Research article

Practical stability for nonlinear systems with generalized conformable derivative

  • Received: 04 March 2023 Revised: 18 April 2023 Accepted: 20 April 2023 Published: 27 April 2023
  • MSC : 34A34, 34A08

  • In this study, we give the stability analysis of a class of nonlinear systems with a generalized conformable derivative, which guarantees that their solutions converge to a ball centered at the origin. The theoretical foundations of the practical stability are investigated in this work. Furthermore, the concept is elucidated with an application. Finally, the theoretical findings offered are illustrated with two numerical examples.

    Citation: Mohammed Aldandani, Omar Naifar, Abdellatif Ben Makhlouf. Practical stability for nonlinear systems with generalized conformable derivative[J]. AIMS Mathematics, 2023, 8(7): 15618-15632. doi: 10.3934/math.2023797

    Related Papers:

  • In this study, we give the stability analysis of a class of nonlinear systems with a generalized conformable derivative, which guarantees that their solutions converge to a ball centered at the origin. The theoretical foundations of the practical stability are investigated in this work. Furthermore, the concept is elucidated with an application. Finally, the theoretical findings offered are illustrated with two numerical examples.



    加载中


    [1] N. Engheta, On fractional calculus and fractional multipoles in electromagnetism, IEEE Trans. Antennas Propag., 44 (1996), 554–566. https://doi.org/10.1109/8.489308 doi: 10.1109/8.489308
    [2] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. https://doi.org/10.1142/3779
    [3] N. Laskin, Fractional market dynamics, Phys. A, 287 (2000), 482–492. https://doi.org/10.1016/S0378-4371(00)00387-3
    [4] R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [5] U. N. Katugampola, A new fractional derivative with classical properties, arXiv, 2014. https://doi.org/10.48550/arXiv.1410.6535
    [6] Y. Cenesiz, D. Baleanu, A. Kurt, O. Tasbozan, New exact solutions of Burger's type equations with conformable derivative, Waves Random Complex Media, 27 (2017), 103–116. https://doi.org//10.1080/17455030.2016.1205237 doi: 10.1080/17455030.2016.1205237
    [7] D. Zhao, T. Li, On conformable delta fractional calculus on time scales, J. Math. Comput. Sci., 16 (2016), 324–335. https://doi.org//10.22436/jmcs.016.03.03 doi: 10.22436/jmcs.016.03.03
    [8] M. A. Horani, M. A. Hammad, R. Khalil, Variation of parameters for local fractional non homogeneous linear differential equations, J. Math. Comput. Sci., 16 (2016), 147–153. http://doi.org/10.22436/jmcs.016.02.03 doi: 10.22436/jmcs.016.02.03
    [9] A. Hammad, R. Khalil, Fractional Fourier series with applications, Am. J. Comput. Appl. Math., 4 (2014), 187–191. http://doi.org/10.5923/j.ajcam.20140406.01 doi: 10.5923/j.ajcam.20140406.01
    [10] A. Atangana, D. Dumitru, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889–898. https://doi.org/10.1515/math-2015-0081 doi: 10.1515/math-2015-0081
    [11] D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2015), 903–917. https://doi.org/10.1007/s10092-017-0213-8 doi: 10.1007/s10092-017-0213-8
    [12] S. Li, S. Zhang, R. Liu, The existence of solution of diffusion equation with the general conformable derivative, J. Funct. Spaces, 2020 (2020), 3965269. https://doi.org/10.1155/2020/3965269 doi: 10.1155/2020/3965269
    [13] J. Yang, M. Fečkan, J. R. Wang, Consensus of linear conformable fractional order multi-agent systems with impulsive control protocols, Asian J. Control, 25 (2023), 314–324. https://doi.org/10.1002/asjc.2775 doi: 10.1002/asjc.2775
    [14] N. Berredjem, B. Maayah, O. A. Arqub, A numerical method for solving conformable fractional integrodifferential systems of second-order, two-points periodic boundary conditions, Alexandria Eng. J., 61 (2022), 5699–5711. https://doi.org/10.1016/j.aej.2021.11.025 doi: 10.1016/j.aej.2021.11.025
    [15] W. Z. Wu, L. Zeng, C. Liu, W. Xie, M. Goh, A time power-based grey model with conformable fractional derivative and its applications, Chaos Solitons Fract., 155 (2022), 111657. https://doi.org/10.1016/j.chaos.2021.111657 doi: 10.1016/j.chaos.2021.111657
    [16] W. Wu, X. Ma, B. Zeng, H. Zhang, P. Zhang, A novel multivariate grey system model with conformable fractional derivative and its applications, Comput. Ind. Eng., 164 (2022), 107888. https://doi.org/10.1016/j.cie.2021.107888 doi: 10.1016/j.cie.2021.107888
    [17] Z. Al-Zhour, Controllability and observability behaviors of a non-homogeneous conformable fractional dynamical system compatible with some electrical applications, Alexandria Eng. J., 61 (2022), 1055–1067. https://doi.org/10.1016/j.aej.2021.07.018 doi: 10.1016/j.aej.2021.07.018
    [18] O. Naifar, A. Jmal, A. B. Makhlouf, On the Barbalat lemma extension for the generalized conformable fractional integrals: application to adaptive observer design, Asian J. Control, 25 (2023), 563–569. https://doi.org/10.1002/asjc.2797 doi: 10.1002/asjc.2797
