Research article

Existence and concentration of positive solutions for a p-fractional Choquard equation

  • Received: 28 June 2021 Accepted: 06 September 2021 Published: 13 September 2021
  • MSC : 35A15, 35B38, 35J60

  • In this work, we study the existence, multiplicity and concentration behavior of positive solutions for the following problem involving the fractional $ p $-Laplacian

    $ \begin{eqnarray*} \varepsilon^{ps}(-\Delta )^{s}_{p}u + V(x)|u|^{p-2}u = \varepsilon^{\mu-N}(\frac{1}{|x|^{\mu}}\ast K|u|^{q})K(x)|u|^{q-2}u \hskip0.2cm\text{in}\hskip0.1cm \mathbb{R}^{N}, \end{eqnarray*} $

    where $ 0 < s < 1 < p < \infty $, $ N > ps $, $ 0 < \mu < ps $, $ p < q < \frac{p^{*}_{s}}{2}(2-\frac{\mu}{N}) $, $ (-\Delta)^{s}_{p} $ is the fractional $ p $-Laplacian and $ \varepsilon > 0 $ is a small parameter. Under certain conditions on $ V $ and $ K $, we prove the existence of a positive ground state solution and express the location of concentration in terms of the potential functions $ V $ and $ K $. In particular, we relate the number of solutions with the topology of the set where $ V $ attains its global minimum and $ K $ attains its global maximum.

    Citation: Xudong Shang. Existence and concentration of positive solutions for a p-fractional Choquard equation[J]. AIMS Mathematics, 2021, 6(11): 12929-12951. doi: 10.3934/math.2021748

    Related Papers:

  • In this work, we study the existence, multiplicity and concentration behavior of positive solutions for the following problem involving the fractional $ p $-Laplacian

    $ \begin{eqnarray*} \varepsilon^{ps}(-\Delta )^{s}_{p}u + V(x)|u|^{p-2}u = \varepsilon^{\mu-N}(\frac{1}{|x|^{\mu}}\ast K|u|^{q})K(x)|u|^{q-2}u \hskip0.2cm\text{in}\hskip0.1cm \mathbb{R}^{N}, \end{eqnarray*} $

    where $ 0 < s < 1 < p < \infty $, $ N > ps $, $ 0 < \mu < ps $, $ p < q < \frac{p^{*}_{s}}{2}(2-\frac{\mu}{N}) $, $ (-\Delta)^{s}_{p} $ is the fractional $ p $-Laplacian and $ \varepsilon > 0 $ is a small parameter. Under certain conditions on $ V $ and $ K $, we prove the existence of a positive ground state solution and express the location of concentration in terms of the potential functions $ V $ and $ K $. In particular, we relate the number of solutions with the topology of the set where $ V $ attains its global minimum and $ K $ attains its global maximum.



    加载中


    [1] V. Ambrosio, Multiplicity and concentration resuts for a fractional Choquard equation via penalization method, Potential Anal., 50 (2019), 55–82. doi: 10.1007/s11118-017-9673-3
    [2] V. Ambrosio, On the multiplicity and concentration of positive solutions for a $p$-fractional Choquard equation in $\mathbb{R}^{N}$, Comput. Math. Appl., 78 (2019), 2593–2617. doi: 10.1016/j.camwa.2019.04.001
    [3] C. O. Alves, M. B. Yang, Existence of semiclassical ground state solutions for a generalized Choquard equation, J. Differ. Equations., 257 (2014), 4133–4164. doi: 10.1016/j.jde.2014.08.004
    [4] S. Bhattarai, On fractional Schrödinger systems of Choquard type, J. Differ. Equations., 263 (2017), 3197–3229. doi: 10.1016/j.jde.2017.04.034
    [5] Y. H. Chen, C. G. Liu, Ground state solutions for non-autonomous fractional Choquard equations, Nonlinearity, 29 (2016), 1827–1842. doi: 10.1088/0951-7715/29/6/1827
    [6] S. Cingolani, M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Differ. Equations, 160 (2000), 118–138. doi: 10.1006/jdeq.1999.3662
    [7] S. X. Chen, Y. Li, Z. P. Yang, Multiplicity and concentration of nontrivial nonnegative solutions for a fractional Choquard equation with critical exponent, RACSAM, 114 (2020), 33. doi: 10.1007/s13398-019-00768-4
    [8] P. Belchior, H. Bueno, O. H. Miyagaki, G. A. Pereira, Remarks about a fractional Choquard equation: Ground state, regularity and polynomial decay, Nonlinear Anal. 164 (2017), 38–53.
    [9] Y. H. Ding, X. Y. Liu, Semiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities, Manuscripta Math., 140 (2013), 51–82. doi: 10.1007/s00229-011-0530-1
    [10] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. doi: 10.1016/j.bulsci.2011.12.004
    [11] Z. Gao, X. H. Tang, S. T. Chen, On existence and concentration behavior of positive ground state solutions for a class of fractional Schrödinger-Choquard equations, Z. Angew. Math. Phys., 69 (2018), 122. doi: 10.1007/s00033-018-1016-8
    [12] K. R. W. Jones, Gravitational self-energy as the litmus of reality, Mod. Phys. Lett. A., 10 (1995), 657–667. doi: 10.1142/S0217732395000703
    [13] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1977), 93–105. doi: 10.1002/sapm197757293
    [14] P. L. Lions, The Choquard equation and related questions, Nonlinear Anal.-Theor., 4 (1980), 1063–1072. doi: 10.1016/0362-546X(80)90016-4
    [15] E. H. Lieb, M. Loss, Analysis, Graduate studies in mathematics, American Mathematical Society, 2001.
    [16] L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational. Mech. Anal., 195 (2010), 455–467. doi: 10.1007/s00205-008-0208-3
    [17] V. Moroz, J. V. Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153–184. doi: 10.1016/j.jfa.2013.04.007
    [18] V. Moroz, J. V. Schaftingen, Semi-classical states for the Choquard equation, Calc. Var., 52 (2015), 199–235. doi: 10.1007/s00526-014-0709-x
    [19] V. Moroz, J. V. Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773–813. doi: 10.1007/s11784-016-0373-1
    [20] S. Pekar, Untersuchungen Über die Elektronentheorie der kristalle, Berlin: Akademie-Verlag, 1954.
    [21] P. d'Avenia, G. Siciliano, M. Squassina, On fractional Choquard equations, Math. Mod. Meth. Appl. S., 25 (2015), 1447–1476. doi: 10.1142/S0218202515500384
    [22] L. M. Del Pezzo, A. Quaas, A Hopf's lemma and a strong minimum principle for the fractional $p$-Laplacian, J. Differ. Equations., 263 (2017), 765–778. doi: 10.1016/j.jde.2017.02.051
    [23] Z. Shen, F. S. Gao, M. B. Yang, Ground states for nonlinear fractional Choquard equations with general nonlinearities, Math. Methods Appl. Sci., 39 (2016), 4082–4098. doi: 10.1002/mma.3849
    [24] G. Singh, Nonlocal perturbations of fractional Choquard equation, Adv. Nonlinear Anal., 8 (2019), 1184–1212.
    [25] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007), 67–112. doi: 10.1002/cpa.20153
    [26] M. Willem, Minimax theorems, Basel, Berlin: Birkhaüser Boston, 1996.
    [27] J. Wang, L. X. Tian, J. X. Xu, F. B. Zhang, Existence and concentration of positive solutions for semilinear Schrödinger-Poisson systems in $\mathbb{R}^{3}$, Calc. Var., 48 (2013), 243–273. doi: 10.1007/s00526-012-0548-6
    [28] J. C. Wei, M. Winter, Strongly interacting bumps for the Schröinger-Newton equations, J. Math. Phys., 50 (2009), 012905. doi: 10.1063/1.3060169
    [29] J. K. Xia, Z. Q. Wang, Saddle solutions for the Choquard equation, Calc. Var., 58 (2019), 85. doi: 10.1007/s00526-019-1546-8
    [30] Y. Y. Yu, F. K. Zhao, L. G. Zhao, The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson systems, Calc. Var., 56 (2017), 116. doi: 10.1007/s00526-017-1199-4
    [31] W. Zhang, X. Wu, Nodal solutions for a fractional Choquard equation, J. Math. Anal. Appl., 464 (2018), 1167–1183. doi: 10.1016/j.jmaa.2018.04.048
    [32] H. Zhang, J. Wang, F. B. Zhang, Semiclassical states for fractional Choquard equations with critical growth, Commun. Pure Appl. Anal., 18 (2019), 519–538. doi: 10.3934/cpaa.2019026
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1906) PDF downloads(82) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog