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1. Introduction

Since the second half of the 20th century, fractional calculus found several useful applications, as well
as extensions of classical results, through the Riemann-Liouville integral and the Riemann-Liouville
and Caputo derivatives; however, new definitions of fractional operators have been recently proposed,
which aim to improve the modelling of many systems. Thus, several operators are now being considered
in the development of the theory and the applications of fractional calculus [1–10]; some recent reviews
and analysis of the most used definitions are found in [11, 12].
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However, the main disadvantage of the original fractional operators is that they fail to accomplish
with some rules existing in integer-order calculus, e.g. the Leibniz product rule, the quotient rule, and
the chain rule. For these reasons, R. Khalil et al. proposed a new definition, called the conformable
fractional derivative, which fulfilled these properties along with some other classical calculus results [13].
After that, T. Abdeljawad extended the study of this derivative to other properties in calculus and
linear systems [14]. Thenceforth, several works have developed the theory and applications of this
operator [15–23].

On the other hand, U. Katugampola proposed other fractional operators, which also accomplish with
the classical results [24]. These operators are also being studied and applied [25–30].

Furthermore, based on the tools proposed by Khalil et al. and Katugampola, Akkurt et al. proposed
the so-called Generalized fractional derivative [31], which generalizes both operators and also satisfies
the classical properties and results from integer-order calculus. This derivative is general because of
the freedom to choose its kernel; however, a better nomenclature for this operator may be “generalized
conformable derivative”, given that it encompasses the conformable-type derivatives formerly proposed,
and thus in this work we will refer to it in this way. This operator has also been considered for further
studies and applications [32–35].

Due to the level of generality and its accomplishment of the classical calculus results, the idea of
developing theoretical and applied results using the generalized conformable derivative is appealing,
because this would encompass results using the conformable operators. In the work [36], another
generalized conformable operator [37] has been assessed, and it was observed that the results obtained
with this operator outperformed the ones obtained with integer and fractional operators, presenting even
finite-time stability.

On another topic, there exist several definitions and configurations of observers, which are useful for
different applications. Consider e.g. the intermediate estimator [38], which is useful for observing states
and faults simultaneously in systems with Lipschitzian nonlinearities without requiring to fulfill the
observer matching condition from other adaptive observers. As another example, the interval observer
in [39] is useful for estimation in discrete-time linear systems with unknown but bounded disturbance,
which is less restrictive than other similar approaches. Therefore, in order to assess the operators studied
in this paper, we will consider the design of a nonlinear quadratic regulator (NQR) [40] and a high-gain
observer [41]. The NQR provides robust stability with a minimized energy-like performance index,
besides being computationally efficient. Moreover, the high-gain observer is robust in the presence of
external disturbances or uncertainties (like noise in the measurement), has a rapid exponential decay of
the estimation error, and the speed of convergence increases by augmenting the gain of the observer.
Besides, both observers are simple to implement and practical for many applications.

As it was mentioned, the generalized conformable derivative proposed by Akkurt et al. generalizes
other operators and satisfies the classical calculus rules, thus, it is of great interest to develop results
in theory and applications, which would enclose existing or possible results using conformable-type
derivatives. For example, it may be very useful to obtain generalized results in control theory, such
as modelling, control algorithms, observer design, stability proofs, among others. Therefore, in this
work we use the generalized conformable derivative to design a NQR-based estimator and a high-gain
observer, for a class of nonlinear systems with the generalized conformable derivative in their dynamics.
Then, with the aid of a generalized exponential function, some Lyapunov-like generalized stability
theorems are proven. These stability results are considered in the design of the observers, and later
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some numerical simulations are carried out in two systems. Finally, for evaluating the performance of
the operator studied, the results obtained are compared with those obtained with the integer and the
fractional-order operators.

The main contributions of this work are the following:

• A generalized conformable exponential function, which implies exponential stability for the class
of systems studied.
• Some Lyapunov-like theorems to verify the stability of a class of nonlinear systems using the

derivative in question, generalizing the work presented in [42].
• The design of stable nonlinear observers for these type of systems, which are validated by numerical

simulations applied to the generalized models of the simple pendulum and the Van der Pol chaotic
oscillator.

The paper is structured as follows: In Section 2, the generalized conformable derivative is presented,
with some of its properties and existing results. In Section 3, the generalized conformable exponential
function is presented, in order to prove some Lyapunov-like theorems for systems with the generalized
conformable derivative. Section 4 shows the design of nonlinear observers for systems with this
derivative, which are proven to be exponentially stable in a generalized sense. In Section 5, numerical
simulations are carried out in the models mentioned, in order to evaluate the performance of the
observers; moreover, they are compared with their integer and fractional-order versions. Finally, some
conclusions, potential applications and future work are given in Section 6.

2. Generalized conformable derivative

In this section, the definition of the generalized conformable derivative is presented, along with
some of its properties. For the sake of comparison, consider first the original definition proposed by
Khalil et al.

Definition 1. ( [13]) Given a function f : [0,∞) → R, the conformable derivative of f of order α is
defined by

Tα( f )(t) = lim
ε→0

f (t + εt1−α) − f (t)
ε

,

∀t > 0, α ∈ (0, 1). If f is α-differentiable in some (0, a), a > 0, and limt→0+ f (α)(t) exists, then define

f (α)(0) = lim
t→0+

f (α)(t).

Now, we present the definition of the generalized operator proposed by Akkurt et al.

Definition 2. ( [31]) Let k : [a, b]→ R be a strictly increasing, continuously differentiable nonnegative
map such that k(t), k′(t) > 0, whenever t > a. Given a function f : [a, b]→ R and α ∈ (0, 1) a real, we
say that the generalized conformable derivative of f of order α is defined by

Dα f (t) := lim
ε→0

f
(
t − k(t) + k(t)eε

k−α(t)
k′(t)

)
− f (t)

ε
,

given that the limit exists. We say then that f is α-differentiable.
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If f is α-differentiable in (0, a) and limt→0+ f (α)(t) exists, then define

Dα f (0) = lim
t→0+

Dα f (t).

Henceforth, the operator Dα will always refer to the generalized conformable derivative (GCD), and
the α-differentiability property will refer to this operator.

Theorem 1. ( [31]) Let f : [a, b]→ R be a continuously differentiable function and t > a. Then, f is
α-differentiable at t and

Dα f (t) =
k1−α(t)
k′(t)

f ′(t).

Also, if f ′ is continuous at t = a, then

Dα f (a) =
k1−α(a)
k′(a)

f ′(a).

Remark 1. There exist α-differentiable functions which are not differentiable in the usual sense, and
thus the order α and the kernel k(t) may help to obtain different results between the GCD and the
integer-order derivative.

Theorem 2. ( [31]) If a function f : [a, b] → R is α-differentiable at a > 0, α ∈ (0, 1], then f is
continuous at a.

Theorem 3. ( [31]) Let α ∈ (0, 1] and f , g be α-differentiable at a point t > 0. Then

1. Dα[c f (t) + dg(t)] = cDα f (t) + dDαg(t), ∀c, d ∈ R (linearity).

2. Dα[tn] =
k1−α(t)

k′(t) ntn−1, ∀n ∈ R.

3. Dαc = 0, for all constant functions f (t) = c.

4. Dα[ f (t)g(t)] = f (t)Dαg(t) + g(t)Dα f (t) (product rule).

5. Dα
[

f (t)
g(t)

]
=

f (t)Dαg(t)−g(t)Dα f (t)

[g(t)]2 (quotient rule).

6. Dα[ f (t) ◦ g(t)] =
k1−α(t)

k′(t) f ′(g(t))g′(t) (chain rule).

Moreover, consider the following result.

Lemma 1. Let f : [a,∞)→ R be α-differentiable on (a,∞). If Dα f (t) ≥ 0 (respectively ≤ 0) ∀t ∈ (a,∞),
then f is an increasing function (respectively decreasing).

Proof. This proof can be derived from the extension of the Mean Value Theorem for the operator in
question [31]. �

Remark 2. Let x : [a,∞) → Rn be α-differentiable on (a,∞). Let P be a symmetric positive definite
matrix. Then

Dα
[
x(t)T Px(t)

]
= 2x(t)T PDαx(t), ∀t > a.
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On the other hand, consider the generalized conformable integral.

Definition 3. ( [31]) Let t ≥ a ≥ 0. Also, let f be a function defined on (a, t] and α ∈ R. Let
k : [a, b] → R be a continuous nonnegative map such that k(t), k′(t) , 0. Then, the α-generalized
conformable integral of f is defined by

Iα( f )(t) =

∫ t

a

k′(x) f (x)
(k(x))1−α dx,

if the Riemann improper integral exists.

3. Generalized conformable exponential stability

Consider the following class of nonlinear systems

Dαx = f (t, x), t > t0, x(t0) = x0, (3.1)

where x ∈ Rn, f : R+ × Rn → Rn is a given nonlinear function satisfying f (t, 0) = 0, ∀t ≥ 0, and
α ∈ (0, 1].

Throughout this paper, the function ‖·‖ represents the Euclidean norm.

Definition 4. The origin of system (3.1) is said to be

i) stable, if for every ε > 0 and t0 ∈ R
+, ∃δ(ε, t0) such that for any x0 ∈ R

n, ‖x0‖ < δ =⇒ ‖x(t)‖ <
ε, ∀t ≥ t0.

ii) attractive, if for any t0 ≥ 0, ∃c(t0) > 0 such that for any x0 ∈ R
n, ‖x0‖ < c =⇒ limt→∞ x(t) = 0.

iii) asymptotically stable, if it is stable and attractive.
iv) globally asymptotically stable, if it is asymptotically stable for any x0 ∈ R

n.

The next function will be the main instrument used in the stability proofs for systems involving the
operator considered.

Definition 5. The generalized conformable exponential function Eα
k (·), with parameters α, γ and t0,

and which depends on the kernel k(t), is defined as

Eα
k (γ, t, t0) = exp

{
γ

α
[kα(t) − kα(t0)]

}
, ∀t ≥ t0, (3.2)

where α ∈ (0, 1], γ ∈ R and k(t) is as stated in Definition 2.

Remark 3. It is not difficult to verify that Eα
k (γ, t, t0) is α-differentiable, and that

Dα [
Eα

k (γ, t, t0)
]

= γEα
k (γ, t, t0).

Now, the notion of generalized conformable exponential stability is introduced.

Definition 6. The origin of system (3.1) is said to be generalized conformable exponentially stable
(GCES) if

‖x‖ ≤ C‖x0‖Eα
k (−γ, t, t0),

with t > t0 and C, γ > 0.
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Lemma 2. Let g : [t0,∞)→ R+ be an α-differentiable function on (t0,∞) such that

Dαg(t) ≤ −γg(t),

where γ > 0 and α ∈ (0, 1]. Then
g(t) ≤ g(t0)Eα

k (−γ, t, t0).

Proof. Let h(t) = g(t)Eα
k (γ, t, t0). From Theorem 3, we have

Dαh(t) = g(t)Dα [
Eα

k (γ, t, t0)
]
+ Dα [

g(t)
]

Eα
k (γ, t, t0)

≤ γ g(t)Eα
k (γ, t, t0) − γ g(t)Eα

k (γ, t, t0).

Since Dαh(t) ≤ 0, from Lemma 1 h(t) is a decreasing function. Hence, h(t) ≤ h(t0), which gives the
result. �

The results that follow may be considered as Lyapunov-type stability theorems for the class of
systems considered in this work.

Theorem 4. Let x = 0 be an equilibrium point for system (3.1). Let the function V : R+ × Rn → R be
α-differentiable with respect to t and x, and consider ai (i = 1, 2, 3) as arbitrary positive constants. If
the following conditions are satisfied:

(i) a1‖x‖2 ≤ V(t, x) ≤ a2‖x‖2,
(ii) DαV(t, x) ≤ −a3‖x‖2,

then the origin of system (3.1) is GCES.

Proof. From conditions (i) and (ii) we have

DαV(t, x) ≤ −
a3

a2
V(t, x).

Applying Lemma 2 to the last inequality, we get

V(t, x) ≤ V(t0, x0) Eα
k

(
−

a3

a2
, t, t0

)
.

Also from (i), we have

a1‖x‖2 ≤ V(t0, x0) Eα
k

(
−

a3

a2
, t, t0

)
≤ a2 Eα

k

(
−

a3

a2
, t, t0

)
‖x0‖

2.

Thus

‖x‖2 ≤
(
a2

a1

)
Eα

k

(
−

a3

a2
, t, t0

)
‖x0‖

2,

and
‖x‖ ≤ C‖x0‖Eα

k (−γ, t, t0),

with C = (a2/a1)1/2 and γ = a3/(2a2). Therefore, the origin of system (3.1) is GCES. �
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Remark 4. Note that GCES implies the classical exponential stability, taking α = 1 and k(t) = t.

Definition 7. A continuous function k : R+ → R+ is said to belong to class K if it is strictly increasing
and k(0) = 0. It belongs to class K∞ if limt→+∞ k(t) = +∞.

Theorem 5. Let x = 0 be an equilibrium point for system (3.1). Let the function V : R+ × Rn → R
be α-differentiable with respect to t and x, and consider ki (i = 1, 2, 3) as functions of class K . If the
following conditions are satisfied:

(i) k1(‖x‖) ≤ V(t, x) ≤ k2(‖x‖),
(ii) DαV(t, x) ≤ −k3(‖x‖),

then the origin of system (3.1) is locally asymptotically stable.
Furthermore, if ki ∈ K∞ (i = 1, 2, 3), then the origin of system (3.1) is globally asymptotically stable.

Proof. First, from condition (ii) and the fact that k(t) is strictly increasing and nonnegative, one has that
DαV(t, x) ≤ 0 for almost all t ≥ t0. Thus, from Lemma 1 V(t, x) is monotonically decreasing, but given
that V(t, x) ≥ 0 from (i), this implies the existence of some real number L = limt→∞ V(t, x) ≥ 0.

Moreover, condition (i) is equivalent to k−1
2 (V(t, x)) ≤ ‖x‖ ≤ k−1

1 (V(t, x)), since k1 and k2 are
monotonically increasing functions. By the same argument, one has that k3(‖x‖) ≥ k3(k−1

2 (V(t, x))).
Therefore, condition (ii) implies that:

DαV(t, x) ≤ −k3 ◦ k−1
2 (V(t, x)) .

Now, suppose that L > 0. Furthermore, define

λ =
k3 ◦ k−1

2 (L)
V(t0, x0)

;

it is clear that λ > 0 when L > 0. Then,

DαV(t, x) ≤ −k3 ◦ k−1
2 (V(t, x))

≤ −k3 ◦ k−1
2 (L) since L ≤ V(t, x), ∀t ≥ t0

≤ −
k3 ◦ k−1

2 (L)
V(t0, x0)

V(t0, x0)

= −λV(t0, x0).

Finally, by considering that V(t, x) ≤ V(t0, x0) (from Lemma 1), one has that

DαV(t, x) ≤ −λV(t, x),

hence, from Lemma 2 one has
V(t, x) ≤ V(t0, x0) Eα

k (−λ, t, t0),

and consequently, L = limt→∞ V(t, x) = 0, but it was supposed that L > 0, which is a contradiction.
Thus, L = 0 and from (i), one has that limt→∞ x(t) = 0 and therefore, the origin of system (3.1) is locally
asymptotically stable.

Considering the case where ki ∈ K∞ (i = 1, 2, 3), it is straightforward that the origin of system (3.1)
is globally asymptotically stable. �

Remark 5. Note that Theorems 4 and 5 involve the generalized conformable derivative. Then, these
results may serve as meta-theorems for proving generalized exponential and asymptotic stability for a
more general class of dynamical systems, which consider a larger family of differential operators.
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4. Application to observer design

In this section, a pair of observers are proposed for a class of nonlinear systems with the GCD in
their dynamics. Moreover, the stability results presented in the past section are used to prove that the
estimation error of both observers is GCES.

Consider the following class of systems

Dαx = f (x,u), x(0) = x0, (4.1)
y = Cx,

where 0 < α < 1, x ∈ Rn is the state vector, u ∈ Rm is the input vector, y ∈ R is the output and
f : Rn × Rm → Rn is locally Lipschitz in x and uniformly bounded in u.

Former system may be rewritten in the following canonical form [43]

Dαx = Ax + Υ(x,u), x(0) = x0, (4.2)
y = Cx,

where A is an upper shift matrix (A : Rn → Rn, Ai, j = δi+1, j, with δi, j the Kronecker delta), C =

[1 0 0 . . . 0], the pair (A,C) is observable, and Υ(x,u) satisfies

‖Υ(x,u) − Υ(x̂,u)‖ ≤ ϕ‖x − x̂‖, (4.3)

in a region D. The observers will be designed for the system expressed in this canonical equivalent.

4.1. NQR-based estimator

First, consider the following generalized conformable estimator, based on the design of a nonlinear
quadratic regulator (NQR)

Dαx = Ax̂ + Υ(x̂,u) +

m∑
i=1

Ki(y −Cx̂)2i−1, (4.4)

where x̂, Ki ∈ R
n, 1 ≤ i ≤ m. For this system, consider the following result.

Lemma 3. ( [44]) Given a stable n × m matrix Â and γ > 0, there exists a positive definite, symmetric
matrix P such that

ÂT P + PÂ + γ2PP + I < 0, (4.5)

if and only if there exists another positive definite, symmetric matrix P̂ such that

ÂP̂ + P̂ÂT + γ2P̂P̂ + I < 0.

We have the following LMI, equivalent to (4.5)[
−ÂT P − PÂ − I γP

γP I

]
> 0. (4.6)

Note that, for some ε > 0,
ÂT P + PÂ + γ2PP + I + εI = 0. (4.7)
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Now, let υ = Υ(x,u) − Υ(x̂,u). Considering the Lipschitz condition (4.3), the estimation error
e = x − x̂ and the solution P of (4.6), we have the following inequality [44]

2eT Pυ ≤ ϕ2eT PPe + eT e. (4.8)

Remark 6. A observer is said to be generalized conformable exponentially stable if its estimation error
e is GCES.

Theorem 6. Consider system (4.2) with (A,C) observable. If Ā = A − K1C is a stable matrix and
KiC > 0, then the estimator (4.4) is a generalized conformable exponentially stable observer for
system (4.1).

Proof. From (4.2) and (4.4), the fractional dynamics of the estimation error is

Dαe = Āe + F −
m∑

i=2

Ki(Ce)2i−1.

Since Ā is stable and ϕ > 0, from Lemma 3 there exists some P > 0. Consider V = ‖e‖2P = eT Pe a
candidate Lyapunov function that satisfies the Rayleigh-Ritz inequality

λmin(P)‖e‖2 ≤ V ≤ λmax(P)‖e‖2. (4.9)

Moreover, from Remark 2, (4.7) and (4.8), we have

DαV = 2eT PDαe

= 2eT P

Āe + υ −

m∑
i=2

Ki(Ce)2i−1


≤ eT

[
ÂT P + PÂ + γ2PP + I

]
e − 2

m∑
i=2

(Ce)2i−2eT PKiCe

≤ −ε‖e‖2 −
m∑

i=2

(Ce)2i−2eT PKiCe.

Given that, KiC is a positive real number for any i, one has that PKiC > 0, and consequently,

DαV ≤ −ε‖e‖2. (4.10)

Finally, from Theorem 4, (4.9) and (4.10) it follows that e = 0 is GCES and we have

‖e‖ ≤ C‖e0‖ Eα
k (−γ, t, t0) ,

with C =

√
λmax(P)
λmin(P) , γ = ε

2λmax(P) and e(t0) = e0. �
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4.2. High-gain observer

Now, consider the following generalized conformable high-gain observer (HGO)

Dαx̂ = Ax̂ + Υ(x̂,u) + F−1
∞ CT (y −Cx̂), (4.11)

where F∞ = limt→∞ Fθ(t), with Fθ(t) a positive definite matrix solution of

DαFθ(t) = −θFθ(t) − AT Fθ(t) − Fθ(t)A + CTC, F0 = Fθ(0).

Remark 7. Given that F∞ is a constant matrix, DαF∞ = 0 and thus it can be obtained from the
following algebraic equation

− θF∞ − AT F∞ − F∞A + CTC = 0. (4.12)

The coefficients of F∞ are given by

(F∞)i, j =
αi, j

θi+ j−1 ,

where αi, j is a symmetric positive definite matrix independent of θ [41, 45].

Theorem 7. The high-gain observer (4.11) is a generalized conformable exponentially stable observer
for system (4.1).

Proof. Consider again the observation error e = x − x̂. From (4.2) and (4.11), the fractional dynamics
of the error is

Dαe =
(
A + F−1

∞ CTC
)

e + υ,

with υ = Υ(x,u) − Υ(x̂,u). Consider V = ‖e‖2F∞ = eT F∞e a candidate Lyapunov function that satisfies
the Rayleigh-Ritz inequality

λmin(F∞)‖e‖2 ≤ V ≤ λmax(F∞)‖e‖2. (4.13)

Moreover, from Remark 2 and (4.12) we have

DαV = 2eT F∞Dαe
= 2eT F∞

[(
A + F−1

∞ CTC
)

e + υ
]

≤ −θeT F∞e + 2eT F∞υ.

Thus, considering that eT F∞υ ≤ ϕλmax(F∞) ||e||2, one has that

DαV ≤ −
(
θλmin(F∞) − 2ϕλmax(F∞)

)
||e||2.

Finally, for θ > 2ϕλmax(F∞)/λmin(F∞), the system is asymptotically stable. In addition, according to
Theorem 4, it follows that e = 0 is GCES and we have

‖e‖ ≤ C‖e0‖ Eα
k (−γ, t, t0) ,

with C =

√
λmax(F∞)
λmin(F∞) , γ =

θλmin(F∞)−2ϕλmax(F∞)
2λmax(F∞) and e(t0) = e0. �

Remark 8. Note that the results of Theorems 6 and 7 involve the generalized conformable derivative,
and given that this operator encompasses the conformable type derivatives, these results may serve as
meta-theorems for designing exponentially stable estimators for the class of systems that consider this
family of operators.
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5. Simulation results

In this part, numerical simulations of the observation scheme developed in the former section are
presented. In order to assess the performance of the observers, the simulations were performed on two
models. Also, these results will be compared to the ones obtained with the integer [40,41] and fractional-
order [46, 47] versions of the same observers. The simulations were performed using Simulink R© from
MATLAB R©.

For the fractional-order dynamics, the Caputo operator was considered, given to the need of having
integer-order initial conditions; to implement this operator, the ninteger fractional derivative block from
D. Valério was used. Furthermore, in order to implement the GCD, the function k(t) = 2t2 + 2t + 2 was
used for both systems and observers.

5.1. Simple pendulum

Consider the simple pendulum, which has been extended and studied in its fractional version [48–51].
The model of the simple pendulum with GCD is the following:

Dαx1 = x2,

Dαx2 = −
g
L

sin(x1),
y = x1,

where x1 = θ (angular position), x2 = ω (angular velocity), g = 9.81 m/s2 and L = 1 m. Rewrite the
system to its canonical form:

Dαx = Ax + Υ(x), x(0) = x0, (5.1)
y = Cx,

with A =

[
0 1
0 0

]
, Υ(x) =

[
0

−
g
L sin(x1)

]
with Lipschitz constant ϕ =

g
L , and C =

[
1 0

]
.

The fractional dynamics in the model of the pendulum, as has been seen with other mechanical
systems, adds the effect of damping on the trajectories [50,51], which represents an additional parameter
which value depends on the fractional order. In the case of the dynamics with GCD, due to the freedom
of choice of the order α and the kernel k(t), the resulting model can be seen as a pendulum with some
time-varying parameters (a nonautonomous system). From the graphs of the states shown in this section
it can be observed, for example, a variation in the frequency of oscillation.

From (4.4), taking m = 3, the NQR-based estimator for system (5.1) is

Dαx̂ = Ax̂ + Υ(x̂) + K1C (x − x̂) + K2 [C (x − x̂)]3 + K3 [C (x − x̂)]5 ,

y = x̂,

where Ki = [Ki1 Ki2]T .
For the simulation α = 0.98 was selected, the gains were chosen as K1 = [4.0076 3.1305]T ,

K2 = [4.905 4.905]T , K3 = [5 2.4525]T , and the initial conditions are x1(0) = π/2, x2(0) = 0, x̂1(0) = π,
x̂2(0) = 0.
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Figures 1 and 2 show the estimations of the states by the NQR-based observer with the GCD.
Moreover, Figures 3 and 4 show the behaviour of the estimation errors for each state in the integer,
fractional, and generalized conformable cases, for the same observer gains and initial conditions. It can
be seen that, although the fractional observer performs slightly better that the integer-order one, the
estimation errors obtained with the GCD converge to zero faster than the other.

Now, consider the high-gain observer (4.11). For the pendulum system, the observer takes the
structure

Dα x̂1 = x̂2 + 2θ(x1 − x̂1),

Dα x̂2 = −
g
L

sin(x̂1) + θ2(x1 − x̂1),

y = x̂.
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Figure 1. Comparison between x1 and x̂1 obtained from the NQR-based estimator with the
GCD for the simple pendulum.
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Figure 2. Comparison between x2 and x̂2 obtained from the NQR-based estimator with the
GCD for the simple pendulum.
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Figure 3. Comparison between the e1 obtained from the NQR-based estimator with integer,
fractional and GC derivatives for the simple pendulum.
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Figure 4. Comparison between the e2 obtained from the NQR-based estimator with integer,
fractional and GC derivatives for the simple pendulum.

Simulations for this observer were performed using the same initial conditions and θ = 25. Figures 5
and 6 show the estimations of the states with the GCD, and Figures 7 and 8 show the behaviour of the
estimation errors for each state in the integer, fractional, and generalized conformable cases. In the
three versions the same gain and initial conditions have been used. It can be seen, as in the former
case, that the estimation errors obtained with the GCD converge to zero faster than with the integer
and fractional-order versions, which again show a similar performance with a slight advantage for the
fractional case.
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Figure 5. Comparison between x1 and x̂1 obtained from the high-gain observer with the GCD
for the simple pendulum.
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Figure 6. Comparison between x2 and x̂2 obtained from the high-gain observer with the GCD
for the simple pendulum.
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Figure 7. Comparison between the e1 obtained from the high-gain observer with integer,
fractional and GC derivatives for the simple pendulum.
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Figure 8. Comparison between the e2 obtained from the high-gain observer with integer,
fractional and GC derivatives for the simple pendulum.

5.2. Van der Pol oscillator

The subject of chaotic oscillators is a research area of great interest due to their theoretical results and
applications. Particularly, the Van der Pol oscillator was proposed to study oscillations in vacuum tube
circuits [52]. This model has also been extended and studied in its fractional-order counterpart [53–56].
Using the GCD, the model of the system is

Dαx1 = x2,

Dαx2 = −x1 − ε
(
x2

1 − 1
)

x2,

y = x1,

where ε is the control parameter. The system is rewritten in its canonical form:

Dαx = Ax + Υ(x), x(0) = x0, (5.2)
y = Cx,

with A =

[
0 1
0 0

]
, Υ(x) =

 0
−x1 − ε

(
x2

1 − 1
)

x2

 with Lipschitz constant

ϕ = max
{
1 + 2ε|x1||x2| + ε + ε|x2

1|
}
, and C =

[
1 0

]
.

Hence, the Van der Pol system will perform as a master system, to which the observers designed for
it will serve as slaves, looking to synchronize with it.

From (4.4) with m = 3, the NQR-based estimator for system (5.2) is

Dαx̂ = Ax̂ + Υ(x̂) + K1C (x − x̂) + K2 [C (x − x̂)]3 + K3 [C (x − x̂)]5 ,

y = x̂,

where Ki = [Ki1 Ki2]T .
For the simulation, the gains were selected as K1 = [2.3094 1.5166]T , K2 = [1.15 1.15]T , K3 =

[3 0.575]T . The parameters are α = 0.9, ε = 0.1 and the initial conditions were chosen as x1(0) = −0.25,
x2(0) = 1.2, x̂1(0) = 3, x̂2(0) = 1.8. With these values, the Lipschitz constant is set as ϕ = 2.3.
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Figures 9 and 10 show the estimations of the states by the NQR-based observer with the GCD.
Moreover, Figures 11 and 12 show the behaviour of the estimation errors for each state in the integer,
fractional, and generalized conformable cases, for the same observer gains and initial conditions. It
can be seen that although the fractional observer performs slightly better that the integer-order one, the
estimation errors obtained with the GCD converge to zero faster than the other.

Moreover, Figure 13 shows the phase portrait obtained with the estimated states x̂1 and x̂2 obtained
from the NQR-based estimator with the GCD.

Now, consider the high-gain observer (4.11). For the Van der Pol oscillator, the observer takes the
structure

Dα x̂1 = x̂2 + 2θ(x1 − x̂1),
Dα x̂2 = −x̂1 − ε

(
x̂2

1 − 1
)

x̂2 + θ2(x1 − x̂1),
y = x̂.
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Figure 9. Comparison between x1 and x̂1 obtained from the NQR-based estimator with the
GCD for the Van der Pol oscillator.
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Figure 10. Comparison between x2 and x̂2 obtained from the NQR-based estimator with the
GCD for the Van der Pol oscillator.
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Figure 11. Comparison between the e1 obtained from the NQR-based estimator with integer,
fractional and GC derivatives for the Van der Pol oscillator.
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Figure 12. Comparison between the e2 obtained from the NQR-based estimator with integer,
fractional and GC derivatives for the Van der Pol oscillator.
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Figure 13. Phase portrait of the Van der Pol oscillator with the estimated states obtained from
the NQR-based estimator with GCD.
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Simulations for this observer were performed using the same initial conditions and θ = 1. Figures 14
and 15 show the estimations of the states with the GCD, and Figures 16 and 17 show the behaviour of
the estimation errors for each state in the integer, fractional, and generalized conformable cases. In
the three versions the same gain and initial conditions have been used. It can be seen, as in the former
case, that the estimation errors obtained with the GCD converge to zero faster than with the integer
and fractional-order versions, which again show a similar performance with a slight advantage to the
fractional case.

Finally, Figure 18 shows the phase portrait obtained with the estimated states x̂1 and x̂2 obtained
from the high-gain observer with the GCD.
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Figure 14. Comparison between x1 and x̂1 obtained from the high-gain observer with the
GCD for the Van der Pol oscillator.
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Figure 15. Comparison between x2 and x̂2 obtained from the high-gain observer with the
GCD for the Van der Pol oscillator.
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Figure 16. Comparison between the e1 obtained from the high-gain observer with integer,
fractional and GC derivatives for the Van der Pol oscillator.
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Figure 17. Comparison between the e2 obtained from the high-gain observer with integer,
fractional and GC derivatives for the Van der Pol oscillator.
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Figure 18. Phase portrait of the Van der Pol oscillator with the estimated states obtained from
the high-gain observer with GCD.
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6. Conclusions

Given the definition of the generalized conformable derivative, which encompasses some noninteger
operators of conformable type, it may be very useful to obtain generalized results in control theory, such
as modelling, control algorithms, observer design, stability proofs, among others. Thus, in this work
an observation scheme, composed of a NQR-based estimator and a high-gain observer, was designed
for a class of nonlinear systems which dynamics involve this derivative. With the aid of the proposed
generalized conformable exponential function, it was proven that the observers were exponentially
stable in a generalized way by means of some Lyapunov-like theorems. The estimators were applied
to the generalized models of the simple pendulum and the Van der Pol oscillator, evaluating their
performance by means of numerical simulations, and comparing these results with the ones obtained
with their integer and fractional-order counterparts.