    [19] O. Naifar, A. Jmal, A. B. Makhlouf, Non-fragile $H_\infty$ observer for Lipschitz conformable fractional-order systems, Asian J. Control, 24 (2022), 2202–2212. https://doi.org/10.1002/asjc.2626 doi: 10.1002/asjc.2626
    [20] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [21] X. Chu, L. Xu, H. Hu, Exponential quasi-synchronization of conformable fractional-order complex dynamical networks, Chaos Solitons Fract., 140 (2020), 110268. https://doi.org/10.1016/j.chaos.2020.110268 doi: 10.1016/j.chaos.2020.110268
    [22] A. B. Makhlouf, Partial practical stability for fractional-order nonlinear systems, Math. Methods Appl. Sci., 45 (2022), 5135–5148. https://doi.org/10.1002/mma.8097 doi: 10.1002/mma.8097
    [23] O. Naifar, G. Rebiai, A. B. Makhlouf, M. A. Hammami, A. Guezane-Lakoud, Stability analysis of conformable fractional-order nonlinear systems depending on a parameter, J. Appl. Anal., 26 (2020), 1–10. https://doi.org/10.1515/jaa-2020-2025 doi: 10.1515/jaa-2020-2025
    [24] A. Benabdallah, I. Ellouze, M. A. Hammami, Practical exponential stability of perturbed triangular systems and a separation principle, Asian J. Control, 13 (2011), 445–448. https://doi.org/10.1002/asjc.325 doi: 10.1002/asjc.325
    [25] H. Gassara, O. Naifar, A. B. Makhlouf, L. Mchiri, Global practical conformable stabilization by output feedback for a class of nonlinear fractional-order systems, Math. Probl. Eng., 2022 (2022), 4920540. https://doi.org/10.1155/2022/4920540 doi: 10.1155/2022/4920540
    [26] M. Kuczma, An introduction to the theory of functional equations and inequalities: Cauchy's equation and Jensen's inequality, 2 Eds., Birkhauser, 2009.
    [27] E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Autom. Control, 34 (1989), 435–443. https://doi.org/10.1109/9.28018 doi: 10.1109/9.28018
    [28] M. Abu-Shady, M. K. A. Kaabar, A generalized definition of the fractional derivative with applications, Math. Probl. Eng., 2021 (2021), 9444803. https://doi.org/10.1155/2021/9444803 doi: 10.1155/2021/9444803
    [29] M. Abu-Shady, M. K. A. Kaabar, A novel computational tool for the fractional-order special functions arising from modeling scientific phenomena via Abu-Shady-Kaabar fractional derivative, Comput. Math. Methods Med., 2022 (2022), 2138775. https://doi.org/10.1155/2022/2138775 doi: 10.1155/2022/2138775
    [30] S. A. Bhanotar, M. K. A. Kaabar, Analytical solutions for the nonlinear partial differential equations using the conformable triple Laplace transform decomposition method, Int. J. Differ. Equations, 2021 (2021), 9988160. https://doi.org/10.1155/2021/9988160 doi: 10.1155/2021/9988160
    [31] F. Martínez, I. Martínez, M. K. A. Kaabar, S. Paredes, Generalized conformable mean value theorems with applications to multivariable calculus, J. Math., 2021 (2021), 5528537. https://doi.org/10.1155/2021/5528537 doi: 10.1155/2021/5528537
    [32] O. Martínez-Fuentes, E. Tlelo-Cuautle, G. Fernández-Anaya, The estimation problem for nonlinear systems modeled by conformable derivative: design and applications, Commun. Nonlinear Sci. Numer. Simul., 115 (2022), 106720. https://doi.org/10.1016/j.cnsns.2022.106720 doi: 10.1016/j.cnsns.2022.106720
    [33] M. A. García-Aspeitia, G. Fernández-Anaya, A. Hernández-Almada, G. Leon, J. Magaña, Cosmology under the fractional calculus approach, Mon. Not. R. Astron. Soc., 517 (2022), 4813–4826. https://doi.org/10.1093/mnras/stac3006 doi: 10.1093/mnras/stac3006
    [34] G. Fernández-Anaya, S. Quezada-García, M. A. Polo-Labarrios, L. A. Quezada-Téllez, Novel solution to the fractional neutron point kinetic equation using conformable derivatives, Ann. Nucl. Energy, 160 (2021), 108407. https://doi.org/10.1016/j.anucene.2021.108407 doi: 10.1016/j.anucene.2021.108407
    [35] A. J. Muñoz-Vázquez, G. Fernández-Anaya, F. Meléndez-Vázquez, J. D. Sánchez Torres, Generalised conformable sliding mode control, Math. Methods Appl. Sci., 45 (2022), 1687–1699. https://doi.org/10.1002/mma.7883 doi: 10.1002/mma.7883
    [36] B. B. Hamed, I. Ellouze, M. A. Hammami, Practical uniform stability of nonlinear differential delay equations, Mediterr. J. Math., 8 (2011), 603–616. https://doi.org/10.1007/s00009-010-0083-7 doi: 10.1007/s00009-010-0083-7
    [37] A. Hamzaoui, N. Hadj Taieb, M. A. Hammami, Practical partial stability of time-varying systems, Discrete Contin. Dyn. Syst. B, 7 (2022), 3585–3603. https://doi.org/10.3934/dcdsb.2021197 doi: 10.3934/dcdsb.2021197
    [38] S. M. Ghamari, F. Khavari, H. Mollaee, Lyapunov-based adaptive PID controller design for buck converter, Soft Comput., 27 (2023), 5741–5750. https://doi.org/10.1007/s00500-022-07797-z doi: 10.1007/s00500-022-07797-z
    [39] Q. Peng, J. Jian, Asymptotic synchronization of second-fractional-order fuzzy neural networks with impulsive effects, Chaos Solitons Fract., 168 (2023), 113150. https://doi.org/10.1016/j.chaos.2023.113150 doi: 10.1016/j.chaos.2023.113150
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1227) PDF downloads(70) Cited by(2)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog