In this work, a pair of observers are proposed for a class of nonlinear systems whose dynamics involve a generalized differential operator that encompasses the conformable derivatives. A generalized conformable exponential stability function, based on this derivative, is introduced in order to prove some Lyapunov-like theorems. These theorems help to verify the stability of the observers proposed, which is exponential in a generalized sense. The performance of the observation scheme is evaluated by means of numerical simulations. Moreover, a comparison of the results obtained with integer, fractional, and generalized conformable derivatives is made.
Citation: Fidel Meléndez-Vázquez, Guillermo Fernández-Anaya, Aldo Jonathan Muñóz-Vázquez, Eduardo Gamaliel Hernández-Martínez. Generalized conformable operators: Application to the design of nonlinear observers[J]. AIMS Mathematics, 2021, 6(11): 12952-12975. doi: 10.3934/math.2021749
In this work, a pair of observers are proposed for a class of nonlinear systems whose dynamics involve a generalized differential operator that encompasses the conformable derivatives. A generalized conformable exponential stability function, based on this derivative, is introduced in order to prove some Lyapunov-like theorems. These theorems help to verify the stability of the observers proposed, which is exponential in a generalized sense. The performance of the observation scheme is evaluated by means of numerical simulations. Moreover, a comparison of the results obtained with integer, fractional, and generalized conformable derivatives is made.
[1] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Amsterdam: Gordon and Breach Science Publishers, 1993. |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[3] | I. Podlubny, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Berlin: Springer-Verlag, 2010. |
[4] | C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, V. Feliu-Batlle, Fractional-order systems and controls: Fundamentals and applications, London: Springer-Verlag, 2010. |
[5] | Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, Singapore: World Scientific, 2017. |
[6] | W. Sudsutad, S. K. Ntouyas, C. Thaiprayoon, Nonlocal coupled system for $\psi$-Hilfer fractional order Langevin equations, AIMS Math., 6 (2021), 9731-9756. doi: 10.3934/math.2021566 |
[7] | S. Mesloub, F. Aldosari, Well posedness for a singular two dimensional fractional initial boundary value problem with Bessel operator involving boundary integral conditions, AIMS Math., 6 (2021), 9786-9812. doi: 10.3934/math.2021569 |
[8] | H. Liu, Y. Fu, Embedding theorems for variable exponent fractional Sobolev spaces and an application, AIMS Math., 6 (2021), 9835-9858. doi: 10.3934/math.2021571 |
[9] | U. Ali, S. Mastoi, W. A. M. Othman, M. M. A Khater, M. Sohail, Computation of traveling wave solution for nonlinear variable-order fractional model of modified equal width equation, AIMS Math., 6 (2021), 10055-10069. doi: 10.3934/math.2021584 |
[10] | M. D. Johansyah, A. K. Supriatna, E. Rusyaman, J. Saputra, Application of fractional differential equation in economic growth model: A systematic review approach, AIMS Math., 6 (2021), 10266-10280. doi: 10.3934/math.2021594 |
[11] | G. Sales Teodoro, J. A. Tenreiro Machado, E. Capelas de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195-208. doi: 10.1016/j.jcp.2019.03.008 |
[12] | D. Baleanu, A. Fernandez, On fractional operators and their classifications, Mathematics, 7 (2019), 830. doi: 10.3390/math7090830 |
[13] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002 |
[14] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. doi: 10.1016/j.cam.2014.10.016 |
[15] | T. U. Khan, M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378-389. doi: 10.1016/j.cam.2018.07.018 |
[16] | A. Iqbal, M. A. Khan, S. Ullah, Y. M. Chu, Some new Hermite-Hadamard type inequalities associated with conformable fractional integrals and their applications, J. Funct. Spaces, 2020 (2020), 9845407. |
[17] | T. U. Khan, M. A. Khan, Y. M. Chu, A new generalized Hilfer-type fractional derivative with applications to space-time diffusion equation, Results Phys., 22 (2021), 103953. doi: 10.1016/j.rinp.2021.103953 |
[18] | T. U. Khan, M. A. Khan, Hermite-Hadamard inequality for new generalized conformable fractional operators, AIMS Math., 6 (2021), 23-38. doi: 10.3934/math.2021002 |
[19] | A. Kumar, E. Ilhan, A. Ciancio, G. Yel, H. M. Baskonus, Extractions of some new travelling wave solutions to the conformable Date-Jimbo-Kashiwara-Miwa equation, AIMS Math., 6 (2021), 4238-4264. doi: 10.3934/math.2021251 |
[20] | T. Guan, G. Wang, H. Xu, Initial boundary value problems for space-time fractional conformable differential equation, AIMS Math., 6 (2021), 5275-5291. doi: 10.3934/math.2021312 |
[21] | M. A. E. Abdelrahman, S. Z. Hassan, R. A. Alomair, D. M. Alsaleh, Fundamental solutions for the conformable time fractional Phi-4 and space-time fractional simplified MCH equations, AIMS Math., 6 (2021), 6555-6568. doi: 10.3934/math.2021386 |
[22] | X. Wang, L. Wang, Traveling wave solutions of conformable time fractional Burgers type equations, AIMS Math., 6 (2021), 7266-7284. doi: 10.3934/math.2021426 |
[23] | H. Wang, T. U. Khan, M. A. Khan, S. Iqbal, New generalized conformable fractional impulsive delay differential equations with some illustrative examples, AIMS Math., 6 (2021), 8149-8172. doi: 10.3934/math.2021472 |
[24] | U. N. Katugampola, A new fractional derivative with classical properties, arXiv, 2014. Available from: https://arXiv.org/abs/1410.6535. |
[25] | B. Łupińska, T. Odzijewicz, A Lyapunov-type inequality with the Katugampola fractional derivative, Math. Methods Appl. Sci., 41 (2018), 8985-8996. doi: 10.1002/mma.4782 |
[26] | M. Gürbüz, Y. Taşdan, E. Set, Ostrowski type inequalities via the Katugampola fractional integrals, AIMS Math., 5 (2020), 42-53. doi: 10.3934/math.2020004 |
[27] | C. Zhao, On Opial-Wirtinger type inequalities, AIMS Math., 5 (2020), 1275-1283. doi: 10.3934/math.2020087 |
[28] | S. S. Redhwan, S. L. Shaikh, M. S. Abdo, Implicit fractional differential equation with anti-periodic boundary condition involving Caputo-Katugampola type, AIMS Math., 5 (2020), 3714-3730. doi: 10.3934/math.2020240 |
[29] | F. Bekada, S. Abbas, M. Benchohra, J. J. Nieto, Dynamics and stability for Katugampola random fractional differential equations, AIMS Math., 6 (2021), 8654-8666. doi: 10.3934/math.2021503 |
[30] | S. I. Butt, E. Set, S. Yousaf, T. Abdeljawad, W. Shatanawi, Generalized integral inequalities for ABK-fractional integral operators, AIMS Math., 6 (2021), 10164-10191. doi: 10.3934/math.2021589 |
[31] | A. Akkurt, M. E. Yıldırım, H. Yıldırım, A new generalized fractional derivative and integral, Konuralp J. Math., 5 (2017), 248-259. |
[32] | M. Çakmak, On some Bullen-type inequalities via conformable fractional integrals, J. Sci. Perspect., 3 (2019), 285-298. |
[33] | M. Z. Sarıkaya, A. Akkurt, H. Budak, M. E. Y. Türkay, Hermite-Hadamard's inequalities for conformable fractional integrals, Int. J. Optim. Control Theor. Appl., 9 (2019), 49-59. doi: 10.11121/ijocta.01.2019.00559 |
[34] | A. J. Hussein, A weak Galerkin finite element method for solving time-fractional coupled Burgers' equations in two dimensions, Appl. Numer. Math., 156 (2020), 265-275. doi: 10.1016/j.apnum.2020.04.016 |
[35] | A. H. Soliman, A. A. Hyder, Closed-form solutions of stochastic KdV equation with generalized conformable derivatives, Phys. Scr., 95 (2020), 065219. doi: 10.1088/1402-4896/ab8582 |
[36] | F. Meléndez-Vázquez, G. Fernández-Anaya, E. G. Hernández-Martínez, General conformable estimators with finite-time stability, Adv. Differ. Equations, 2020 (2020), 551. doi: 10.1186/s13662-020-03003-2 |
[37] | D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2017), 903-917. doi: 10.1007/s10092-017-0213-8 |
[38] | J. W. Zhu, G. H. Yang, H. Wang, F. Wang, Fault estimation for a class of nonlinear systems based on intermediate estimator, IEEE T. Automat. Contr., 61 (2016), 2518-2524. doi: 10.1109/TAC.2015.2491898 |
[39] | Z. Wang, C. C. Lim, Y. Shen, Interval observer design for uncertain discrete-time linear systems, Syst. Control Lett., 116 (2018), 41-46. doi: 10.1016/j.sysconle.2018.04.003 |
[40] | C. S. Chen, Optimal nonlinear observers for chaotic synchronization with message embedded, Nonlinear Dyn., 61 (2010), 623-632. doi: 10.1007/s11071-010-9675-9 |
[41] | J. P. Gauthier, H. Hammouri, S. Othman, A simple observer for nonlinear systems: Applications to bioreactors, IEEE T. Automat. Contr., 37 (1992), 875-880. doi: 10.1109/9.256352 |
[42] | N. Sene, On the stability analysis of the fractional nonlinear systems with Hurwitz state matrix, J. Fractional Calculus Appl., 10 (2019), 1-9. |
[43] | R. Martínez-Guerra, J. L. Mata-Machuca, Fractional generalized synchronization in a class of nonlinear fractional order systems, Nonlinear Dyn., 77 (2014), 1237-1244. doi: 10.1007/s11071-014-1373-6 |
[44] | S. Raghavan, J. K. Hedrick, Observer design for a class of nonlinear systems, Int. J. Control, 59 (1994), 515-528. doi: 10.1080/00207179408923090 |
[45] | R. Martínez-Guerra, R. Suárez, J. De León-Morales, Asymptotic output tracking of a class of nonlinear systems by means of an observer, Int. J. Robust Nonlin., 11 (2001), 373-391. doi: 10.1002/rnc.559 |
[46] | O. Martínez-Fuentes, R. Martínez-Guerra, A novel Mittag-Leffler stable estimator for nonlinear fractional-order systems: A linear quadratic regulator approach, Nonlinear Dyn., 94 (2018), 1973-1986. doi: 10.1007/s11071-018-4469-6 |
[47] | O. Martínez-Fuentes, R. Martínez-Guerra, A high-gain observer with Mittag-Leffler rate of convergence for a class of nonlinear fractional-order systems, Commun. Nonlinear Sci., 79 (2019), 104909. doi: 10.1016/j.cnsns.2019.104909 |
[48] | E. Anli, I. Ozkol, Classical and fractional-order analysis of the free and forced double pendulum, Engineering, 2 (2010), 3603. |
[49] | G. Zhao, Fractional-order fast terminal sliding mode control for a class of dynamical systems, Math. Probl. Eng., 2013 (2013), 384921. |
[50] | S. A. David, C. A. Valentim Jr., Fractional Euler-Lagrange equations applied to oscillatory systems, Mathematics, 3 (2015), 258-272. doi: 10.3390/math3020258 |
[51] | I. N'Doye, T. M. Laleg-Kirati, Stability and trajectories analysis of a fractional generalization of simple pendulum dynamic equation, 2019 18th European Control Conference (ECC), Naples, Italy, 2019. |
[52] | B. Van der Pol, A theory of the amplitude of free and forced triode vibrations, Radio Rev., 1 (1920), 701-710. |
[53] | R. S. Barbosa, J. A. Tenreiro-Machado, B. M. Vinagre, A. J. Calderón, Analysis of the Van der Pol oscillator containing derivatives of fractional order, J. Vib. Control, 13 (2007), 1291-1301. doi: 10.1177/1077546307077463 |
[54] | V. Mishra, S. Das, H. Jafari, S. H. Ong, Study of fractional order Van der Pol equation, J. King Saud Univ. Sci., 28 (2016), 55-60. doi: 10.1016/j.jksus.2015.04.005 |
[55] | S. S. Ezz-Eldien, Theoretical and spectral numerical study for fractional Van der Pol equation, Math. Method. Appl. Sci., 44 (2019), 7995-8010. |
[56] | S. R. Munjam, R. Seshadri, Analytical solutions of nonlinear system of fractional-order Van der Pol equations, Nonlinear Dyn., 95 (2019), 2837-2854. doi: 10.1007/s11071-018-4725-9 |
[57] | X. Ma, W. Wu, B. Zeng, Y. Wang, X. Wu, The conformable fractional grey system model, ISA T., 96 (2020), 255-271. doi: 10.1016/j.isatra.2019.07.009 |
[58] | W. L. Xie, M. Y. Pang, W. Z. Wu, C. Liu, C. X. Liu, The general conformable fractional grey system model and its applications, arXiv, 2021. Available from: https://arXiv.org/abs/2104.01114. |