(g, h)∀ (g, h) ∈ X × X,

admits a unique fixed point provided ρ(A) < 1 and that A is a positive square matrix of order m.
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By a vector-valued metric, we mean a mapping d : X × X → Rm obeying all the axioms of the
metric. The object d(x, y) is an m-tuple or a column matrix. Let

v = (vi)m
i=1 = (v1, v2, v3, · · · , vm) ∈ Pm,

vn =
(
v(i)

n

)m

i=1
=

(
v(1)

n , v
(2)
n , v

(3)
n , · · · , v

(m)
n

)
∈ Pm,

F(v) = (ui)m
i=1 = (u1, u2, u3, · · · , um) ∈ Rm and

F(vn) =
(
u(i)

n

)m

i=1
=

(
u(1)

n , u
(2)
n , u

(3)
n , · · · , u

(m)
n

)
∈ Rm,

(v)m
1 = (v, v, v, · · · , v) ∈ Rm.

The following concepts and results will be required in the sequel.

3. The vector-valued b-metric space

In light of the definitions of b-metric and vector-valued metric given by Czerwik [11] and Perov [2],
respectively, Boriceanu [4] introduced a vector-valued b-metric as follows:

Definition 3.1. (vector-valued b-metric) [4] Let G be a non-empty set. The operator A : G ×G → Rm
0

satisfying the axioms (A1) − (A3) given below is known as a vector-valued b-metric.

(A1) q = t if and only if A(q, t) = 0, for all q, t ∈ G.
(A2) A(q, t) = A(t, q), for all q, t ∈ G.
(A3) A(q, g) ⪯ s ⊙

[
A(q, t) ⊕ A(t, g)

]
; s ≥ 1, for all q, t, g ∈ G.

The triplet (G,A, s) represents a vector-valued b-metric-space.

For s = 1, (G,A, s) is a vector-valued metric-space, but this is not true when s > 1. Thus, it can be
remarked that every vector-valued metric-space is a vector-valued b-metric-space but not conversely.

Example 3.1. Let G = R and the operator A : G ×G → Rm
0 be defined by

A(l, q) =
(
|H|2, |H|3, · · · , |H|m+1

)
∀l, q ∈ G,

where H = |l − q|. Then, (G,A, 2m) is a vector-valued b-metric space. Note that it is not a vector-
valued-metric space.

Example 3.2. Let G , ∅ and di : G × G → [0,∞) be a b-metric for each i with respective constant
si ≥ 1 (1 ≤ i ≤ m) for each positive integer i. The mapping A : G ×G → Rm

0 defined by

A(l1, l2) = (d1(l1, l2), d2(l1, l2), · · · , dm(l1, l2)) for all l1, l2 ∈ G

defines a vector-valued b-metric on G.
The axioms (A1) and (A2) hold trivially. To prove (A3), consider

A(l, l2) = (d1(l, l2), d2(l, l2), · · · , dm(l, l2))

⪯ (s1(d1(l, l1) + d1(l1, l2)), s2(d2(l, l1) + d2(l1, l2)), · · · , sm(dm(l, l1) + dm(l1, l2)))

⪯ s ⊙ (d1(l, l1) + d1(l1, l2), d2(l, l1) + d2(l1, l2), · · · , dm(l, l1) + dm(l1, l2))

= s ⊙ ((d1(l, l1), d2(l, l1), · · · , dm(l, l1)) ⊕ (d1(l1, l2), d2(l1, l2), · · · , dm(l1, l2)))

= s ⊙ (A(l, l1) ⊕ A(l1, l2)) ; s = max{s1, s2, · · · , sm}.
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Since the vector-valued b-metric is a discontinuous operator, fixed point theorems in the
vector-valued b-metric spaces need to be supported by an auxiliary convergence result. We provide
the following lemma (Lemma 3.1) for this purpose.

Lemma 3.1. Let (G,A, s) be a vector-valued b-metric space. If l∗, g∗ ∈ G, and {ln}n∈N is such that
limn→∞ ln = l∗, then

1
s
⊙ A(l∗, g∗) ⪯ lim

n→∞
inf A(ln, g∗) ⪯ lim

n→∞
sup A(ln, g∗) ⪯ s ⊙ A(l∗, g∗).

Proof. By (A3), we have

1
s
⊙ A(l∗, g∗) ⪯ A(l∗, ln) ⊕ A(ln, g∗)

1
s
⊙ A(l∗, g∗) ⊖ A(ln, l∗) ⪯ A(ln, g∗).

By lim inf, we have
1
s
⊙ A(l∗, g∗) ⪯ lim

n→∞
inf A(ln, g∗). (3.1)

By (A3), we get
A(ln, g∗) ⪯ s ⊙ (A(ln, l∗) ⊕ A(l∗, g∗)).

This implies
lim
n→∞

sup A(ln, g∗) ⪯ s ⊙ A(l∗, g∗). (3.2)

We know that
lim
n→∞

inf A(ln, g∗) ⪯ lim
n→∞

sup A(ln, g∗). (3.3)

Combining (3.1)–(3.3), we get the required result.

Apart from Lemma 3.1, to fulfill the objective of this paper, the following compatibility condition
is required:

(AF4): for every positive term sequence vn =
(
x(i)

n

)m

i=1
, ∃ I = (τi)m

i=1 ⪰ 0 satisfying

I ⊕ F(svn) ⪯ F(vn−1) implies I ⊕ F(snvn) ⪯ F(sn−1vn−1).

Our findings rely mostly on the class of vector-valued nonlinear operators satisfying (AF1), (AF3)
and (AF4) denoted by Πb

s .

Remark 3.1. The collection of vector-valued nonlinear operators Πb
s is non-empty.

Let F : Pm → Rm be defined by F((xi)m
i=1) =

(
loge(xi + 1)

)m
i=1 for all v ∈ Pm, and then (AF1) and (AF3)

are obvious.
We establish (AF4): Let I ⊕ F(svn) ⪯ F(vn−1), and then for m-tuple

I =
(
loge(sn−1), loge(sn−1), · · · , loge(sn−1)

)
=

(
loge(sn−1)

)m

1
, we have(

loge(sn−1)
)m

1
⊕ F

(
s
(
x(i)

n

)m

i=1

)
⪯ F

((
x(i)

n−1

))m

i=1(
loge(sn−1)

)m

1
⊕

(
loge

(
sx(i)

n + 1
))m

i=1
⪯

(
loge

(
x(i)

n−1 + 1
))m

i=1

⇒
(
loge

(
snx(i)

n + sn−1
))m

i=1
⪯

(
loge

(
x(i)

n−1 + 1
))m

i=1
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⇒ loge

(
snx(i)

n + sn−1
)
≤ loge

(
x(i)

n−1 + 1
)

for each i

⇒ snx(i)
n ≤ x(i)

n−1 + 1 − sn−1 for each i.

Now, consider

I ⊕ F(snvn) =
(
loge(sn−1)

)m

1
⊕

(
loge(snx(i)

n + 1)
)m

i=1

⪯
(
loge(sn−1)

)m

1
⊕

(
loge(x(i)

n−1 + 1 − sn−1 + 1)
)m

i=1

=
(
loge(sn−1x(i)

n−1 − s2n−2 + 2sn−1)
)m

i=1
=

(
loge(sn−1x(i)

n−1 + sn−1(2 − sn−1))
)m

i=1

⪯
(
loge(sn−1x(i)

n−1 + 1)
)m

i=1
= F

((
sn−1x(i)

n−1

)m

i=1

)
= F

(
sn−1vn−1

)
.

Hence, F ∈ Πb
s .

Example 3.3. Let F : Pm → Rm be defined by

(a) F(v) =
(
loge(xi)

)m
i=1;

(b) F(v) =
(
xi + loge(xi)

)m
i=1;

(c) F(v) = loge(x2
i + xi)m

i=1;
(d) F(v) =

(
− 1
√

xi

)m

i=1
;

(e) F(v) =
(
xa

i

)m

i=1
; a > 0;

(f) F(v) =
(
loge(xi + 1)

)m
i=1.

Note that the Definitions (a)–(d) satisfy (AF1)–(AF3), while (e), (f) belong to the family Πb
s .

Define F : R2
+ → R

2 by F((g1, g2)) =
(
gt

1, loge(g2 + 1)
)
, t > 0, and then F ∈ Πb

s .

The following lemma explains the reasons to omit axiom (AF2).

Lemma 3.2. Let F satisfy (AF1), and {vn}n∈N ⊂ P
m is a decreasing sequence satisfying limn→∞ u(i)

n =

−∞. Then limn→∞ v(i)
n = 0 for each i ∈ {1, 2, · · · ,m}.

4. Common fixed points of (ζ,F)-contractions

Recently, Altun, et al. [2] obtained an existence theorem involving a vector-valued nonlinear
operator and explained it through nontrivial examples. We will introduce and investigate the notion
of (ζ,F)-contractions where the operator F is taken from Πb

s and ζ is defined below.

Definition 4.1. Let F ∈ Πb
s and I ≻ 0. The mapping T : (G,A, s) → (G,A, s) is said to be an (s,F)-

contraction, if it satisfies the following inequality:

A(T (l),T (q)) ≻ 0⇒ I ⊕ F(s ⊙ A(T (l),T (q)) ⪯ F(A(l, q)), for all l, q ∈ G. (4.1)

Remark 4.1. Note that for s = 1, Definition 4.1 is identical to Perov’s type F-contraction introduced
by Altun, et al. [2]. Thus, the class of (s,F)-contractions (defined in Definition 4.1) is wider compared
to that of Perov’s type F-contraction introduced by Altun, et al. [2]. Now, we explain inequality (4.1)
with the following example (Example 4.1).

AIMS Mathematics Volume 8, Issue 11, 26021–26044.
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Example 4.1. Let G = {ln = 2
n
2 n|n ∈ N}. Define A : G × G → Pm by A (l, q) =

(
|l − q|2

)m

1
, and

then (G,A, s = 2) is a vector-valued b-metric space. Define the mapping ϕ : G → G by

ϕ(l) =
{

2
n−1

2 (n − 1) if l = ln;
l0 if l = l0.

Take (1)m
1 = I ≻ 0 and define F : Pm → Rm by F

(
(gi)m

i=1
)
= (gi)m

i=1. Then, for every l, q ∈ G such
that ϕ(l) , ϕ(q), we have

F (2 ⊙ A(ϕ(l), ϕ(q))) ⊖ F (A(l, q)) ⪯ ⊖I.

Indeed, for l = ln+k and q = ln, consider

2 ⊙ A(ϕ(ln+k), ϕ(ln)) ⊖ A(ln+k, ln)

=

((
2

n+k
2 (n + k − 1) − 2

n
2 (n − 1)

)2
−

(
2

n+k
2 (n + k) − 2

n
2 (n)

)2
)m

1

=
(
2n

(
1 − 2

k
2
) (

2
k
2 (2n + 2k − 1) − (2n − 1)

))m

1
≤ (−1)m

1 = ⊖ (1)m
1 .

We notice that F ∈ Πb
s . Indeed, for F

(
(gi)m

i=1
)
= (gi)m

i=1, axioms (AF1) and (AF3) hold. For axiom (AF4),
we proceed as follows: Let I ⊕ F

(
s ⊙

(
g(i)

n

)m

i=1

)
⪯ F

((
g(i)

n−1

))m

i=1
, that is, 1 + ℓg(i)

n ≤ g(i)
n−1 for each i ∈

{1, 2, · · · ,m}. Now, consider

I ⊕ F
(
ℓn ⊙

(
g(i)

n

)m

i=1

)
= I ⊕ ℓn ⊙

(
g(i)

n

)m

i=1

= I ⊕ ℓn−1 ⊙
(
ℓg(i)

n

)m

i=1
⪯ I ⊕ ℓn−1 ⊙

(
g(i)

n−1 − 1
)m

i=1

= 1 + ℓn−1g(i)
n−1 − ℓ

n−1 = 1 − ℓn−1 + ℓn−1g(i)
n−1 for each i

⪯
(
ℓn−1g(i)

n−1

)m

i=1
= F

(
ℓn−1 ⊙

(
g(i)

n−1

)m

i=1

)
.

This shows that for I = (1)m
1 , ϕ is an F-contraction.

Remark 4.2. We observe that the function αs (defined in [1]) is superficial because we can always

have a function ζ : G ×G → [0,∞) defined by ζ(l, q) =
αs(l, q)

s2 with the following properties:

(1) (ϕ is ζ-admissible)

ζ(l, q) ≥ 1 implies ζ(ϕ(l), ϕ(q)) ≥ 1 for all l, q ∈ G,

(2) the αs-completeness implies ζ-completeness and vice versa.

Definition 4.2. Let G be a non-empty set, and ζ : G ×G → [0,∞). The function ϕ : G → G is said to
be ζ-admissible if

ζ(l, q) ≥ 1 implies ζ(ϕ(l), ϕ(l)) ≥ 1 for all l, q ∈ G and

triangular ζ-admissible if in addition ζ follows

ζ(l, j) ≥ 1, ζ( j, q) ≥ 1, imply ζ(l, q) ≥ 1.

AIMS Mathematics Volume 8, Issue 11, 26021–26044.
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Definition 4.3. The mappings W, E : G → G defined on the space (G,A, s) and satisfying the inequality

ζ(l, q) ≥ 1 implies ζ(W(l), EW(l)) ≥ 1 and ζ(E(q),WE(q)) ≥ 1 for all l, q ∈ G

are called weakly ζ-admissible. Moreover, W, E are called triangular weakly ζ-admissible mappings if

(1) ζ(l, q) ≥ 1 implies ζ(W(l), EW(l)) ≥ 1 and ζ(E(q),WE(q)) ≥ 1 for all l, q ∈ G,

(2) ζ(l, u) ≥ 1, ζ(u, q) ≥ 1, imply ζ(l, q) ≥ 1,

for all l, q, u ∈ G.

Example 4.2. Let G = [0,∞), and

W(g) =
{

g if g ∈ [0, 1);
1 if g ∈ [1,∞),

E(t) =
{

t
1
3 if t ∈ [0, 1);

1 if t ∈ [1,∞).

Define ζ : G ×G → R+0 by ζ(l, q) =
{

1 + q − l if l, q ∈ [0, 1);
0 if l, q ∈ [1,∞).

If
{
ζ(l, q) ≥ 1;
β(q, u) ≥ 1,

then
{

l − q ≤ 0;
q − u ≤ 0,

which implies that l − u ≤ 0. Hence, ζ(l, u) = 1 + u − l ≥ 1,

ζ(W(l), EW(l)) = ζ(l, l
1
3 ) ≥ 1, and ζ(E(q),WE(q)) = ζ(q

1
3 , q

1
3 ) ≥ 1,

for all l, q ∈ [0, 1).

Definition 4.4. Let (G,A, s) be a vector-valued b-metric space, ζ : G × G → [0,∞), l ∈ G, and
sequence {ln} ⊆ G. A mapping q : G → G is ζ-continuous at l = l0 if whenever

lim
n→∞

A(ln, l) = 0 and ζ(ln, ln+1) ≥ 1, we have lim
n→∞

A(q(ln), q(l)) = 0.

Example 4.3. Let G = [0,∞) and define A : G ×G → Rm
0 by

A(l, q) =
(
|H|2, |H|3, · · · , |H|m+1

)
∀ l, q ∈ G,

where H = |l − q|, and let q : G → G be defined by

q(l) =
{

sin(πl) if l ∈ [0, 1];
cos(πl) + 2 if l ∈ (1,∞),

ζ(l, q) =
{

l + q + 1 if l, q ∈ [0, 1];
0 otherwise.

Obviously, q is not continuous at l0 = 1; however, q is a ζ-continuous mapping at this point. Indeed,
the assumption limn→∞A(ln, l0) = 0 leads us to choose, ln = 1 − 1

n ⊆ [0, 1] and ζ(ln, ln+1) ≥ 1 directs us
to choose [0, 1] as the domain of mapping q. Thus,

lim
n→∞
|q(ln) − q(l)|i = lim

n→∞

(
sin

(
π

(
1 −

1
n

)))i

= 0 for each i; 2 ≤ i ≤ m + 1.

Hence, limn→∞A(q(ln), q(l)) = 0.

Definition 4.5. If an arbitrary Cauchy sequence {ln} ⊆ G satisfying ζ(ln, ln+1) ≥ 1 converges in G, the
space (G,A, s) is called ζ-complete.
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Remark 4.3. Every complete vector-valued b-metric space is a ζ-complete vector-valued b-metric
space but not conversely.

Look at the following example.

Example 4.4. Let G = (0,∞) and define the vector-valued b-metric A : G ×G → Rm
0 by

A(l, q) =
(
|H|2, |H|3, · · · , |H|m+1

)
for all l, q ∈ G,

where H = |l − q|. Define ζ : G ×G → [0,∞) by

ζ(l, q) =
{

l2 + q2 if l, q ∈ [2, 5];
0 if not in [2, 5].

We observe that the space (G,A, s) is not complete, but it satisfies ζ-completeness criteria.

Definition 4.6. If an arbitrary sequence {ln} ⊂ G satisfies the condition

ζ(ln, ln+1) ≥ 1 and A(ln, l)→ 0⇒ ζ(ln, l) ≥ 1,

∀ n ∈ N, then the space (G,A, s) is known as a ζ -regular space.

Let G = [2, 5] and define vector-valued b-metric as in Example 3.1 and ζ as in Example 4.4.
Let ln = 2 + 3

n be nth term of a sequence in G. Then, (G,A, s) is a ζ-regular space.
Suzuki [30] established the following lemma.

Lemma 4.1. [30] If there is a number C > 0 such that the sequence {xn} ⊂ (G, d) satisfies the inequality

d(xn, xn+1) ≤ Cn−ν for every ν > 1 + log2 s,

then {xn} is a Cauchy sequence.

The following Lemma extends Lemma 4.1.

Lemma 4.2. If there is a number C > 0 such that the sequence {xn} ⊂ (G,A, s) satisfies the inequality

A(xn, xn+1) ⪯
(
Cn−ν

)m
1 for every ν > 1 + log2 s and for every positive integer n,

then {xn} is a Cauchy sequence.

Proof. Let G be any non-empty set and s = max{si : 1 ≤ i ≤ m}. Let di : G × G → [0,∞) be
a b-metric for every i ∈ {1, 2, 3, · · · ,m} and si ≥ 1. Define the vector-valued b-metric A by

A(q, t) = (di(q, t))m
i=1 for all q, t ∈ G.

Let {xn} be a sequence in G and assume that

A(xn, xn+1) ⪯
(
Cn−ν

)m
1 for every ν > 1 + log2 s and for every n ∈ N.

Then, by definition of partial order ⪯ defined by (2.1), we have for each i

di(xn, xn+1) ≤ Cn−ν for every ν > 1 + log2 si and for every n ∈ N.
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Lemma 4.1 does not depend on a particular b-metric; therefore, Lemma 4.1 can be applied for
each di (1 ≤ i ≤ m). Thus, {xn} is a Cauchy sequence with respect to every di (1 ≤ i ≤ m). Thus,

di(xn, xm)→ 0 as n,m→ ∞ for each i.

This leads us to write that

A(xn, xm)→ (0, 0, · · · , 0) = O as n,m→ ∞.

Hence, {xn} is a Cauchy sequence in (G,A, s).

Now, we have an analogue of Lemma 4.2 subject to F contraction.

Lemma 4.3. Let {Dn} be a sequence in Pm where Dn := ( j(i)
n )m

i=1. Assume that there exist a mapping
F : Pm → Rm, I = (τi)m

i=1 ≻ O and κ ∈ (0, ℓ) : ℓ = 1/1 + log2 s satisfying (AF3) and the following:

n ⊙ I ⊕ F (sn ⊙ Dn) ⪯ F (D0) . (4.2)

Then, Dn ⪯
(
Cn−

1
κ

)m

1
.

Proof. The inequality (4.2) implies limn→∞ F (sn ⊙ Dn) = (−∞)m
1 , and by Lemma 3.2, we get

limn→∞ sn ⊙ Dn = 0. By (AF3),

lim
n→∞

(sn j(i)
n )κϑ(i)

n = 0 for each i ; F(sn ⊙ Dn) := (ϑ(i)
n )m

i=1 ∈ R
m.

By (4.2), we also have the following information for each i.(
sn j(i)

n

)κ
ϑ(i)

n − (sn j(i)
n )κϑ(i)

0 ≤ −
(
sn j(i)

n

)κ
nτi ≤ 0. (4.3)

As n→ ∞ in (4.3), we have
lim
n→∞

n
(
sn j(i)

n

)κ
= 0 for each i.

Equivalently there exists a positive integer N1 such that n
(
sn j(i)

n

)κ
≤ 1 for n ≥ N1. It then follows for

each i that

sn j(i)
n ≤

1

n
1
κ

⇒ j(i)
n ≤

1
sn n−

1
κ ≤

1
s

n−
1
κ .

This implies j(i)
n ≤ Cn−

1
κ for n ≥ N1 and for each i, where C = s−1. Hence, Dn ⪯

(
Cn−

1
κ

)m

1
.

5. Fixed point theorems

Recently, Mı́nak et al. [20] and Cosentino et al. [12] have established some fixed point theorems
for the existence of fixed points of Ćirić type and Hardy-Rogers type F-contractions, respectively. In
this section, we revisit these notions in a vector-valued b-metric space (G,A, s). For this purpose, we
consider the operator F : Pm → Rm that is an element of the collection Πb

s . We introduce the notions
of (ζ,F)-Ćirić contraction and (ζ,F)-Hardy-Rogers contraction defined as follows:
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Definition 5.1. Let (G,A, s) be a vector-valued b metric space. The mappings W, E : G → G are said
to form (ζ,F)-Ćirić contraction if there exist F ∈ Πb

s and I ≻ 0 such that

A(W(l), E(q)) ≻ 0∀ l, q ∈ G, ζ(l, q) ≥ 1 imply

I ⊕ F(sζ(l, q) ⊙ A(W(l), E(q)) ⪯ F(M(l, q)), (5.1)

where

∥M(l, q)∥ = max


∥A(l, q)∥ , ∥A(l,W(l))∥ , ∥A(q, E(q))∥ ,

∥A(l, E(q))∥ + ∥A(q,W(l))∥
2s

 , and

∀x, y ∈ Pm, x ⪯ y⇔ ∥x∥ ≤ ∥y∥ .

Recall that the norm on Pm is defined by

∥x∥ =

√√
m∑

i=1

|xi|
2 ∀ x = (x1, x2, ..., xm) ∈ Pm.

Also, we have assumed that{
A(l, q),A(l,W(l)),A(q, E(q)),

A(l, E(q)) ⊕ A(q,W(l))
2s

}
⊂ Pm.

Definition 5.2. Let (G,A, s) be a vector-valued b metric space. The mappings W, E : G → G are said to
form (ζ,F)-Hardy-Rogers contraction if there exist ai ≥ 0 (i = 1, 2, 3, 4) such that a1+a2+a3+2sa4 = 1,
F ∈ Πb

s and I ≻ 0 such that

A(W(l), E(q)) ≻ 0∀ l, q ∈ G, ζ(l, q) ≥ 1 imply

I ⊕ F(sζ(l, q) ⊙ A(W(l), E(q)) ⪯ F(H(l, q)), (5.2)

where

0 ≺ H(l, q) = a1 ⊙ A(l, q) ⊕ a2 ⊙ A(l,W(l)) ⊕ a3 ⊙ A(q, E(q))) ⊕ a4 ⊙ [A(l, E(q)) ⊕ A(W(l), q)].

Remark 5.1. Every (ζ,F)-Hardy-Rogers contraction implies (ζ,F)-Ćirić contraction but not
conversely.

The following main result states the requirements that ensure the existence of common fixed points
of (ζ,F)-Ćirić contraction.

Theorem 5.1. Let W, E : G → G be a pair of ζ-continuous and weakly ζ-admissible mappings

forming (ζ,F)-Ćirić contraction defined on ζ-complete space (G,A, s). If ∃ κ ∈
(
0,

1
1 + log2 s

)
and g0

in G such that ζ(g0,W(g0)) ≥ 1, then h is a common fixed point of W, E provided ζ(h, h) ≥ 1.
Moreover, if W, E are not ζ-continuous, then assuming that G is ζ-regular space and the operator F is
continuous guarantees the existence of a fixed point.
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Proof. Uniqueness of the common fixed point: Suppose that h and v are two different common fixed
points of W and E. Then, W(h) = h , v = E(v). It follows that A(W(h), E(v)) = A(h, v) ≻ 0.
Since ζ(h, v) ≥ 1, the contractive condition (5.1) implies

I ⊕ F(sζ(h, v)A(W(h), E(v)))

⪯ F
(
max

{
A(h, v),A(h,W(v)),A(v, E(v)),

A(h, E(v)) ⊕ A(v,W(h))
2s

})
⪯ F

(
max

{
A(h, v),A(h, h),A(v, v),

A(h, v) ⊕ A(v, h)
2s

})
= F (A(h, v)) ⪯ W(sζ(h, v)A(h, v)).

This shows that I ⪯ 0, a contradiction. Hence, the pair (W, E) has at most one common fixed point.
(a) We note that for all l , q, M(l, q) ≻ 0. Let g0 ∈ G be as in (2). We construct an iterative

sequence {gn} of points in G such that g1 = W(g0), g2 = E(g1), and generally g2n+1 = W(g2n), g2n =

E(g2n−1) for all n ∈ {0, 1, 2, 3, ...}. By assumption (1), we have

ζ(W(g0), EW(g0)) = ζ(g1, g2) ≥ 1 and ζ(E(g1),WE(g1)) = ζ(g2, g3) ≥ 1,

ζ(W(g2), EW(g2)) = ζ(g3, g4) ≥ 1 and ζ(E(g3),WE(g3)) = ζ(g4, g5) ≥ 1,

and continuing on the same pattern, we have

ζ(W(g2n), EW(g2n)) = ζ(g2n+1, g2n+2) ≥ 1 and ζ(E(g2n−1),WE(g2n−1)) = ζ(g2n, g2n+1) ≥ 1.

Hence, ζ(gn, gn+1) ≥ 1 for all n. If A(W(g2n), E(g2n+1)) = 0, then g2n is a common fixed point of
mappings W, E. Let A(W(g2n), E(g2n+1)) ≻ 0, and then by contractive condition (5.1), we get

F (s ⊙ A(g2n+1, g2n+2)) ⪯ F (sζ(g2n, g2n+1) ⊙ A(W(g2n), E(g2n+1))) ≺ F (M(g2n, g2n+1)) ⊖ I,

for all n = 0, 1, 2, ... where

M(g2n, g2n+1) = max


A(g2n, g2n+1),A(g2n,W(g2n)),A(g2n+1, E(g2n+1)),

A(g2n, E(g2n+1)) + A(g2n+1,W(g2n))
2s


= max


A(g2n, g2n+1),A(g2n, g2n+1),A(g2n+1, g2n+2),

A(g2n, g2n+2) + A(g2n+1, g2n+1)
2s


⪯ max {A(g2n, g2n+1),A(g2n+1, g2n+2)} .

If ∥M(g2n, g2n+1)∥ = ∥A(g2n+1, g2n+2)∥, then

F (s ⊙ A(g2n+1, g2n+2)) ≺ F (A(g2n+1, g2n+2)) ⊖ I,

which is a contradiction to (AF1). Therefore,

F (s ⊙ A(g2n+1, g2n+2)) ≺ F (A(g2n, g2n+1)) ⊖ I, (5.3)
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for all n ∈ {0, 1, 2, 3, ...}. Similarly, we can have

F (s ⊙ A(g2n+2, g2n+3)) ≺ F (A(g2n+1, g2n+2)) ⊖ I, (5.4)

for all n ∈ {0, 1, 2, 3, ...}. Hence, from (5.3) and (5.4), we have

F (s ⊙ A(gn, gn+1)) ≺ F (A(gn−1, gn)) ⊖ I, (5.5)

for all n ∈ {0, 1, 2, 3, ...}. Let bn = A(gn, gn+1) for each n ∈ {0, 1, 2, 3, ...}, and by (5.5) and (AF4), we
have

I ⊕ F (sn ⊙ bn) ⪯ F
(
sn−1 ⊙ bn−1

)
, n ∈ N.

Repeating the above process, we obtain

F (sn ⊙ bn) ≺ F (b0) ⊖ n ⊙ I, n ∈ N. (5.6)

By Lemma 4.3, {bn} ∈ O(n−
1
κ ). Since 1

κ
∈ (1 + log2 s,∞), by Lemma 4.1, we infer that {gn} is a

Cauchy sequence. Since G is a ζ-complete vector-valued b-metric space, there exists (say) h ∈ G such
that g2n+1 → h and g2n+2 → h as n→ ∞. The ζ-continuity of E implies

h = lim
n→∞

gn = lim
n→∞

g2n+1 = lim
n→∞

g2n+2 = lim
n→∞

E(g2n+1) = E( lim
n→∞

g2n+1) = E(h).

If A(h,W(h)) ≻ 0, and ζ(h, h) ≥ 1, then by contractive condition (5.1), we have

I ⊕ F(s ⊙ A(W(h), h)) ⪯ I ⊕ F(sζ(h, h) ⊙ A(W(h), E(h))) ⪯ F(M(h, h)) = F(A(W(h), h)),

a contradiction. Thus, A(W(h), h) = 0 and (A1) imply h = W(h). Thus, we have W(h) = E(h) = h.
Hence, (W, E) has a common fixed point h.

(b) We have two different cases.
Case 1. if there exists a subsequence {gn j} j∈N ⊂ {gn}n∈N such that

gn j = W(h) for all even j and gn j = E(h) for all odd j,

then
h = lim

j→∞
gn j = lim

j→∞
W(h) = W(h) and h = lim

j→∞
gn j = lim

j→∞
E(h) = E(h).

So, we are done.
Case 2. if there is no such subsequence of {gn j}n∈N then there exists a natural number L0 such that

for every n ≥ L0, we have A(W(g2n), E(h)) ≻ 0 and A(E(g2n+1),W(h)) ≻ 0. It is given that the space G
is ζ-regular, and thus ζ(g2n+1, h) ≥ 1, ζ(g2n, h) ≥ 1. By contractive condition (5.1), we have

I ⊕ F(sζ(g2n, υ) ⊙ A(W(g2n), E(h)))

⪯ F

max


A(g2n, h),A(g2n,W(g2n)),A(h, E(h)),

A(g2n, E(h)) ⊕ A(h,W(g2n))
2s


 . (5.7)
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We show that A(h, E(h)) = 0. Suppose on the contrary that A(h, E(h)) = u ≻ 0. Put yn = A(gn, h) for
all n ∈ N. Since limn→∞ gn = h, there exists L1 ∈ N such that for every n ≥ L1 both yn ≺

u
2 and bn <

u
2

hold. Consequently, by (5.7), we have

I ⊕ F(sζ(g2n, h)A(W(g2n), E(h)))

⪯ F
(
max

{
y2n,b2n,u,

A(g2n, E(h)) ⊕ y2n+1

2s

})
⪯ F

(
max

{
y2n,b2n,u,

s ⊙ y2n ⊕ s ⊙ u ⊕ y2n+1

2s

})
⪯ F

(
max

{
u
2
,

u
2
,u,

s
2 ⊙ u ⊕ s ⊙ u ⊕ u

2

2s

})
= F(u).

Thus, for every n ≥ max{L0, L1}, we obtain

I ⊕ F(sζ(g2n, h)A(W(g2n), E(h))) ≤ W(A(h, E(h))). (5.8)

Since F is continuous and increasing, by Lemma 3.1 and inequality (5.8), we have

I ⊕ F(A(h, E(h))) ⪯ I ⊕ F(sζ(g2n, h) ⊙ lim
n→∞

inf A(W(g2n), E(h)))

⪯ I ⊕ lim
n→∞

inf F(sζ(g2n, h) ⊙ A(W(g2n), E(h)))

⪯ F(A(h, E(h))).

The above inequality shows that I ⪯ 0, which is a contradiction. Thus, A(E(h), h) = 0, and hence
h = E(h). Similarly, we can prove that h = W(h), and consequently, h is a common fixed point of W
and E.

Note that for W ≡ E, s = 1 and ζ(l, q) = 1, ∀ l, q ∈ G, Theorem 5.1 reduces to Altun’s fixed point
theorem [2].
The following example illustrates Theorem 5.1.

Example 5.1. Let G = [0,∞) and define A : G ×G → Rm by A (l, q) =
(
|l − q| j

)m+1

j=2
.

Define ζ : G ×G → [0,∞) by ζ(l, q) =
{

e∥A(l,q)∥ for all l, q ∈ G with l ≥ q;
0 for all l, q ∈ G with l < q,

so, (G,A, s) is a ζ-complete vector-valued b-metric space with s = 2m. Define the mappings W, E : G →
G, for all g ∈ G, by

W (g) = loge(1 +
g
6

), E(g) = loge(1 +
g
7

).

W is ζ-continuous self-mapping: Indeed, consider the sequence ln =
K
n2 for all positive integers n,

K
n2 ≥

K
(n+1)2 , so ζ(ln, ln+1) ≥ 1, and limn→∞A(ln, l) = 0 implies (l2, l3, · · · , lm+1) = 0. This is true for l = 0.

Now, lim
n→∞

A(W(ln),W(l)) = lim
n→∞

((
loge

(
1 +

K
6n2

)) j)m+1

j=2
= 0W .
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Thus, whenever ζ(ln, ln+1) ≥ 1, and limn→∞A(ln, l) = 0, we have limn→∞A(W(ln),W(l)) = 0W .
Similarly, E is a ζ-continuous self-mapping. To prove that (W, E) is a weakly ζ-admissible pair of
mappings, let l, q ∈ G be such that q = W(l), and thus, we have q = loge

(
1 + l

6

)
.

W(l) = loge

(
1 +

l
6

)
≥ loge

1 + loge(1 +
l
6 )

7

 = loge

(
1 +

q
7

)
= E(q) = EW(l).

Thus, ζ(Wl, EW(l)) ≥ 1. Again, let q, t ∈ G be such that t = E(q), and thus, we have t = loge

(
1 + q

7

)
.

E(q) = loge

(
1 +

q
7

)
≥ loge

1 + loge

(
1 + q

7

)
6

 = loge

(
1 +

t
6

)
= W(t) = WE(q).

Thus, ζ(Eq,WE(q)) ≥ 1. Hence, (W, E) is a weakly ζ-admissible pair of mappings. Now, for each
l, q ∈ G with l ≥ q and choosing z such that z

2e∥A(l,q)∥ > 1 + log2 s, we have

sζ(l, q) ⊙
(
|W(l) − E(q)| j + 1

)m+1

j=2
=

(
se∥A(l,q)∥|W(l) − E(q)| j + 1

)m+1

j=2

=

se∥A(l,q)∥

∣∣∣∣∣∣loge

(
1 +

l
6

)
− loge

(
1 +

q
7

)∣∣∣∣∣∣ j

+ 1

m+1

j=2

⪯

(
se∥A(l,q)∥

∣∣∣∣∣ l
6
−

q
7

∣∣∣∣∣ j

+ 1
)m+1

j=2
.

Define the function F : Pm → Rm by F(v) =
(
loge(vi + 1)

)m+1
i=2 , for all v = (vi)m+1

i=2 ∈ P
m, and then F ∈ Πb

s

(as shown above). Hence, for all l, q ∈ G such that A(W(l), E(q)) ≻ 0, I =
(
loge

(
z

se∥A(l,q)∥

))m

1
, and we

obtain
I ⊕ F (sζ(l, q) ⊙ A(W(l), E(q))) ⪯ F (M(l, q)) .

This shows that the inequality (5.1) holds true for all l, q ∈ G. Thus, the mappings W, E fulfill all the
requirements of Theorem 5.1; moreover, W, E have a unique common fixed point h = 0.

Corollary 5.1. Let (G,A, s) be a ζ-complete vector-valued b-metric space. Suppose that W, E : G → G
are self-mappings such that

s3 ⊙ A(W(l), E(q)) ⪯ Q

max


A(l, q),A(l,W(l)),A(q, E(q)),

A(l, E(q)) ⊕ A(q,W(l))
2s


 ,

for all l, q ∈ G, ρ(Q) ∈
(
0,

1
1 + log2 s

)
. If W or E is continuous, then W, E have a unique common fixed

point in G.

Proof. Define ζ(l, q) = s2 for all l, q ∈ G and let I ≻ 0 be such that Q is a scalar matrix of order m having
every non-zero entry equal to e−t, t > 0. Then, for F(v) =

(
loge(vi)

)m+1
i=2 and applying Theorem 5.1, we

have the required result. Note that for s = 1 and W ≡ E, Corollary 5.1 reduces to Perov’s fixed point
theorem [26].
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The weak ζ-admissibility.

Definition 5.3. The mapping W : G → G defined on a space (G,A, s) and satisfying the inequality

ζ(l, q) ≥ 1 implies ζ(W(l),W2(l)) ≥ 1 and ζ(W(q),W2(q)) ≥ 1 for all l, q ∈ G

is called weakly ζ-admissible.

Definition 5.4. The weakly ζ-admissible mapping W : G → G defined on a space (G,A, s) is called
a (ζ,F)-weak contraction, if there exist F ∈ Πb

s , I ≻ 0 such that

I ⊕ F(sζ(l, q) ⊙ A(W(l),W(q))) ⪯ F (M(l, q)) ,

for all l, q ∈ G, whenever min {A(W(l),W(q)),M(l, q)} ≻ 0.

The following corollary extends the results in Mı́nak et al. [20].

Corollary 5.2. Let W : G → G be a ζ-continuous and (ζ,F)-weak contraction defined on ζ-complete

space (G,A, s). If ∃ κ ∈
(
0,

1
1 + log2 s

)
and g0 in G such that ζ(g0,W(g0)) ≥ 1, then h is a fixed point of

W provided ζ(h, h) ≥ 1. Moreover, if W is not ζ-continuous, then assuming that G is ζ-regular space
and the operator F is continuous guarantees the existence of a fixed point.

Proof. Set E ≡ W in Theorem 5.1.

The following theorem is on the (ζ,F)-Hardy-Rogers contraction.

Theorem 5.2. Let W, E : G → G be a pair of ζ-continuous and weakly ζ-admissible mappings forming

a (ζ,F)-Hardy-Rogers contraction defined on ζ-complete space (G,A, s). If ∃ κ ∈
(
0,

1
1 + log2 s

)
and

g0 in G such that ζ(g0,W(g0)) ≥ 1, then h is a common fixed point of W, E provided ζ(h, h) ≥ 1.
Moreover, if W, E are not ζ-continuous, then assuming that G is ζ-regular space and the operator F is
continuous, guarantees the existence of a fixed point.

Proof. Since

H(l, q) = a1 ⊙ A(l, q) ⊕ a2 ⊙ A(l,W(l)) ⊕ a3 ⊙ A(q, E(q))
⊕ a4 ⊙ [A(l, E(q)) ⊕ A(q,W(l))]
= a1 ⊙ A(l, q) ⊕ a2 ⊙ A(l,W(l)) ⊕ a3 ⊙ A(q, E(q))

⊕ 2sa4 ⊙

[
A(l, E(q)) ⊕ A(q,W(l))

2s

]
⪯ a1 ⊙M(l, q) ⊕ a2 ⊙M(l, q) ⊕ a3 ⊙M(l, q)
⊕ 2sa4 ⊙M(l, q)
= (a1 + a2 + a3 + 2sa4) ⊙M(l, q) =M(l, q),

the inequality (5.2) implies the inequality (5.1), so the proof of Theorem 5.2 follows from Theorem 5.1.
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6. Results subject to binary relation

Let M(l, q) and H(l, q) represent the same vector as in the above section. Let R represent a binary
relation over G. We need the following definitions.

Definition 6.1. We say the mappings W, E weakly increasing subject to R if for all l, q ∈ G, we have

lRq implies W(l)REW(l) and E(q)RWE(q).

Let ζ : G ×G → R+0 be given by

ζ(l, q) =
{

1 if lRq;
0 otherwise.

Note that Definition 6.1 seems to be a particular case of Definition 4.2.

Definition 6.2. The vector-valued b-metric space (G,A, s) is said to be R-regular if for any sequence,
{gn} ⊂ G such that gnRgn+1 and gn → h as n→ ∞, we have gnRh for all n ∈ N.

Now, we are able to revisit Theorems 5.1 and 5.2.

Theorem 6.1. Let W, E : G → G be R-continuous and R-weakly increasing mappings defined on
R-complete space (G,A, s,⪯). If there exist g0 ∈ G such that g0RW(g0), F ∈ πb

s , I ≻ 0 and κ ∈(
0,

1
1 + log2 s

)
such that

I ⊕ F(s3A(W(l), E(q))) ⪯ F (M(l, q)) ,

for all l, q ∈ G with lRq, whenever min{A(W(l), E(q)),M(l, q)} ≻ 0, then W and E admit a common
fixed point. Moreover, if W, E are not R-continuous, then assuming that G is R-regular space and the
operator F is continuous guarantees the existence of a common fixed point.

Proof. Define

ζ(l, q) =
{

s2 if lRq;
0 otherwise,

and follow the proof of Theorem 5.1.

Theorem 6.2. Let W, E : G → G be R-continuous and R-weakly increasing mappings defined on
R-complete space (G,A, s,⪯). If there exist g0 ∈ G such that g0RW(g0), F ∈ πb

s , I ≻ 0 and κ ∈(
0,

1
1 + log2 s

)
such that

I ⊕ F(s3A(W(l), E(q))) ⪯ F (H(l, q)) ,

for all l, q ∈ G with lRq, whenever min{A(W(l), E(q)),H(l, q)} ≻ 0, then W and E admit a common
fixed point. Moreover, if W, E are not R-continuous, then assuming that G is R-regular space and the
operator F is continuous guarantees the existence of a common fixed point.

Proof. Define

ζ(l, q) =
{

s2 if lRq;
0 otherwise,

and follow the proof of Theorem 5.2.
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7. Results in graph theory

Jachymski [15] recently presented a very intriguing approach to the theory of fixed points in some
generic structures utilizing the context of metric spaces furnished with a graph. Let (G,A, s) be a
vector-valued b-metric space, and δ denotes the diagonal of the Cartesian product G × G. Assume
that the set V(B) of the vertices in a directed graph B coincides with G, where e(B) is the set of edges
in the graph. Assume that B does not have any parallel edges. Then, B can be associated with the
pair (V(B), e(B)). Now we give some results that generalize the results in Jachymski [15].

Definition 7.1. Let W and E be two self-mappings on a vector-valued b-metric space (V(B),A, s)
endowed with graph B. A pair [W, E] is said to be,

(i) weakly B-connected if (W(g), EW(g)) ∈ e(B) and (E(g),WE(g)) ∈ e(B) for all g ∈ G,
(ii) partially weakly B-connected if (W(g), EW(g)) ∈ e(B) for all g ∈ G.

Let (V(B),A, s) be a vector-valued b-metric space associated with graph B and let

ζ(g1, g2) =
{

1 if (g1, g2) ∈ e(B);
0 otherwise.

Then, the above definitions are special cases of the definition of weak ζ-admissibility and partially
weak ζ-admissibility.

Definition 7.2. Let (V(B),A, s) be a vector-valued b-metric space associated with graph B. We say
it is B-complete if and only if every Cauchy sequence {gn} in G satisfying (gn, gn+1) ∈ e(B) ∀ n ∈ N
converges in G.

Definition 7.3. Let (V(B),A, s) be a vector-valued b-metric space associated with graph B and W :
G → G be a mapping. We say that W is a B-continuous mapping on (G,A, s) if for given g ∈ G and
sequence {gn}, limn→∞A(gn, g) = 0 and (gn, gn+1) ∈ e(B) ∀ n ∈ N imply limn→∞A(W(gn),W(g)) = 0.

Definition 7.4. Let (V(B),A, s) be a vector-valued b-metric space associated with graph B. The
pair [W, E] is said to be an B-compatible if and only if limn→∞A(WE(gn), EW(gn)) = 0, whenever {gn}

is a sequence in G satisfying (gn, gn+1) ∈ e(B) and

lim
n→∞

W(gn) = lim
n→∞

E(gn) = g for some g ∈ G.

Now we are able to revisit Theorems 5.1 and 5.2 in the framework of vector-valued b-metric space
associated with graph B

Theorem 7.1. Let W, E : V(B) → V(B) be B-continuous and weakly B-increasing self-mappings
defined on B-complete vector-valued b-metric space (V(B),A, s) endowed with graph. If there

exist g0 ∈ V(B) such that (g0,W(g0)) ∈ e(B), F ∈ Πb
s , I ≻ 0 and κ ∈

(
0,

1
1 + log2 s

)
such that

I ⊕ F(s3 ⊙ A(W(l), E(q))) ⪯ F (M(l, q)) ,

for all l, q ∈ V(B) with (l, q) ∈ e(B), whenever min{A(W(l), E(q)),M(l, q)} ≻ 0, then W and E admit a
common fixed point.
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Proof. Define

ζ(l, q) =
{

s2 if (l, q) ∈ e(B),
0 otherwise,

and follow the proof of Theorem 5.1.

Theorem 7.2. Let W, E : V(B) → V(B) be B-continuous and weakly B-increasing self-mappings
defined on B-complete vector-valued b-metric space (V(B),A, s) endowed with graph. If there exist

g0 ∈ V(B) such that (g0,W(g0)) ∈ e(B), F ∈ Πb
s , I ≻ 0 and κ ∈

(
0,

1
1 + log2 s

)
such that

I ⊕ F(s3 ⊙ A(W(l), E(q))) ⪯ F (H(l, q)) ,

for all l, q ∈ V(B) with (l, q) ∈ e(B), whenever min{A(W(l), E(q)),H(l, q)} ≻ 0, then, W and E admit a
common fixed point.

Proof. Define

ζ(l, q) =
{

s2 if (l, q) ∈ e(B);
0 otherwise,

and follow the proof of Theorem 5.2.

8. Application of Theorem 5.1

A tool used to explore the processes of disease transmission, forecast the trajectory of an outbreak,
and assess epidemic control measures is infectious disease modeling. The progression of infectious
diseases can be predicted mathematically to demonstrate the likely course of an epidemic (even in
plants) and to guide public health and plant health actions. In order to determine parameters for
different infectious diseases and utilize those parameters to calculate the impact of various treatments,
such mass vaccination programs, models use basic assumptions or collected statistics together with
mathematics. The models can assist in selecting the interventions to try and those to avoid, or it can
forecast future growth trends. In this section, we apply Theorem 5.1 to the following system of delay
integro-differential equations that represents an infectious model:

l(t) =
∫ t

t−L
W(h, l(h), l

′

(h)) dh, (8.1)

q(t) =
∫ t

t−L
E(h, q(h), q

′

(h)) dh, (8.2)

where

(a) l(t), q(t) : the prevalence of infection at time t in the population.
(b) 0 < L : the amount of time a person can still spread disease.
(c) l

′

(h), q
′

(h) : the current rate of infectivity.
(d) W(h, l(h), l

′

(h)), E(h, q(h), q
′

(h)) : the rate of newly acquired infections per unit of time.

Now, we look for existence and uniqueness of the positive, periodic solution to (8.1) and (8.2) by
the application of Theorem 5.1.
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Let ∃ p > 0 and W, E ∈ C(R × R+ × R) satisfying

W(t + p, l, q) = W(t, l, q)∀ (t, l, q) ∈ R × R+ × R.

E(t + p, l, q) = E(t, l, q)∀ (t, l, q) ∈ R × R+ × R.

Let us define the functional spaces by

F (p) = {J ∈ C1(R) : J(t + p) = J(t), t ∈ R}.

F+(p) = {J ∈ F (p) : J(t) ≥ 0 t ∈ R}.

Let V = F+(p) × F (p), and define a metric A : V × V → R2 by

A((l1, q1), (l2, q2)) = (∥l1 − l2∥
2 , ∥q1 − q2∥

2),

where ∥l∥ = max{|l(t)| : t ∈ [0, p], l ∈ F (p)}. The function ζ : V × V → [1,∞) is defined
by ζ(l, q) = K2 for all l, q ∈ V . Then, (V,A, s) is a ζ-complete vector-valued b-metric space. Now, we
develop the structure to apply Theorem 5.1. Let g(t) = l

′

(t), and h(t) = q
′

(t). Then, we have

g(t) = W(t, l(t), g(t)) −W(t − L, l(t − L), g(t − L)).

q(t) = E(t, q(t), h(t)) − E(t − L, q(t − L), h(t − L)).

Thus, Eqs (8.1) and (8.2) can be written as
l(t) =

∫ t

t−L
W(h, l(h), g(h)) dh

g(t) = W(t, l(t), g(t)) −W(t − L, l(t − L), g(t − L)).
q(t) =

∫ t

t−L
E(h, q(h), h(h)) dh

h(t) = E(t, q(t), h(t)) − E(t − L, q(t − L), h(t − L)).

Let Y : V → C(R) ×C(R) be a mapping defined by

Y(l, σ) = (Y1(l, σ),Y2(l, σ) for all (l, σ) ∈ V,

where Y1 and Y2 are defined by the following matrix equation:
Y1(l, σ)(t)

Y2(l, σ)(t)

 =


∫ t

t−L
W(h, l(h), σ(h)) dh

W(t, l(t), σ(t)) −W(t − L, l(t − L), σ(t − L))

 .
Similarly, define the mapping X : V → C(R) ×C(R) by

X(q, r) = (X1(q, r),X2(q, r) for all (q, r) ∈ V,

where X1 and X2 are defined by the following matrix equation:
X1(q, r)(t)

X2(q, r)(t)

 =


∫ t

t−L
E(h, q(h), r(h)) dh

E(t, q(t), r(t)) − E(t − L, q(t − L), r(t − L))

 .
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(I1) Suppose that the mappings W, E are bounded and periodic having period p and there exist ω,K >
0 so that ∀t ∈ R, l(t), u(t) ∈ R+ and q(t), ϵ(t) ∈ R

|W(t, l(t), q(t)) − E(t, u(t), ϵ(t))| ≤
e−ω

sK
|l(t) − u(t)| ,

(I2) there exists l0 ∈ V such that ζ(l0,Y(l0)) = K2.

Theorem 8.1. Let the mappings W, E ∈ C(R × R+ × R) satisfy conditions (I1) − (I2) and e−2ω

s2K2 <
1

4+L2 .
Then, Eqs (8.1) and (8.2) admit a common solution in F+(p).

Proof. We note that the conditions (1) and (2) of Theorem 5.1 can be verified by using (I2) and
continuity of mappings W, E respectively. In the following, we prove the contractive condition (5.1).
By definition,

Y1(l, g)(t + p) =
∫ t+p

t+p−L
W(h, l(h), g(h)) dh

=

∫ t

t−L
W(u − p, l(u − p), g(u − p)) du

=

∫ t

t−L
W(u − p + p, l(u − p + p), g(u − p + p)) du

=

∫ t

t−L
W(u, l(u), g(u)) du

= Y1(l, q)(t) for all t ∈ R, (l, g) ∈ V.

This shows that Y1(V) ⊆ F+(p). Similarly, we have that Y2(V),X1(V) and X2(V) are subsets of F+(p).
Let (l1, q1), (l2, q2) ∈ V and consider

|Y1(l1, q1)(t) − X1(l2, q2)(t)|2

=

∣∣∣∣∣∣
∫ t

t−L
W(h, l1(h), q1(h)) dh −

∫ t

t−L
E(h, l2(h), q2(h)) dh

∣∣∣∣∣∣2
≤

(∫ t

t−L
|W(h, l1(h), q1(h)) − E(h, l2(h), q2(h))| dh

)2

≤

(∫ t

t−L

(
e−ω

sK
(|l1(h) − l2(h)|)

)
dh

)2

≤
e−2ωL2

s2K2 ∥l1 − l2∥
2

and

|Y2(l1, q1)(t) − X2(l2, q2)(t)|2

=

∣∣∣∣∣∣ W(t, l1(t), q1(t)) −W(t − L, l1(t − L), q1(t − L))−
E(t, l2(t), q2(t)) + E(t − L, l2(t − L), q2(t − L))

∣∣∣∣∣∣2
≤

(
|W(t, l1(t), q1(t)) − E(t, l2(t), q2(t))|+
|W(t − L, l1(t − L), q1(t − L)) − E(t − L, l2(t − L), q2(t − L))|

)2
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≤

(
e−ω

sK
(|l1(t) − l2(t)|) +

e−ω

sK
(|l1(t − L) − l2(t − L)|)

)2

≤
4e−2ω

s2K2 ∥l1 − l2∥
2 .

Consequently, we obtain the following matrix inequality:(
∥Y1(l1, q1) − X1(l2, q2)∥2

∥Y2(l1, q1) − X2(l2, q2)∥2

)
⪯

 e−2ωL2

s2K2 ∥l1 − l2∥
2

4e−2ω

s2K2 ∥l1 − l2∥
2


=

 e−2ωL2

s2K2 0
0 4e−2ω

s2K2

 (∥l1 − l2∥
2

∥l1 − l2∥
2

)
.

Now, define the mappings F : R2
+ → R

2 by F(l, q) = (loge(l), loge(q)) and I =
(

s
e−2ωL2 ,

s
4e−2ω

)
, and we

obtain
I ⊕ F (sζ((l1, q1), (l2, q2)) ⊙ A(Y(l1, q1),X(l2, q2))) ⪯ F (A((l1, q1), (l2, q2))) .

Finally, keeping in mind the definition of mapping ζ and the above inequality, we say that the
mappings Y,X satisfy all the requirements of Theorem 5.1 and hence admit a common fixed point in
their domain. Consequently, the Eqs (8.1) and (8.2) have a positive, periodic solution.

9. Conclusions

The findings and analysis discussed here could inspire further investigation into this topic by
interested academics. A fundamental finding in vector-valued b-metric space, the main
result (Theorem 5.1) concerns an F-contraction in vector-valued b-metric spaces. In order to
demonstrate the presence of solutions to various linear and nonlinear equations reflecting models of
the associated real-world issues, the application approach is also discussed. We conclude that: (1) the
classical approach only addresses the functions while the new approach involves operators (linear and
nonlinear). (2) The classical approach only involves real numbers on both sides of inequalities (called
F-contractions). However, this approach also allows matrices and vectors on both sides of inequalities
and hence makes it applicable in engineering and optimization problems.
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8. S. Chandok, S. Radenović, Existence of solution for orthogonal F-contraction mappings via
Picard-Jungck sequences, J. Anal., 30 (2022), 677–690. https://doi.org/10.1007/s41478-021-
00362-1
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