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1. Introduction

As the effectiveness of data systems continues to improve, more and more mathematical
approaches are being applied to real-world applications to yield exceptional outcomes. Fractional
approaches, such as fractional calculus, fractional Fourier analysis, and the linear canonical transform,
are gaining importance in the field of mathematics and among applied mathematicians. The theory
and method of fractional domain analysis may further define the dynamic process of signal translation
from the time domain to the frequency domain, thereby creating a new avenue for non-stationary
signal analysis and treatment studies. In technical domains, such as radar, communications, and sonar,
fractional approaches are preferred over traditional integral methods because they bring novel
concepts, procedures, and ideas [1–3, 28–31, 33]. Due to the unpredictability of signals in actual
engineering systems and the effects of different disturbances and noises on the transmission process,
despite the numerous benefits of these new fractional approaches, there are still critical issues that
need to be resolved. Additionally, fractional theory is confronted with several practical limitations in

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023797


15619

engineering, such as sampling and filtering in the sphere of multidimensional signals.

Lyapunov stability is a fundamental concept in control theory and plays a significant role in the
analysis of fractional order systems. Lyapunov stability analysis of fractional order systems aims to
establish the stability of a system by determining whether its trajectory remains within a certain
region of the state space. Unlike integer-order systems, fractional order systems exhibit complex
behaviors, such as memory effects, non-locality, and infinite-dimensional dynamics, which make their
stability analysis more challenging. In the past few decades, several Lyapunov stability criteria have
been proposed for fractional order systems, including algebraic, geometric, and analytical methods.
These criteria have been used to establish practical stability, asymptotic stability, uniform stability,
and robust stability for fractional order systems. Despite the progress made in the field, the Lyapunov
stability analysis of fractional order systems remains an active area of research with significant
potential for future advancements [38, 39]. However, Khalil et al. [4, 20] presented a new derivative
called the conformable Fractional Derivative (FD), which goes beyond the conventional limit
definitions of derivatives. Some theorems of classical calculus require alternate expansions for
fractional differential models, and this idea makes that possible. Academics find the conformable
derivative intriguing since it appears to possess all the features of the conventional derivative [5], and
it makes computations easier with FD formulas. There are now several applications of this novel idea.
In fact, a new exact solution was presented for Burgers-type equations with conformable derivatives
in [6], and [7] investigates the time scales method of dealing with conformable derivatives.
Additionally, parameter variation was investigated in this work [8]. The Fractional Fourier series is
also addressed in the publication [9], and new conformable derivative properties are described in
study [10]. Conversely, [11] looks at a generalization of the classical conformable fractional
derivative and establishes the Generalized Fractional Derivative (GCD) as a new class of fractional
derivatives. Several examples in research show that the solution to the diffusion equation is unique
(see [12]). Multi-agent systems with impulsive control protocols [13], numerical methods [14], the
time power-based grey model [15], the multivariate grey system model [16], controllability and
observability [17], the Barbalat Lemma [18], H infinite observers [19], exponential
quasi-synchronization [21], partial practical stability [22], stability analysis depending on a
parameter [23] are just a few examples of recent research that have expanded on the GCD. Numerous
recent research articles highlight the significance of the conformable derivative in tackling a wide
range of issues in science and engineering, demonstrating its widespread applicability [32, 34, 35].
However, the conformable derivative has not yet been fully investigated, and there are still
unanswered questions about it.

On the other hand, the definition of practical stability for nonlinear systems is widely utilized to
demonstrate the stability of such systems, where the state converges towards an arbitrarily small
neighborhood of the origin. Various authors have developed the concept of practical stability, as
shown in references [36, 37]. This notion is especially significant in engineering applications when
there are unpredictable, time-varying, or unbounded external inputs or disturbances that might create
instability and oscillations. If the system’s trajectories wobble around an unstable route in this case,
the best course of action is to guarantee that the system’s performance is still acceptable in a practical
sense. This means that if the starting values of the external disturbances are constrained, the
deviations of the system’s motion from equilibrium should remain within specified boundaries given
by the physical circumstances, resulting in the system being stable. The concept of practical stability
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has been extended to fractional order systems, and has been shown to be an effective tool for
analyzing the stability of such systems, particularly when traditional methods may be insufficient, see
for example [24, 25]. In fact, work [25] explores the notion of practical stability for a class of general
conformable nonlinear systems. For a certain class of fractional-order nonlinear systems, Makhlouf
in [22] has developed a stability analysis that guarantees convergence of certain solutions towards a
ball.

In this study, we have conducted a theoretical investigation of the practical stability analysis for a
class of nonlinear systems with a generalized conformable derivative, a topic that has not been
previously addressed in the literature. Our main contribution is providing detailed descriptions of
practical uniform stability and practical global uniform asymptotic stability results for the proposed
system. To demonstrate the validity of our theoretical findings, we have applied the approach to a
specific nonlinear system with generalized conformable derivative. Additionally, we have provided a
numerical simulation to show the effectiveness of the proposed approach in practice. Overall, our
study offers a novel and comprehensive approach to practical stability analysis for nonlinear systems
with generalized conformable derivative.

Driven by the foregoing interpretations, our study is summarized by the following key points:

• To the best of our knowledge, there are no published papers that address the fundamental and
theoretical analysis of practical stability of nonlinear systems with a generalized conformable
derivative.
• We provide a detailed description of practical uniform stability and practical global uniform

asymptotic stability results.
• An application of the practically globally uniformly asymptotically stable result is presented to

illustrate the validity of the theoretical findings.
• We also provide two numerical examples with simulation results to demonstrate the effectiveness

of the proposed results.

2. Preliminaries

We begin by giving some definitions and preliminary results (see [4, 7, 11, 12]).

Definition 2.1. Let h be a function defined on [z1, z2) so, the GCD of h is defined by

T
β,ϕz1
z1 h(s) = lim

τ→0

h
(
s + τϕz1(s, β)

)
− h(s)

τ
, (2.1)

for all s > z1, where β ∈ (0, 1] and ϕz1(s, β) is a positive function and satisfies

ϕz1(., β1) , ϕz1(., β2),

where β1 , β2 and β1, β2 ∈ (0, 1], ϕz1(s, 1) = 1.

If T
β,ϕz1
z1 h(s) exists, for every s ∈ (z1, z), for some z > z1 and lim

s−→z1+
T
β,ϕz1
z1 h(s) exists, then, by definition

T
β,ϕz1
z1 h(z1) := lim

s−→z1+
T
β,ϕz1
z1 h(s).
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Remark 2.1. As a further analysis of GCD’s properties, we assume that ϕz1(s, β) > 0, for all s > z1,
1
ϕz1

(., β) is locally integrable and ∫ s

z1

1
ϕz1

(u, β)du ≥ g(s − z1),

where g is a positive function with
lim
t→∞

g(t) = ∞.

Definition 2.2. For 0 < β < 1, the general Conformable Integral (CI) of a continuous function h is
given by

I
β,ϕz1
z1 h(s) =

∫ s

z1

h(l)
ϕz1(l, β)

dl. (2.2)

Lemma 2.1. Let h be a continuous function on [z1, z2]. Therefore

T
β,ϕz1
z1 I

β,ϕz1
z1 h(s) = h(s),

for every s ≥ z1.

Definition 2.3. It is said that a functionϖ ∈ C(R+,R+) belongs to class K ifϖ(0) = 0 and it is strictly
increasing. It will belong to class K∞ if it in addition lim

z−→+∞
ϖ(z) = +∞.

Lemma 2.2. [27] If ϖ ∈ K , then for every d1, d2 ∈ R+, we have

ϖ(d1 + d2) ≤ ϖ(2d1) +ϖ(2d2).

Lemma 2.3. [26] For every d1, d2 ≥ 0 and q ≥ 1, we have

(d1 + d2)q ≤ 2q−1(dq
1 + dq

2)

and
(d1 + d2)

1
q ≤ (d

1
q

1 + d
1
q

2 ).

3. Stability analysis

In this section, the following parameterized differential equations with GCD derivatives are
considered:

T
β,ϕr0
r0 x(t) = f (t, x, ι), t ≥ r0, x(r0) = x0, (3.1)

where r0 ∈ R+, ι ∈ R∗+ and f (., ., ι) ∈ C
(
R+ × R

n,Rn). We denote by xι(t; r0, x0) the solution of the
system (3.1). For m > 0, we write x = (y, z), z ∈ Rp, y ∈ Rm.

Definition 3.1. The system (3.1) is called ι∗-y-practically uniformly stable (ι∗-y-PUS), if for each l2 > 0
there is l1 > 0 and ι̂ ∈ (0, ι∗] such that for every r0 ∈ R+, for every x0 ∈ R

n with ∥x0∥ < l1 and for every
ι ∈ (0, ι̂], ∥yι(t; r0, x0)∥ < l2 for every t ≥ r0.

Definition 3.2. The system (3.1) is called ι∗-y-practically uniformly bounded (ι∗-y-PUB), if for each
l1 > 0, there is l2 > 0 and ι̂ ∈ (0, ι∗] such that for every r0 ∈ R+, for every x0 ∈ R

n with ∥x0∥ < l1 and
for each ι ∈ (0, ι̂], ∥yι(t; r0, x0)∥ < l2 for every t ≥ r0.
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Definition 3.3. The system (3.1) is called ι∗-y-globally uniformly practically attractive (ι∗-y-GUPA), if
for each l1 > 0, l2 > 0 there is T > 0 and ι̂ ∈ (0, ι∗] such that for every r0 ∈ R+, for every x0 ∈ R

n with
∥x0∥ < l1 and for every ι ∈ (0, ι̂], ∥yι(t; r0, x0)∥ < l2 for every t ≥ r0 + T .

Definition 3.4. The system (3.1) is called ι∗-y-practically globally uniformly asymptotically stable
(ι∗-y-PGUAS), if it is ι∗-y-PUS, ι∗-y-PUB and ι∗-y-GUPA.

Definition 3.5. The system (3.1) is called ι∗-y-practically uniformly exponentially stable (ι∗-y-PUES),
if for every 0 < ι ≤ ι∗ there is positive scalars C(ι), δ(ι) and ϱ(ι) such that:

∥yι(t; r0, x0)∥ ≤ C(ι)∥x0∥E
ϕr0
β (−δ(ι), t, r0) + ϱ(ι), ∀t ≥ r0 ≥ 0, (3.2)

where
E
ϕr0
β (δ, t, r0) = eδ

∫ t
r0

1
ϕr0 (s,β) ds

with ϱ(ι) −→ 0 as ι −→ 0+ and there is C, δ1, δ2 > 0, such that δ1 ≤ δ(ι) ≤ δ2 and 0 < C(ι) ≤ C for
every ι ∈ (0, ι∗].

Theorem 3.1. Let ι∗ > 0. Suppose that for every 0 < ι ≤ ι∗, there is a C1 function Vι: R+ × Rn −→ R,
class K functions ϖ j, ( j = 1, 2), θ ∈ C

(
R+,R+

)
and constants ς1(ι) > 0, ς2(ι) > 0, r1(ι) > 0 and

r2(ι) > 0 such that

(1)
ς1(ι)ϖ1(∥y∥) ≤ Vι(t, x) ≤ ς2(ι)ϖ2(∥γ∥) + r1(ι), ∀x ∈ Rn, t ≥ 0. (3.3)

(2)
T
β,ϕr0
r0 Vι(t, xι(t; r0, x0)) ≤ θ(t)r2(ι), ∀t ≥ r0 ≥ 0, (3.4)

where γ = (x1, x2, ..., xk), m ≤ k ≤ n, with

• ∀ι ∈ (0, ι∗], 0 < ς2(ι)
ς1(ι) ≤ K, where K > 0.

• There is M > 0, such that ∫ t

r0

1
ϕr0(s, β)

θ(s)ds ≤ M, ∀t ≥ r0 ≥ 0.

• d(ι) −→ 0 as ι −→ 0+, where

d(ι) =
(
r1(ι) + Mr2(ι)

)
ς1(ι)

.

Then, the system (3.1) is ι∗-y-PUS. Moreover, if ϖ j ∈ K∞, ( j = 1, 2), therefore, the system (3.1) is
ι∗-y-PUB.

Proof. Let l2 > 0. We consider l1 > 0 and ι̂ ∈ (0, ι∗], such that

ϖ2(l1) <
ϖ1(l2)

2K

and
r1(ι) + r2(ι)M
ς1(ι)

<
ϖ1(l2)

2
, ∀ι ∈ (0, ι̂].
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It follows from (3.3) and (3.4) that

Vι(t, xι(t; r0, x0)) ≤ Vι(r0, x0) + r2(ι)
∫ t

r0

1
ϕr0(s, β)

θ(s)ds

≤ ς2(ι)ϖ2(∥x0∥) + r1(ι) + r2(ι)M. (3.5)

For x0 ∈ R
n, with ∥x0∥ < l1, we get Then,

ϖ1(∥yι(t; r0, x0)∥) ≤
ς2(ι)
ς1(ι)
ϖ2(∥x0∥) +

r1(ι) + r2(ι)M
ς1(ι)

≤ Kϖ2(l1) +
r1(ι) + r2(ι)M
ς1(ι)

< ϖ1(l2), ∀t ≥ r0. (3.6)

Thus,
∥yι(t; r0, x0)∥ < l2, ∀t ≥ r0.

Therefore, the system (3.1) is ι∗-y-PUS. We now consider the case where ϖ j ∈ K∞, ( j = 1, 2).
Let l1 > 0. Take ι̂1 ∈ (0, ι∗] such that

r1(ι) + r2(ι)M
ς1(ι)

< 1, ∀ι ∈ (0, ι̂1].

In this case (3.6) becames:
ϖ1((∥yι(t; r0, x0)∥) < Kϖ2(l1) + 1.

Then,
∥yι(t; r0, x0)∥ < ϖ−1

1
(
Kϖ2(l1) + 1

)
, ∀t ≥ r0.

Hence, the system (3.1) is ι∗-y-PUB. □

Remark 3.1. In Theorem 3.1, if γ = y = x, we get the practical uniform stability and the practical
uniform boundedness of the solutions of the system (3.1).

Theorem 3.2. Let ι∗ > 0. Suppose that for every 0 < ι ≤ ι∗, there is a C1 function Vι: R+ × Rn −→ R,
class K∞ functions ϖ j, ( j = 1, 2), θ ∈ C

(
R+,R+

)
and constants ς1(ι) > 0, ς2(ι) > 0, ς3(ι) > 0, r1(ι) > 0

and r2(ι) > 0 such that

(1)
ς1(ι)ϖ1(∥y∥) ≤ Vι(t, x) ≤ ς2(ι)ϖ2(∥γ∥) + r1(ι), ∀x ∈ Rn, t ≥ 0. (3.7)

(2)
T
β,ϕr0
r0 Vι(t, xι(t; r0, x0)) ≤ −ς3(ι)ϖ2(∥γι(t; r0, x0))∥) + θ(t)r2(ι), ∀t ≥ r0 ≥ 0, (3.8)

where γ = (x1, x2, ..., xk), m ≤ k ≤ n, with

• ∀ι ∈ (0, ι∗], ς3(ι)
ς2(ι) ≥ c and 0 < ς2(ι)

ς1(ι) ≤ Ψ, with c, Ψ > 0.

• There is M1 > 0, such that∫ t

r0

1
ϕr0(s, β)

E
ϕr0
β (−c, t, r0)E

ϕr0
β (c, s, r0)θ(s)ds ≤ M1, ∀t ≥ r0 ≥ 0.
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• d(ι) −→ 0 as ι −→ 0+, where

d(ι) = r1(ι)
(ς2(ι) + Mς3(ι))
ς1(ι)ς2(ι)

+ r2(ι)
M
ς1(ι)
,

with M = M1 +
1
c .

Therefore, the system (3.1) is ι∗-y-PGUAS.

Proof. From Eqs (3.7) and (3.8) we give:

T
β,ϕr0
r0 Vι(t, xι(t; r0, x0)) ≤ −cVι(t, xι(t; t0, x0)) +

ς3(ι)
ς2(ι)

r1(ι) + θ(t)r2(ι)

≤ −cVι(t, xι(t; r0, x0)) + ϱ(t)l(ι), ∀t ≥ r0, (3.9)

where
ϱ(t) =

(
1 + θ(t)

)
and

l(ι) = r1(ι)
ς3(ι)
ς2(ι)

+ r2(ι).

Using Lemma 1 in [25], we get

Vι(t, xι(t; r0, x0)) ≤ E
ϕr0
β (−c, t, r0)Vι(r0, x0) + Ml(ι), ∀ t ≥ r0.

By (3.7), we get

ϖ1

(
∥yι(t; r0, x0)∥

)
≤

1
ς1(ι)

E
ϕr0
β (−c, t, r0)

(
ς2(ι)ϖ2(∥x0∥) + r1(ι)

)
+

Ml(ι)
ς1(ι)

. (3.10)

Then,

ϖ1

(
∥yι(t; r0, x0)∥

)
≤
ς2(ι)
ς1(ι)

E
ϕr0
β (−c, t, r0)ϖ2(∥x0∥) + d(ι). (3.11)

Using Lemma 2.2, we get

∥yι(t; r0, x0)∥ ≤ ϖ−1
1

(
2ΨE

ϕr0
β (−c, t, r0)ϖ2(∥x0∥)

)
+ϖ−1

1

(
2d(ι)

)
. (3.12)

Let l2 > 0. From (3.12), we get

∥yι(t; r0, x0)∥ ≤ ϖ−1
1

(
2Ψϖ2(∥x0∥)

)
+ϖ−1

1

(
2d(ι)

)
. (3.13)

We have
lim
r→0
ϖ−1

1
(
2Ψϖ2(r)

)
= 0

and
lim
ι→0
ϖ−1

1
(
2d(ι)

)
= 0,

then, there is l1 > 0 and ι̂ ∈ (0, ι∗], such that

∥yι(t; r0, x0)∥ < l2, ∀ t ≥ r0, ∀ ∥x0∥ < l1, ∀ ι ∈ (0, ι̂).
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Therefore, the system (3.1) is ι∗-y-PUS.
Let d1 > 0, we have

lim
ι→0
ϖ−1

1
(
2d(ι)

)
= 0,

then, there exists ι̂1 > 0, such that

∥yι(t; r0, x0)∥ < ϖ−1
1

(
2Ψϖ2(d1)

)
+ 1, ∀ ∥x0∥ < d1, ∀ ι ∈ (0, ι̂1).

Therefore, the system (3.1) is ι∗-y-PUB.
Let δ1 > 0, δ2 > 0. Let x0 ∈ R

n such that ∥x0∥ < δ1. It follows from (3.12) that

∥yι(t; r0, x0)∥ ≤ ϖ−1
1

(
2ΨE

ϕr0
β (−c, t, r0)ϖ2(δ1)

)
+ϖ−1

1

(
2d(ι)

)
.

We have
lim

t→+∞
g(t) = 0,

then there exist T > 0 and ι̂2 > 0 such that

∥yι(t; r0, x0)∥ < δ2, ∀ t − r0 ≥ T, ∀ι ∈ (0, ι̂2).

Therefore, the system (3.1) is ι∗-y-GUPA. Thus, the system (3.1) is ι∗-y-PGUAS. □

Remark 3.2. In Theorem 3.2, if γ = y = x, we get the practical global uniform asymptotic stability of
the system (3.1).

Remark 3.3. In Theorem 3.2, if we have

ϖ1(z) = p1zq

and
ϖ2(z) = p2zq

with p1, p2 > 0 and q ≥ 1, then the system (3.1) is ι∗-y-PUES.

4. Application

In this section, we examine a class of system that can be modelled by the following system:

T
β,ϕr0
r0 x(t) = Ax(t) + ξ(t, x), t ≥ r0, y = Cx, (4.1)

where A ∈ Rn×n, C ∈ Rp×n and ξ: R+ × Rn −→ Rn.
We now focus on the most important assumptions made in the observer stability proof, with respect

to the system described by (4.1).
(H1) Suppose that (A,C) is observable, Consequently, there exists a matrix L of dimension n × p for
which the eigenvalues of the matrix A0 = A − LC are in the open-left-half plane.
(H2) There exists a p × 1 function w(t, x) that verify:

Pξ(t, x) = CT w(t, x), (4.2)

AIMS Mathematics Volume 8, Issue 7, 15618–15632.
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where P ∈ Rn × Rn and PT = P, such that

AT
0 P + PA0 = −2Q, (4.3)

with QT = Q > 0.
(H3) There exist a positive scalar function α(t, y) such that

∥w(t, x)∥ ≤ α(t, y). (4.4)

(H4) There is M1 > 0 such that∫ t

r0

1
ϕr0(s, β)

E
ϕr0
β

(
−
λmin(Q)

2λmax(P)
, t, r0

)
E
ϕr0
β

( λmin(Q)
2λmax(P)

, s, r0
)
θ(s)ds ≤ M1, ∀t ≥ r0 ≥ 0. (4.5)

To recap, our goal is to create an observer that can make estimates of the states x(t; r0, x0) described
in (4.1). Our proposed observer for this purpose is as follows:

T
β,ϕr0
r0 x̂(t) = A0 x̂ + Ly + u, (4.6)

where x̂ ∈ Rn is the estimated vector of x and the control u ∈ Rn is defined as

u =
P−1CTCeα2(t, y)
∥Ce∥α(t, y) + ιθ(t)

, (4.7)

with ι > 0, θ(t) is a positive continuous function and e = x − x̂ denote the vector error.
Before establishing the stability result for the suggested observer, we initially develop the dynamics

of the observation error. We get:

T
β,ϕr0
r0 e(t) = A0e + ξ(t, x) − u. (4.8)

The following stability theorem is now stated.

Theorem 4.1. Under assumptions (H1)–(H4) the observation error (4.8) is ι∗-e-PGUAS.

Proof. Let the Lyapunov function V be

V =
1
2

eT Pe. (4.9)

We obtain by considering the time derivative of V along the trajectory of the specified observation
error system:

T
β,ϕr0
r0 V(t, eι(t; r0, e0)) = −eι(t; r0, e0)T Qeι(t; r0, e0) + eι(t; r0, e0)T P

(
ξ(t, x(t; r0, x0)) − u

)
. (4.10)

Substituting (4.2) and (4.7) into (4.10) yields

T
β,ϕr0
r0 V(t, eι(t; r0, e0)) = −eι(t; r0, e0)T Qeι(t; r0, e0)

+ eι(t; r0, e0)T P
(
P−1CT w(t, x(t; r0, x0)

−
P−1CTCeι(t; r0, e0)α2(t, y)
∥Ceι(t; r0, e0)∥α(t, y) + ιθ(t)

)
. (4.11)
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Then, the following upper bound on T
β,ϕr0
r0 V(t) is obtained:

T
β,ϕr0
r0 V(t, eι(t; r0, e0)) ≤ −c∥eι(t; r0, e0)∥2 + ∥Ceι(t; r0, e0)∥α(t, y)

−
∥Ceι(t; r0, e0)∥2α2(t, y)

∥Ceι(t; r0, e0)∥α(t, y) + ιθ(t)
, (4.12)

where c = λmin(Q).
By getting a common denominator for the final two components in Eq (4.12), the upper bound on

T
β,ϕr0
r0 V is reduced to be as follows:

T
β,ϕr0
r0 V(t, eι(t; r0, e0)) ≤ −c∥eι(t; r0, e0)∥2 +

ι∥Ceι(t; r0, e0)∥α(t, y)θ(t)
∥Ceι(t; r0, e0)∥α(t, y) + ιθ(t)

. (4.13)

Therefore,
T
β,ϕr0
r0 V(t, eι(t; r0, e0)) ≤ −c∥eι(t; r0, e0)∥2 + ιθ(t). (4.14)

It follows from Theorem 3.2 that the system (4.8) is ι∗-e-PGUAS. □

Remark 4.1. The above theorem discusses the application of an observer design for a class of
generalized conformable fractional-order nonlinear systems with a practical stability result.

5. Numerical examples

Example 5.1. Let us consider the following system

T
β,ϕr0
r0 x1(t) = −x1 +

sin(x2)
2 x1 +

ι2e−t2

1+x2
1
,

T
β,ϕr0
r0 x2(t) = −x2 +

cos(x3)
2 x2 +

ι2e−t2

1+x2
2
,

T
β,ϕr0
r0 x3(t) = 5x3,

(5.1)

where x =
(
x1, x2, x3

)
∈ R3.

Let

V(t, x) =
x2

1 + x2
2

2
.

We get

T
β,ϕr0
r0 V(t, x(t; r0, x0)) ≤ x1(t; r0, x0)T

β,ϕr0
r0 x1(t; r0, x0) + x2(t; r0, x0)T

β,ϕr0
r0 x2(t; r0, x0)

≤ −
x2

1 + x2
2

2
+ ι2e−t2 . (5.2)

According to Theorem 3.2 the system (5.1) is ι∗-(x1, x2)-PGUAS.
In Figure 1, there is a representation of the computed numerical solutions for the state x1 and x2 of

a particular system described by Eq (5.1). The graph in Figure 1 illustrates how the state x1 and x2 of
the system changes over time, providing the result of Theorem 3.2.

AIMS Mathematics Volume 8, Issue 7, 15618–15632.
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1

2

x
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x
2

Figure 1. The evolution of (x1, x2) for r0 = 0, β = 0.7, ϕr0(s, β) = (s − r0)1−β and ι = 0.1.

Example 5.2. Let us consider the system (4.1) for

A =
(
−1 1
2 −2

)
, C =

(
1 0

)
and

ξ(t, x) = (cos(x2)x1, 0).

One choose

Q =
(

1 −1
−1 2

)
and by solving the Lyapunov equation, one gets

P =
(

1 0
0 1

)
and

L =
(

0
1

)
.

Thus, (H2) is verified with w(t, x) = cos(x2)x1. Also, (H3) is verified with α(t, y) = |x1|.
Our proposed observer for this purpose is as follows:

T
β,ϕr0
r0 x̂(t) = A0 x̂ + Ly + u,

where

A0 =

(
−1 1
1 −2

)
and u is defined as

u =

 e1 x2
1

|e1 ||x1 |+ιθ(t)
0

 ,
AIMS Mathematics Volume 8, Issue 7, 15618–15632.
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where e1 = x1 − x̂1 and θ(t) = 1.
According to Theorem 4.1 the error system is ι∗-e-PGUAS. The numerical solutions of the error

system are illustrated in Figures 2 and 3. In this case, according to Figures 2 and 3, we can see the
convergence of the solution towards a small ball centered at the origin.

Time (s)
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E
rr

o
r 

e
1
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0.15
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0.25

Figure 2. The evolution of the error e1 for r0 = 0, β = 0.5, ϕr0(s, β) = (s−r0)1−β and ι = 0.01.
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Figure 3. The evolution of the error e2 for r0 = 0, β = 0.5, ϕr0(s, β) = (s−r0)1−β and ι = 0.01.

6. Conclusions

In this paper, we analyze the stability of a class of nonlinear systems with a generalized conformable
derivative, which ensures that their solutions converge to a ball centered at the origin. In this paper,
the theoretical underpinnings of practical stability are addressed. In addition, the notion is illustrated
by an application. Finally, the presented theoretical insights are demonstrated by a numerical example
that corresponds to the selected application.
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