According to the simulation results, the integer and fractional-order estimators had a similar
performance regarding the behaviour of the estimation error, being slightly better the fractional-order
case. However, both cases were outperformed by the one with the generalized conformable derivative,
which exhibited a faster speed of convergence with similar or less overshoot, for both systems.
However, these results may be improved with an adequate choice of gains and the selection of the
kernel k(t). Furthermore, comparing the performance of each observer, both presented excellent
outcomes, with slight differences that occurred due to the choice of their parameters.

To conclude, the following may be considered as future directions for this work:

• One of the limitations of this work is that the performance of the generalized conformable derivative
relies on the selection of the kernel k(t), which in this paper has been empirical. Thus, it may be
possible to obtain optimal results with a structured selection method for the kernel.
• It may be interesting to apply this operator to other kind of estimators, like the reduced-order,

algebraic, sliding-mode observers and the Kalman filter, and compare their advantages and
theoretical considerations.
• Moreover, another theme of interest is the extension of the theory of the generalized conformable

derivative to include time-varying and complex orders, and even real orders higher than one;
besides, to consider also their discrete-time versions. It would be desired to study all these cases in
order to compare the results obtained in applications, like the scheme proposed here, and in other
existing systems and methodologies.
• Finally, some immediate potential applications of the generalized conformable derivative are related

to the grey system. This model possesses several uses, such as the prediction of the production and
consumption of combustibles and renewable energies, the calculation of wind turbine capacities,
among others. Recently, the gray system has been extended to its conformable [57] and generalized
conformable [58] versions; thus, there is a good amount of potential works related to these areas.
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45. R. Martı́nez-Guerra, R. Suárez, J. De León-Morales, Asymptotic output tracking of a class of
nonlinear systems by means of an observer, Int. J. Robust Nonlin., 11 (2001), 373–391.

46. O. Martı́nez-Fuentes, R. Martı́nez-Guerra, A novel Mittag-Leffler stable estimator for nonlinear
fractional-order systems: A linear quadratic regulator approach, Nonlinear Dyn., 94 (2018), 1973–
1986.

47. O. Martı́nez-Fuentes, R. Martı́nez-Guerra, A high-gain observer with Mittag-Leffler rate of
convergence for a class of nonlinear fractional-order systems, Commun. Nonlinear Sci., 79 (2019),
104909.

48. E. Anli, I. Ozkol, Classical and fractional-order analysis of the free and forced double pendulum,
Engineering, 2 (2010), 3603.

49. G. Zhao, Fractional-order fast terminal sliding mode control for a class of dynamical systems, Math.
Probl. Eng., 2013 (2013), 384921.

50. S. A. David, C. A. Valentim Jr., Fractional Euler-Lagrange equations applied to oscillatory systems,
Mathematics, 3 (2015), 258–272.

51. I. N’Doye, T. M. Laleg-Kirati, Stability and trajectories analysis of a fractional generalization of
simple pendulum dynamic equation, 2019 18th European Control Conference (ECC), Naples, Italy,
2019.

AIMS Mathematics Volume 6, Issue 11, 12952–12975



12975

52. B. Van der Pol, A theory of the amplitude of free and forced triode vibrations, Radio Rev., 1 (1920),
701–710.

53. R. S. Barbosa, J. A. Tenreiro-Machado, B. M. Vinagre, A. J. Calderón, Analysis of the Van der Pol
oscillator containing derivatives of fractional order, J. Vib. Control, 13 (2007), 1291–1301.

54. V. Mishra, S. Das, H. Jafari, S. H. Ong, Study of fractional order Van der Pol equation, J. King Saud
Univ. Sci., 28 (2016), 55–60.

55. S. S. Ezz-Eldien, Theoretical and spectral numerical study for fractional Van der Pol equation, Math.
Method. Appl. Sci., 44 (2019), 7995–8010.

56. S. R. Munjam, R. Seshadri, Analytical solutions of nonlinear system of fractional-order Van der Pol
equations, Nonlinear Dyn., 95 (2019), 2837–2854.

57. X. Ma, W. Wu, B. Zeng, Y. Wang, X. Wu, The conformable fractional grey system model, ISA T.,
96 (2020), 255–271.

58. W. L. Xie, M. Y. Pang, W. Z. Wu, C. Liu, C. X. Liu, The general conformable fractional grey system
model and its applications, arXiv, 2021. Available from: https://arxiv.org/abs/2104.01114.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 11, 12952–12975

https://arxiv.org/abs/2104.01114
http://creativecommons.org/licenses/by/4.0

	Introduction
	Generalized conformable derivative
	Generalized conformable exponential stability
	Application to observer design
	NQR-based estimator
	High-gain observer

	Simulation results
	Simple pendulum
	Van der Pol oscillator

	Conclusions

