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Abstract: In this work, we study the existence, multiplicity and concentration behavior of positive
solutions for the following problem involving the fractional p-Laplacian

εps(−∆)s
pu + V(x)|u|p−2u = εµ−N(

1
|x|µ
∗ K|u|q)K(x)|u|q−2u in RN ,

where 0 < s < 1 < p < ∞, N > ps, 0 < µ < ps, p < q <
p∗s
2 (2 − µ

N ), (−∆)s
p is the fractional p-

Laplacian and ε > 0 is a small parameter. Under certain conditions on V and K, we prove the existence
of a positive ground state solution and express the location of concentration in terms of the potential
functions V and K. In particular, we relate the number of solutions with the topology of the set where
V attains its global minimum and K attains its global maximum.
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1. Introduction

In this paper, we consider the following nonlinear equation governed by the fractional p-Laplacian

εps(−∆)s
pu + V(x)|u|p−2u = εµ−N(

1
|x|µ
∗ K|u|q)K(x)|u|q−2u in RN , (1.1)

where ε > 0 is a small parameter, N > ps, s ∈ (0, 1), 1 < p < ∞, p < q <
p∗s
2 (2 − µ

N ) and V,K are
positive functions. (−∆)s

p denotes the fractional p-Laplacian defined for all u : RN → R smooth enough
by

(−∆)s
pu(x) = P.V.

∫
RN

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+ps dy,
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the P.V. stands for the Cauchy principle value (see [10]).
In the case s = 1, p = 2 and K(x) ≡ 1, the Eq (1.1) boils down to the Choquard equation

−ε2∆u + V(x)u = εµ−N(
1
|x|µ
∗ |u|q)|u|q−2u in RN . (1.2)

When N = 3, µ = 1 and q = 2, the Eq (1.2) has appeared in the several context of quantum physics,
such as the description of a Polaron at rest [20] and the model of an electron trapped in its own hole [13]
and the coupling of the Schrödinger equation under a classical Newtonian gravitational potential [12].
The pioneering mathematical research goes back to Lieb [13] and Lions [14]. The existence and
qualitative of solutions of equation like (1.2) have been extensively studied by variational methods,
see for example [16–19, 29] and their references. For the existence of semi-classical solutions to
Choquard equation (1.2) were studied in some papers. In [28], Wei and Winter constructed a family
of solutions which concentrate to the non-degenerate critical points of the potential V . Moroz and
Schaftingen [18] proved the existence of solutions concentrating around the local minimum of V by a
nonlocal penalization method. See [3] for the existence and multiplicity for a generalized quasilinear
Choquard equation.

In recent years, a great attention has been given to problems driven by the fractional Laplacian.
One of the reasons for this comes from the fact that this operator appears in several applications in
different subjects, such as crystal dislocation, thin obstacle problems, optimization and finance,
anomalous diffusion and many others, we can see [10, 25]. Recently, d’Avenia, Siciliano and
Squassina [21] considered the existence, regularity, symmetry as well as decay properties of the
following fractional Choquard equation

(−∆)su + au = εµ−N(
1
|x|µ
∗ |u|q)|u|q−2u in RN . (1.3)

Shen, Gao and Yang [23] obtained the existence of ground states of (1.3) with the nonlinearity
satisfies the generaal Beresty-Lions type assumptions. Zhang and Wu [31] studied the existence of
nodal solutions of (1.3). Chen and Liu [5] studied (1.3) with nonconstant linear potential and proved
the existence of ground states without any symmetry property. Ambrosio [1] investigated the
multiplicity and concentration of positive solutions for a fractional Choquard equation with general
nonlinearity. In [7], Chen, Li and Yang obtained the multiplicity and concentration of nontrivial
nonnegative solutions for a fractional Choquard equation with critical exponent. For other existence
results we refer to [4, 11, 24, 32] and the references therein.

To the best of our knowledge, there are few results about fractional Choquard equation like (1.3).
Belchior et al. [8] investigated the following equation

(−∆)s
pu + A|u|p−2u = (

1
|x|µ
∗ F(u)) f (u) in RN , (1.4)

where F is the primitive of f and A is a positive constant. They showed the existence of ground states
and asymptotic of the solutions for (1.4). In [2], Ambrosio studied the following problem

εps(−∆)s
pu + V(x)|u|p−2u = εµ−N(

1
|x|µ
∗ F(u)) f (u) in RN .
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He proved solutions concentrating around global minimum of the potential V .
Recently, Wang et al. [27] applied a kind of structure introduced by Ding and Liu [9] to study

the existence and concentration of positive solutions for semilinear Schrödinger-Poisson system. The
similar results for the fractional Schrödinger-Poisson system, we can see [30]. Alves and Yang [3]
considered the generalized quasilinear Choquard equation

−εp∆pu + V(x)|u|p−2u = εµ−N

(∫
RN

Q(y)F(u(y))
|x − y|µ

)
Q(x) f (u) in RN ,

where 1 < p < N, V and Q are two continuous functions satisfy the structure of [9], they established
concentration behavior for the Choquard equation. It is quite natural to ask how the potentials will
affect the existence and concentration of solutions for (1.1). In this paper, we shall give an affirmative
answers for this question.

Motivated by the above papers, we will establish the existence, multiplicity and concentration of
positive solutions for Eq (1.1). To gain further insight into the effect of potential functions V and K on
the concentration process, we give the following assumptions introduced by [9]. Set

θ = min
x∈RN

V(x), V = {x ∈ RN : V(x) = θ}, V∞ = lim inf
|x|→∞

V(x),

κ = max
x∈RN

K(x), K = {x ∈ RN : K(x) = κ}, K∞ = lim sup
|x|→∞

K(x).

We assume that V and K satisfy:
(H1) V,K ∈ L∞(RN) are uniformly continuous and θ > 0, infx∈RN K(x) > 0.
(H2) θ < V∞ < ∞ and there exist R > 0, x∗ ∈ V such that

K(x∗) ≥ K(x) for all |x| ≥ R.

(H3) κ > K∞ ≥ infx∈RN K(x) and there exist R > 0, x∗ ∈ K such that

V(x∗) ≤ V(x) for all |x| ≥ R.

From (H2), we may assume that K(x∗) = maxx∈V K(x). Set

ΩV = {x ∈ V : K(x) = K(x∗)} ∪ {x < V : K(x) > K(x∗)}.

From (H3), we may assume that V(x∗) = minx∈K V(x). Set

ΩK = {x ∈ K : V(x) = V(x∗)} ∪ {x < K : V(x) < V(x∗)}.

Clearly, ΩV and ΩK are bounded sets. Moreover, ifV∩K , ∅, then ΩV = ΩK = V∩K . In particular,
ΩV = V if K(x) is a constant, and ΩK = K if V(x) is a constant.

We now state our main results.

Theorem 1.1. Assume that (H1) and (H2) hold, then for all small ε > 0, (1.1) has a positive ground
state solution uε, and there exists a maximum point xε, such that up to a subsequence, xε → x0 as
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ε → 0, limε→0 dist(xε,ΩV) = 0, and vε(x) = uε(εx + xε) converges in W s,p(RN) to a ground state
solution of

(−∆)s
pu + V(x0)|u|p−2u = K2(x0)(

∫
RN

|u(y)|q

|x − y|µ
dy)|u|q−2u, x ∈ RN .

In particular, ifV∩K , ∅, then limε→0 dist(xε,V∩K) = 0, and up to a subsequence, vε converges in
W s,p(RN) to a ground state solution of

(−∆)s
pu + θ|u|p−2u = κ2(

∫
RN

|u(y)|q

|x − y|µ
dy)|u|q−2u, x ∈ RN .

If (H1) and (H3) hold, and we replace ΩV by ΩK , then all the conclusions remain true.

LetV ∩K , ∅. Now we denote Λ = V ∩K . It is easy to check that Λ is compact. For any δ > 0,
set Λδ = {x ∈ RN : dist(x,Λ) ≤ δ}.

Theorem 1.2. Assume that (H1) and (H2) or (H3) hold, then for all small ε > 0,
problem (1.1) has at least catΛδ

(Λ) solutions, if xε its global maximum, up to a subsequence, such that
limε→0 dist(xε,Λ) = 0, uε converges in W s,p(RN) to a ground state solution of

(−∆)s
pu + θ|u|p−2u = κ2(

∫
RN

|u(y)|q

|x − y|µ
dy)|u|q−2u, x ∈ RN .

Note that our main results are also new for the case p = 2. Our main theorem improves the result
in [2,8] with both linear potential V and nonlinear potential K of the concentration behavior of positive
solutions. There are some difficulties in such a problem. The first one is that there would presumably
be competition between the V and K: each would try to attract ground states to their minimum and
maximum points, respectively. The second one, the operator (−∆)s

p and the convolution term are all
nonlocal operators, make our analysis more complicated with respect to [3], so we need more accurate
estimates.

The plan of this paper is the following: In Section 2, we give some preliminary results which will
be used later. In Section 3, we show some compactness lemmas of the functional associated to our
problem. In Section 4, we consider the existence of ground states of case of (1.1) and the concentration
phenomenon. In the final section, we prove Theorem 1.2.

In this paper, we will use the following notations:
The notations C, C1,C2 · ·· are positive (possibly different) constants.
Br(z0) denotes the ball in RN centered at z0 with radius r.
on(1) and oε(1) denotes the vanishing quantities as n→ ∞ and ε→ 0.
We will use ‖ · ‖q for the norm in Lq(RN), u+ = max{u, 0} and u− = min{u, 0}.

2. Preliminaries

In this section, we recall some known results for the readers convenience and the later use. First,
we will give some useful facts for the fractional order Sobolev spaces. Let 0 < s < 1 < p < ∞ be
real numbers, the homogeneous fractional Sobolev space Ds,p(RN) as the completion of C∞0 (RN) with
respect to the Gagliardo seminorm

[u]p
s,p =

∫
R2N

|u(x) − u(y)|p

|x − y|N+ps dxdy.
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The fractional Sobolev space W s,p(RN) is defined as

W s,p(RN) = {u ∈ Lp(RN) :
∫
R2N

|u(x) − u(y)|p

|x − y|N+ps dxdy < ∞},

equipped with the norm

‖u‖p = [u]p
s,p + ‖u‖p

p.

It is easy to see that the embedding W s,p(RN) ↪→ Lr(RN) is continuous for any r ∈ [p, p∗s], and
compactly in Lr

loc(R
N) for any r ∈ [p, p∗s).

Making the change of variable x 7→ εx, Eq (1.1) becomes

(−∆)s
pu + Vε(x)|u|p−2u = (

∫
RN

Kε(y)|u(y)|q

|x − y|µ
dy)Kε(x)|u|q−2u, x ∈ RN , (2.1)

where Vε(x) = V(εx) and Kε(x) = K(εx). Eqs (1.1) and (2.1) are equivalent, we shall thereafter focus
on Eq (2.1). For any ε > 0, let Eε = {u ∈ W s,p(RN) :

∫
RN Vε(x)|u|pdx < ∞} be the Sobolev space

endowed with the norm

‖u‖p
ε =

∫
R2N

|u(x) − u(y)|p

|x − y|N+ps dxdy +

∫
RN

Vε(x)|u|pdx.

By the assumption of V , we see that ‖ · ‖ε and ‖ · ‖ are equivalent norms for ε > 0. Define the energy
functional associated with (2.1) by

Iε(u) =
1
p
‖u‖p

ε −
1

2q

∫
R2N

Kε(y)|u(y)|qKε(x)|u(x)|q

|x − y|µ
dxdy.

Note that p < q < p∗s
2 (2 − µ

N ), by the Hardy-Littlewood-Sobolev inequality ( [15]) and the boundedness
of K, we have ∫

R2N

Kε(y)|u(y)|qKε(x)|u(x)|q

|x − y|µ
dxdy ≤ C1

(∫
RN
|u|

2Nµ
2N−µ dx

) 2N−µ
N

≤ C2‖u‖2q
ε . (2.2)

Therefore, the functional Iε is well defined on Eε and belongs to C1(Eε,R).
Define the solution manifold of (2.1) by

Nε =

{
u ∈ Eε \ {0} : ‖u‖p

ε =

∫
R2N

Kε(y)|u(y)|qKε(x)|u(x)|q

|x − y|µ
dxdy

}
.

For any u ∈ Nε, by (2.2) we have

‖u‖ε ≥ r∗, (2.3)

for some r∗ > 0.
The ground energy associated with (2.1) is defined as

cε = inf
u∈Nε

Iε(u).

The following vanishing lemma is a version of the Concentration-compactness principle of P. L.
Lions. We can see (Lemma 2.1 of [2]).
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Lemma 2.1. Let N > ps. Assume that {un} is bounded in W s,p(RN) and it satisfies

lim
n→∞

sup
y∈RN

∫
BR(y)
|un(x)|pdx = 0,

for some R > 0. Then un → 0 strongly in Lr(RN) for every r ∈ (p, p∗s).

From (2.2) and q > p, it follows that Iε satisfies the geometry of the mountain pass (see [26]).
Hence, there is a sequence {un} ⊂ Eε such that

Iε(un)→ c∗ε and I′ε(un)→ 0, (2.4)

where c∗ε is the mountain pass level given by

c∗ε = inf
γ∈Γ

sup
t∈[0,1]

Iε(γ(t)) > 0,

and Γ = {γ ∈ C1([0, 1], Eε) : γ(0) = 0, Iε(γ(1)) < 0}.
We observe that for any u ∈ Eε \ {0}, there exists a unique tu > 0 such that tuu ∈ Nε, and the

maximum of the function g(t) = Iε(tu) for t ≥ 0 is achieved at t = tu. By a standard arguments, we
have

cε = c∗ε = inf
u∈Eε\{0}

max
t≥0

Iε(tu).

For any a, b > 0, consider the limit problem

(−∆)s
pu + a|u|p−2u = b2(

∫
RN

|u(y)|q

|x − y|µ
dy)|u|q−2u, x ∈ RN . (2.5)

Solutions of (2.5) are critical points of the functional defined by

Iab(u) =
1
p

[u]p
s,p +

a
p

∫
RN
|u|pdx −

b2

2q

∫
R2N

|u(y)|q|u(x)|q

|x − y|µ
dxdy.

Define the solution manifold of (2.5) by

Mab =
{
u ∈ W s,p(RN) \ {0} : 〈I′ab(u), u〉 = 0

}
.

The ground energy associated with (2.5) is defined as cab = infu∈Mab Iab(u). It is easy to check that

cab = inf
u∈W s,p(RN )\{0}

max
t≥0

Iab(tu).

By [8], we known that (2.5) has a positive ground state solution ω, that is cab = Iab(ω).

Lemma 2.2. Let a1, a2 > 0 and b1, b2 > 0, with a1 ≤ a2 and b1 ≥ b2. Then ca1b1 ≤ ca2b2 . In particular,
if one of inequalities is strict, then ca1b1 < ca2b2 .

AIMS Mathematics Volume 6, Issue 11, 12929–12951.



12935

Proof. Let u ∈ Ma2b2 be a ground state solution of (2.5) with coefficients a2, b2 such that

ca2b2 = Ia2b2(u) = max
t≥0

Ia2b2(tu). (2.6)

It is easy to check that there exists t0 > 0 such that t0u ∈ Ma1b1 . Then we get

Ia1b1(t0u) = max
t≥0

Ia1b1(tu). (2.7)

It follows from (2.6) and (2.7) that

ca2b2 = Ia2b2(u) ≥ Ia2b2(t0u)

= Ia1b1(t0u) +
tp
0

p
(a2 − a1)

∫
RN
|u|pdx

+
t2q
0

2q
(b2

1 − b2
2)

∫
R2N

|u(y)|q|u(x)|q

|x − y|µ
dxdy

≥ Ia1b1(t0u) ≥ inf
v∈Ma1b1

Ia1b1(v) = ca1b1 .

The proof is completed. �

3. A compactness condition

In this section we will show some compactness results for the functional Iε.

Lemma 3.1. {un} ⊂ Eε is a (PS )c sequence for Iε with un ⇀ 0 weakly in Eε. If un 9 0 in Eε, the
c ≥ c∞ := cV∞K∞ .

Proof. Let {un} be a (PS )c sequence for Iε, by (2.4), we have

c + 1 + ‖un‖ε ≥ Iε(un) −
1

2q
〈I′ε(un), un〉 = (

1
p
−

1
2q

)‖un‖
p
ε (3.1)

for n large enough. Therefore {un} is bounded in Eε.
For each n, there is a unique tn > 0 such that tnun ∈ MV∞K∞ . We now show that the sequence {tn}

satisfies lim supn→∞ tn ≤ 1. By contradiction we assume that there exist σ > 0 and a subsequence (still
denoted by {tn}) such that tn ≥ 1 + σ for all n. From the boundedness of {un}, we have 〈I′ε(un), un〉 =

on(1). That is

[un]p
s,p +

∫
RN

Vε(x)|un|
pdx =

∫
R2N

Kε(y)|un(y)|qKε(x)|un(x)|q

|x − y|µ
dxdy + on(1). (3.2)

Since tnun ∈ MV∞K∞ , we obtain

tp
n ([un]p

s,p +

∫
RN

V∞|un|
pdx) = t2q

n K2
∞

∫
R2N

|un(y)|q|un(x)|q

|x − y|µ
dxdy. (3.3)

We deduce from (3.2) and (3.3) that∫
RN

(V∞ − Vε(x))|un|
pdx =

∫
R2N

(t2q−p
n K2

∞ − Kε(y)Kε(x))|un(y)|q|un(x)|q

|x − y|µ
dxdy. (3.4)
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By the definition of V∞ and K∞, for any ν > 0, there exist a constant ρ > 0 sufficiently large such that
for |x| > ρ,

V(x) > V∞ − ν, K(x) < K∞ + ν. (3.5)

Since {un} is bounded and un ⇀ 0 in Eε, by (3.5) we have∫
RN

(V∞ − Vε(x))|un|
pdx =

∫
|x|≤ ρε

(V∞ − Vε(x))|un|
pdx

+

∫
|x|> ρ

ε

(V∞ − Vε(x))|un|
pdx

≤ on(1) + Cν. (3.6)

On the other hand, ∫
R2N

Kε(y)|un(y)|qKε(x)|un(x)|q

|x − y|µ
dxdy

=

∫
|x|> ρ

ε

∫
|y|> ρ

ε

Kε(y)|un(y)|qKε(x)|un(x)|q

|x − y|µ
dxdy

+

∫
|x|> ρ

ε

∫
|y|≤ ρε

Kε(y)|un(y)|qKε(x)|un(x)|q

|x − y|µ
dxdy

+

∫
|x|≤ ρε

∫
|y|> ρ

ε

Kε(y)|un(y)|qKε(x)|un(x)|q

|x − y|µ
dxdy

+

∫
|x|≤ ρε

∫
|y|≤ ρε

Kε(y)|un(y)|qKε(x)|un(x)|q

|x − y|µ
dxdy

= I + II + III + IV. (3.7)

By (2.2), (3.5) and the boundedness of {un}, we obtain

I < (K∞ + ν)2
∫
|x|> ρ

ε

∫
|y|> ρ

ε

|un(y)|q|un(x)|q

|x − y|µ
dxdy

≤ (K∞ + ν)2
∫
R2N

|un(y)|q|un(x)|q

|x − y|µ
dxdy

≤ K2
∞

∫
R2N

|un(y)|q|un(x)|q

|x − y|µ
dxdy + Cν + Cν2. (3.8)

From the boundedness of K(x) and {un}, there is a constant C > 0 such that∫
RN

Kε(y)|un(y)|q

|x − y|µ
dxdy ≤ C. (3.9)

By (3.9) and un ⇀ 0, we have

II ≤
∫
|y|≤ ρε

∫
RN

K(εy)|un(y)|qK(εx)|un(x)|q

|x − y|µ
dxdy
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≤ C
∫
|y|≤ ρε

|un|
qdy = on(1). (3.10)

Similarly, we have

III = on(1) and IV = on(1). (3.11)

By (3.7), (3.8), (3.10) and (3.11), we deduce that∫
R2N

Kε(y)|un(y)|qKε(x)|un(x)|q

|x − y|µ
dxdy ≤ K2

∞

∫
R2N

|un(y)|q|un(x)|q

|x − y|µ
dxdy

+Cν + Cν2 + on(1). (3.12)

Combining (3.6), (3.12) with (3.4), we obtain

K2
∞(t2q−p

n − 1)
∫
R2N

|un(y)|q|un(x)|q

|x − y|µ
dxdy ≤ Cν + Cν2 + on(1). (3.13)

From un 9 0 in Eε, there exists a sequence {zn} ⊂ R
N and constant R, β > 0 such that

lim inf
n→∞

∫
BR(zn)

|un|
pdx ≥ β > 0. (3.14)

Indeed, if (3.14) does not true, Lemma 2.1 implies that un → 0 in Lr(RN) for every r ∈ (p, p∗s). It
follows from (2.2) that ∫

R2N

Kε(y)|un(y)|qKε(x)|un(x)|q

|x − y|µ
dxdy = on(1).

This and (3.2) implies ‖un‖ε → 0 as n→ ∞, which contradicts to un 9 0 in Eε.
Now we set vn(x) = un(x + zn). We known that {vn} is bounded. Then there exists v ∈ W s,p(RN)

such that vn ⇀ v weakly in W s,p(RN). By (3.14), we see that v , 0. Hence, there is a set Ω ⊂ RN with
|Ω| > 0 such that v(x) > 0 in Ω. Then from (3.13) and tn ≥ 1 + σ, we have

0 < K2
∞((1 + σ)2q−p − 1)

∫
R2N

|vn(y)|q|vn(x)|q

|x − y|µ
dxdy ≤ Cν + Cν2 + on(1).

Taking limit in the above inequality and by Fatou’s lemma, we get

0 < K2
∞((1 + σ)2q−p − 1)

∫
R2N

|v(y)|q|v(x)|q

|x − y|µ
dxdy ≤ Cν + Cν2,

for any ν > 0. It’s a contradiction. Therefore, lim supn→∞ tn ≤ 1.
We next consider the following two cases:

Case 1. lim supn→∞ tn = 1. We assume that there exists a subsequence, still denoted by {tn} such that
limn→∞ tn = 1. Recalling tnun ∈ MV∞K∞ , then

c + on(1) = Iε(un) = Iε(un) − IV∞K∞(tnun) + IV∞K∞(tnun) (3.15)
≥ c∞ + Iε(un) − IV∞K∞(tnun).
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We observe that

Iε(un) − IV∞K∞(tnun) =
1 − tp

n

p
[un]p

s,p +
1
p

∫
RN

(Vε(x) − tp
n V∞)|un|

pdx (3.16)

+
1
2q

∫
R2N

(K2
∞t2q

n − Kε(y)Kε(x))|un(y)|q|un(x)|q

|x − y|µ
dxdy.

From the boundedness of {un}, limn→∞ tn = 1, un ⇀ 0 in Eε and (3.5), one has

1 − tp
n

p
[un]p

s,p = on(1) (3.17)

and ∫
RN

(Vε(x) − tp
n V∞)|un|

pdx ≥ on(1) −Cν. (3.18)

By (3.12), we have ∫
R2N

(K2
∞t2q

n − Kε(y)Kε(x))|un(y)|q|un(x)|q

|x − y|µ
dxdy

≥ (t2q
n − 1)K2

∞

∫
R2N

|un(y)|q|un(x)|q

|x − y|µ
dxdy − on(1) −Cν −Cν2 (3.19)

= on(1) −Cν −Cν2.

It follows from (3.15)–(3.19) that

c + on(1) ≥ c∞ + on(1) −Cν −Cν2.

Letting n→ ∞ and ν→ 0, we get c ≥ c∞.
Case 2. lim supn→∞ tn = t0 < 1. In this case, without loss of generality, we assume that tn < 1 for all n.
Recalling that tnun ∈ MV∞K∞ , then by I′ε(un)→ 0, (3.6) and the boundedness of {un}, we have

c∞ ≤ IV∞K∞(tnun) = IV∞K∞(tnun) −
1
2q
〈I′V∞K∞(tnun)tnun〉

= (
1
p
−

1
2q

)tp
n

(
[un]p

s,p +

∫
RN

V∞|un|
pdx

)
< (

1
p
−

1
2q

)
(
[un]p

s,p +

∫
RN

V∞|un|
pdx

)
= Iε(un) −

1
2q
〈I′ε(un), un〉 + (

1
p
−

1
2q

)
∫
RN

(V∞ − Vε(x))|un|
pdx + on(1)

≤ Iε(un) + on(1) + Cν.

Letting n→ ∞ and ν→ 0, we get c∞ ≤ c. The proof is completed. �

Lemma 3.2. The functional Iε satisfies (PS )c condition with c < c∞.
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Proof. Let {un} ⊂ Eε be a sequence such that Iε(un) → c and I′ε(un) → 0 as n → ∞. By (3.1) we have
that {un} is bounded in Eε. Then, up to a subsequence, there exists u ∈ Eε such that

un ⇀ u, weakly in Eε,

un → u, strongly in Lr
loc(R

N), p ≤ r < p∗s,

un → u, a.e. in RN .

(3.20)

By (3.20), p < q < p∗s
2 (2 − µ

N ), and Hardy-Littlewood-Sobolev inequality, we obtain that∫
RN

Kε(y)|un(y)|q

|x − y|µ
dy ⇀

∫
RN

Kε(y)|u(y)|q

|x − y|µ
dy in L

2N
µ (RN).

Then, for any φ ∈ C∞0 (RN), we have∫
R2N

Kε(y)|un(y)|qKε(x)|un(x)|q−2un(x)φ
|x − y|µ

dxdy =

∫
R2N

Kε(y)|u(y)|qKε(x)|u(x)|q−2u(x)φ
|x − y|µ

dxdy + on(1).

Then, we have I′ε(u) = 0. Set wn = un − u. By Brezis-Lieb lemma, we have

‖wn‖
p
ε = ‖un‖

p
ε − ‖u‖

p
ε + on(1). (3.21)

From a Brezis-Lieb lemma for the nonlocal term of the functional ( [17]), we obtain∫
RN

(
1
|x|µ
∗ Kε|wn|

q)Kε(x)|wn|
qdx =

∫
RN

(
1
|x|µ
∗ Kε|un|

q)Kε(x)|un|
qdx (3.22)

−

∫
RN

(
1
|x|µ
∗ Kε|u|q)Kε(x)|u|qdx + on(1).

It follows from (3.21) and (3.22) that

Iε(wn) = Iε(un) − Iε(u) + on(1) = c − Iε(u) + on(1)

and I′ε(wn)→ 0 as n→ ∞. Since I′ε(u) = 0, we get

Iε(u) = Iε(u) −
1

2q
〈I′ε(u), u〉 = (

1
p
−

1
2q

)‖u‖p
ε ≥ 0.

Hence, Iε(wn) → c − Iε(u) < c∞. By Lemma 3.1, wn → 0 in Eε. Then un → u in Eε. The proof is
completed. �

Lemma 3.3. Let {un} be a (PS )c sequence restricted in Nε and assume that c < c∞. Then {un} has a
convergent subsequence in Eε.

Proof. Let {un} be a (PS )c sequence for Iε on Nε at level c, namely

Iε(un)→ c and I′ε|Nε
(un)→ 0.

It’s easy to check that {un} is bounded in Eε. We assume that

I′ε(un) = on(1) + λng′(un),
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where g(u) = 〈I′ε(u), u〉, and

〈g′(u), u〉 = p‖u‖p
ε − 2q

∫
R2N

Kε(y)|u(y)|qKε(x)|u(x)|q

|x − y|µ
dxdy. (3.23)

Since {un} is bounded, we have

0 = g(un) = 〈I′ε(un), un〉 = on(1) + λn〈g′(un), un〉. (3.24)

Since un ∈ Nε, by (2.3) and (3.23) we have

〈g′(un), un〉 = (p − 2q)‖un‖
p
ε ≤ (p − 2q)r∗,

where r∗ is defined in (2.3). Then,

|λn〈g′(un), un〉| ≥ |λn|(2q − p)r∗.

Thus λn → 0 and I′ε(un) → 0 as n → ∞. Therefore, {un} is a (PS )c sequence for Iε in Eε. By Lemma
3.2, {un} has a convergent subsequence. �

4. Proof of Theorem 1.1

We only give the details proof under the assumptions (H1) and (H2). The arguments of (H3) is
similar. Under the assumption (H2), we may suppose that x∗ = 0 ∈ V or x∗ = 0 ∈ V∩K ifV∩K , ∅.
Then

θ = V(0) and α := K(0) ≥ K(x) for all |x| ≥ R.

Lemma 4.1. lim supε→0 cε ≤ cθα. In particular, ifV ∩K , ∅, then lim supε→0 cε = cθκ.

Proof. Let w ∈ Mθα be such that

cθα = Iθα(w) = max
t≥0

Iθα(tw).

Then there exists a unique tε > 0 such that tεw ∈ Nε. Thus

cε ≤ Iε(tεw) = max
t≥0

Iε(tw). (4.1)

Observe that

Iε(tεw) = Iθα(tεw) +
tp
ε

p

∫
RN

(Vε(x) − θ)|w|pdx

+
t2q
ε

2q

∫
R2N

(α2 − Kε(y)Kε(x))|w(y)|q|w(x)|q

|x − y|µ
dxdy. (4.2)

Since tεw ∈ Nε, by the boundedness of K(x), we get that there exist T2 > T1 > 0 such that T1 ≤ tε < T2.
We may assume that tε → t0 as ε→ 0. Then by the boundedness of V , K, and the Lebesgue’s theorem,
we have

tp
ε

p

∫
RN

(Vε(x) − θ)|w|pdx = oε(1),
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and

t2q
ε

2q

∫
R2N

(α2 − Kε(y)Kε(x))|w(y)|q|w(x)|q

|x − y|µ
dxdy = oε(1),

Thus, by (4.2) we obtain

Iε(tw) = Iθα(t0w) + oε(1).

It follows from (4.1) that

cε ≤ Iθα(t0w) + oε(1) ≤ max
t≥0

Iθα(tw) = Iθα(w) = cθα.

The proof is completed. �

Proposition 1. Assume that (H1) and (H2) hold. Then for any ε > 0 small enough, problem (2.1) has
a positive ground state solution.

Proof. Let {un} denotes the (PS) sequence for Iε given in (2.4). Recall that θ < V∞ and α ≥ K∞.
It follows from Lemma 2.2 that cθα < c∞. Then, by Lemmas 3.2 and 4.1, we obtain Iε satisfies the
(PS )cε condition for ε > 0 small enough. Hence, by mountain pass lemma we have problem (2.1) has
a nontrivial ground state solution uε. We note that all the calculations above can be repeated by word
by word, replacing I+

ε with the functional

I+
ε (u) =

1
p
‖u‖p

ε −
1

2q

∫
R2N

Kε(y)|u+(y)|qKε(x)|u+(x)|q

|x − y|µ
dxdy.

Then we get a ground state solution uε of the equation

(−∆)s
pu + Vε(x)|u|p−2u = (

∫
RN

Kε(y)|u+(y)|q

|x − y|µ
dy)Kε(x)|u+|q−2u+, x ∈ RN .

Taking u−ε as a test function in above equation, we have∫
R2N

|uε(x) − uε(y)|p

|x − y|N+ps (uε(x) − uε(y))(u−ε (x) − u−ε (y))dxdy +

∫
RN

Vε(x)|u−ε (x)|pdx = 0. (4.3)

For any p ≥ 1, we have

|uε(x) − uε(y)|p−2(uε(x) − uε(y))(u−ε (x) − u−ε (y)) ≥ |u−ε (x) − u−ε (y)|p. (4.4)

Combining (4.3) with (4.4) yields

‖u−ε ‖
p
ε = [u−ε ]p

s,p +

∫
RN

Vε(x)|u−ε (x)|pdx ≤ 0.

Thus, we have u−ε (x) ≡ 0 and uε ≥ 0. It follows from the maximum principle ( [22]) that uε > 0 in
RN . �
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Lemma 4.2. Let uεn be a solution of (2.1) given in Proposition 1. Then, there exists a sequence
{zεn} ⊂ R

N with εnzεn → z0 ∈ ΩV such that vεn = uεn(x + zεn) converges strongly in W s,p(RN) to a ground
state solution of

(−∆)s
pu + V(z0)|u|p−2u = K2(z0)(

∫
RN

|u(y)|q

|x − y|µ
dy)|u|q−2u, x ∈ RN .

In particular, ifV∩K , ∅, then z0 ∈ V ∩K , and up to a subsequence, vεn converges in W s,p(RN) to a
ground state solution of

(−∆)s
pu + θ|u|p−2u = κ2(

∫
RN

|u(y)|q

|x − y|µ
dy)|u|q−2u, x ∈ RN .

Proof. Let εn → 0 as n→ ∞, un := uεn ∈ Nεn be a solution of (2.1). Then Iεn(un) = cεn and I′εn
(un) = 0.

It is easy to check that {un} is bounded. Then, there exist R∗, β > 0 and a sequence {zn} ⊂ R
N such that

lim inf
n→∞

∫
BR∗ (zn)

|un|
pdx ≥ β > 0. (4.5)

Now we set vn = un(x + zn). Then vn is a solution of the following equation

(−∆)s
pu + Vn(x)|u|p−2u = (

∫
RN

Kn(y)|u(y)|q

|x − y|µ
dy)Kn(x)|u|q−2u, x ∈ RN , (4.6)

with the energy

Jεn(vn) =
1
p

([vn]p
s,p +

∫
RN

Vn(x)|vn|
pdx)

−
1

2q

∫
R2N

Kn(y)|vn(y)|qKn(x)|vn(x)|q

|x − y|µ
dxdy

= Iεn(un) = cεn ,

where Vn(x) = V(εnx + εnzn) and Kn(x) = K(εnx + εnzn). We see that {vn} is bounded, then there exists
v ∈ W s,p(RN) satisfying, after passing to a subsequence if necessary

vn ⇀ v, weakly in W s,p(RN),
vn → v, strongly in Lr

loc(R
N), p ≤ r < p∗s,

vn → v, a.e. in RN .

(4.7)

It follows from (4.5) that v , 0.
We next show that {εnzn} is bounded. Assume by contradiction that |εnzn| → ∞ as n → ∞. By the

boundedness of V and K, we may assume that

V(εnzn)→ V∞ and K(εnzn)→ K∞. (4.8)

By the definition of V∞ and K∞, we have that

V∞ ≥ V∞ > θ, α ≥ K∞. (4.9)
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Since V and K are uniformly continuous, by (4.8) one has

|Vn(x) − V∞| ≤ |Vn(x) − V(εnzn)| + |V(εnzn) − V∞| = on(1),

and

|Kn(x) − K∞| ≤ |Kn(x) − K(εnzn)| + |K(εnzn) − K∞| = on(1),

uniformly on bounded sets of RN . Then we have

Vn → V∞ and Kn → K∞, (4.10)

as n→ ∞ uniformly on bounded sets of RN . From (4.7) and (4.10), for each ϕ ∈ C∞0 (RN), we have∫
RN

Vn(x)|vn|
p−2vnϕdx =

∫
RN

V∞|v|p−2vϕdx + on(1), (4.11)

and ∫
R2N

|vn(x) − vn(y)|p−2

|x − y|N+ps (vn(x) − vn(y))(ϕ(x) − ϕ(y))dxdy

=

∫
R2N

|v(x) − v(y)|p−2

|x − y|N+ps (v(x) − v(y))(ϕ(x) − ϕ(y))dxdy + on(1). (4.12)

Moreover, by (4.7), (4.10) and Hardy-Littlewood-Sobolev inequality, we infer that∫
RN

Kn(y)|vn(y)|q

|x − y|µ
dy ⇀

∫
RN

K∞|v(y)|q

|x − y|µ
dy in L

2N
µ (RN),

and

Kn(x)|vn|
qvn → K∞|v|q−2v in Lr(RN), r ∈ [1,

p∗s
q − 1

).

Then, for each ϕ ∈ C∞0 (RN)∫
R2N

Kn(y)|vn(y)|qKn(x)|vn(x)|q−2vnϕ

|x − y|µ
dxdy =

∫
R2N

(K∞)2|v(y)|q|v(x)|q−2vϕ
|x − y|µ

dxdy + on(1). (4.13)

Since vn satisfies (4.6), by (4.11)–(4.13), for any ϕ ∈ C∞0 (RN), we have

0 = lim
n→∞

(
∫
R2N

|vn(x) − vn(y)|p−2

|x − y|N+ps (vn(x) − vn(y))(ϕ(x) − ϕ(y))dxdy

+

∫
RN

Vn(x)|vn|
p−2vnϕdx −

∫
R2N

Kn(y)|vn(y)|qKn(x)|vn(x)|q−2vnϕ

|x − y|µ
dxdy)

=

∫
R2N

|v(x) − v(y)|p−2

|x − y|N+ps (v(x) − v(y))(ϕ(x) − ϕ(y))dxdy +

∫
RN

V∞|v|p−2vϕdx

−

∫
R2N

(K∞)2|v(y)|q|v(x)|q−2vϕ
|x − y|µ

dxdy,
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which implies v is a solution of

(−∆)s
pu + V∞|u|p−2u = (K∞)2(

∫
RN

|u(y)|q

|x − y|µ
dy)|u|q−2u, x ∈ RN .

By (4.9) and Lemma 2.2, we have

IV∞K∞(v) ≥ cV∞K∞ > cθα. (4.14)

Using Fatou’s lemma and Lemma 4.1, we get

cV∞K∞ ≤ IV∞K∞(v) = IV∞K∞(v) −
1

2q
〈I′V∞K∞(v), v〉

= (
1
p
−

1
2q

)(
∫
R2N

|v(x) − v(y)|p

|x − y|N+ps dxdy +

∫
RN

V∞|v|pdx)

≤ lim inf
n→∞

(
1
p
−

1
2q

)(
∫
R2N

|vn(x) − vn(y)|p

|x − y|N+ps dxdy +

∫
RN

Vn(x)|v|pdx)

= lim inf
n→∞

(Jεn(vn) −
1

2q
〈J′εn

(vn), vn〉) (4.15)

= lim inf
n→∞

Iεn(un) = lim inf
n→∞

cεn

≤ lim sup
n→∞

cεn ≤ cθα,

which contradicts to (4.14). Hence, {εnzn} is bounded.
Passing to a subsequence, still denoted by {εnzn}, we may assume that εnzn → z0 as n → ∞. Then

Vn(x)→ V(z0) and Kn(x)→ K(z0) as n→ ∞. Hence, v is a solution of

(−∆)s
pu + V(z0)|u|p−2u = K2(z0)(

∫
RN

|u(y)|q

|x − y|µ
dy)|u|q−2u, x ∈ RN . (4.16)

Next, we claim that z0 ∈ ΩV . Suppose by contradiction that z0 < ΩV , then by (H2) and Lemma 2.2,
we have cV(z0)K(z0) > cθα. It follows from Lemma 4.1 and the proof of (4.15) that

lim sup
n→∞

cεn ≤ cθα < cV(z0)K(z0) ≤ lim inf
n→∞

cεn ,

which is absurd. Hence, z0 ∈ ΩV , and then limn→∞ dist(εnzn,ΩV) = 0. Moreover, v is a ground state
solution of (4.16). In particular, if V ∩ K , ∅, we see that limn→∞ dist(εnzn,V ∩ K) = 0 and v is a
ground state solution of

(−∆)s
pu + θ|u|p−2u = κ2(

∫
RN

|u(y)|q

|x − y|µ
dy)|u|q−2u, x ∈ RN . (4.17)

Finally, we shall prove that vn → v in W s,p(RN). Since v is a ground state solution of (4.16), by
Fatou’s lemma, we have

cV(z0)K(z0) = IV(z0)K(z0)(v) = IV(z0)K(z0)(v) −
1

2q
〈I′V(z0)K(z0)(v), v〉
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= (
1
p
−

1
2q

)(
∫
R2N

|v(x) − v(y)|p

|x − y|N+ps dxdy +

∫
RN

V(z0)|v|pdx)

≤ lim inf
n→∞

(
1
p
−

1
2q

)(
∫
R2N

|vn(x) − vn(y)|p

|x − y|N+ps dxdy +

∫
RN

Vn(x)|vn|
pdx)

= lim inf
n→∞

(Jεn(vn) −
1
2q
〈J′εn

(vn), vn〉)

= lim inf
n→∞

cεn ≤ lim sup
n→∞

cεn ≤ cV(z0)K(z0).

Then

lim
n→∞

([vn]p
s,p +

∫
RN

Vn(x)|vn|
pdx) =

∫
R2N

|v(x) − v(y)|p

|x − y|N+ps dxdy +

∫
RN

V(z0)|v|pdx.

Thus by Vn(x)→ V(z0) and Brezis-Lieb lemma, we get vn → v in W s,p(RN).
The proof is completed. �

Lemma 4.3. vn ∈ L∞(RN) and there exists C > 0 such that |vn|∞ ≤ C for all n. Furthermore,
lim|x|→∞ vn(x) = 0 uniformly in n, where vn is given in Lemma 4.2.

Proof. Given T > 0 and β > 0. For each n, we denote vT,n = vn−(vn−T )+ and g(vn) = vnvpβ
T,n ∈ W s,p(RN).

Taking g(vn) as the test function in (4.6), we have∫
R2N

Kn(y)|vn(y)|qKn(x)|vn(x)|q−2vng(vn)
|x − y|µ

dxdy

=

∫
R2N

|vn(x) − vn(y)|p−2

|x − y|N+ps (vn(x) − vn(y))(g(vn)(x) − g(vn)(y))dxdy

+

∫
RN

Vn(x)|vn|
p−2vng(vn)dx. (4.18)

By the boundedness of K and {vn}, we have for each n,∫
RN

Kn(y)|vn(y)|q

|x − y|µ
dxdy ≤ C.

Therefore, ∫
R2N

Kn(y)|vn(y)|qKn(x)|vn(x)|q−2vng(vn)
|x − y|µ

dxdy ≤ C
∫
RN
|vn|

qvpβ
T,ndx. (4.19)

Set

G(t) =

∫ t

0
(g′(τ))

1
p dτ.

We have for any a, b ∈ R,

|G(a) −G(b)|p ≤ |a − b|p−2(a − b)(g(a) − g(b)).
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It follows from (4.18) and (4.19) that∫
R2N

|G(vn(x)) −G(vn(y))|p

|x − y|N+ps dxdy ≤ C
∫
RN
|vn|

qvpβ
T,ndx. (4.20)

By the definition of g, we can get G(vn) ≥ 1
β+1vnvβT,n. From (4.20) and the Sobolev inequality we obtain(∫

RN
|vnvβT,n|

p∗s dx
) p

p∗s

≤ C(β + 1)p
∫
RN
|vn|

qvpβ
T,ndx. (4.21)

Choosing T0 > 1, by the definition of vT,n, we obtain∫
RN
|vn|

qvpβ
T,ndx =

∫
{vn≤T0}

|vn|
qvpβ

T,ndx +

∫
{vn>T0}

|vn|
qvpβ

T,ndx

≤ T pβ
0

∫
RN
|vn|

qdx +

∫
{vn>T0}

|vn|
p∗s vpβ

T,ndx (4.22)

≤

(∫
{vn>T0}

|vn|
p∗s dx

) p∗s−p
p∗s

(∫
RN
|vp

nvpβ
T,n|

p∗s
p dx

) p
p∗s

+T pβ
0

∫
RN
|vn|

qdx.

Since vn → v in W s,p(RN), for T0 large enough, we conclude that(∫
{vn>T0}

|vn|
p∗s dx

) p∗s−p
p∗s

≤
1

2C(β + 1)p . (4.23)

By (4.22), (4.23) and the boundedness of {vn}, we get∫
RN
|vn|

qvpβ
T,ndx ≤ CT pβ

0

∫
RN
|vn|

qdx ≤ C.

Letting T → ∞, by Fatou’s lemma, we conclude that vn ∈ Lq+pβ(RN), and (4.21) implies(∫
RN
|vn|

(β+1)p∗s dx
) p

p∗s

≤ C
∫
RN
|vn|

q+pβdx.

Now, from an iterative procedure, in a finite number of steps, we can show that vn ∈ L∞(RN) and there
exists C > 0 such that ‖vn‖∞ ≤ C. Moreover, by vn → v in W s,p(RN), we infer that lim|x|→∞ vn(x) = 0
uniformly in n.
The proof is completed. �

Proof of Theorem 1.1. From proposition 1, problem (2.1) has a positive ground state solution uε. Then
the function wε(x) = uε( x

ε
) is a positive ground state solution of (1.1). Now we show the concentration

of the maximum points. Let uεn be a solution of (2.1). By Lemma 4.2, we have that vεn = uεn(x + zεn) is
a solution of the problem (4.6). Furthermore, vεn → v in W s,p(RN) and εnzεn → z0 ∈ ΩV . Furthermore,
from Lemma 4.3 we have vn ∈ L∞(RN) for all n. It follows from (4.5) that

β ≤

∫
BR∗ (0)

|vεn |
pdx ≤ |BR∗(0)||vεn |

p
∞.
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This implies there exist ι > 0 such that

‖vεn‖∞ ≥ ι > 0. (4.24)

Set pn be a global maximum of vn, by Lemma 4.3 and (4.24), we have that pn ∈ BR(0) for some
R > 0. Hence, the global maximum of uεn given by yεn = pn + zεn . Since {pn} is bounded and
εnzεn → z0, we have εnyεn → z0, thus the continuity of V and K gives limn→∞ V(εnzεn) = V(z0) and
limn→∞ K(εnzεn) = K(z0).
The proof is completed. �

5. Proof of Theorem 1.2

Let δ > 0 be fixed. Define a smooth cut-off function η : R+ → R+ satisfying η(t) = 1 if 0 ≤ t ≤ δ
2 ,

η(t) = 0 if t ≥ δ. For any ξ ∈ Λ, define

Wε,ξ(x) = η(|εx − ξ|)ω(
εx − ξ
ε

),

where ω(x) is the positive ground state solution of (4.17). By definition, Wε,ξ has compact support for
any ξ ∈ Λ, and hence it belongs to Eε. It’s easy to check that there exists a unique tε > 0 such that
tεWε,ξ ∈ Nε. Now, we define the map φε : N → Nε by φε(ξ) = tεWε,ξ.

Lemma 5.1. Uniformly in ξ ∈ Λ, we have

lim
ε→0

Iε(φε(ξ)) = cθκ.

Proof. Let ξ ∈ Λ. By the definition of φε(ξ) and a simple change of variable, one has∫
R2N

|η(ε|x|)ω(x) − η(ε|y|)ω(y)|p

|x − y|N+ps dxdy +

∫
RN

V(εx + ξ)|η(ε|x|)ω|pdx (5.1)

= t2q−p
ε

∫
R2N

K(εy + ξ)|η(ε|y|)ω(y)|qK(εx + ξ)|η(ε|x|)ω(x)|q

|x − y|µ
dxdy.

By Lemma 2.2 of [2] and Lebesgue’s theorem, we get

lim
ε→0

∫
R2N

|η(ε|x|)ω(x) − η(ε|y|)ω(y)|p

|x − y|N+ps dxdy =

∫
R2N

|ω(x) − ω(y)|p

|x − y|N+ps dxdy, (5.2)

lim
ε→0

∫
RN

V(εx + ξ)|η(ε|x|)ω|pdx = θ

∫
RN
|ω|pdx, (5.3)

and

lim
ε→0

∫
R2N

K(εy + ξ)|η(ε|y|)ω(y)|qK(εx + ξ)|η(ε|x|)ω(x)|q

|x − y|µ
dxdy = κ2

∫
R2N

|ω(y)|q|ω(x)|q

|x − y|µ
dxdy. (5.4)

On the other hand, since ω is a ground state solution of (4.17), we have∫
R2N

|ω(x) − ω(y)|p

|x − y|N+ps dxdy + θ

∫
RN
|ω|pdx = κ2

∫
R2N

|ω(y)|q|ω(x)|q

|x − y|µ
dxdy. (5.5)
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Then, by (5.1)–(5.5), we deduce that limε→0 tε = 1. At this point, by the same change of variable as
before and (5.2), (5.3), we have

Iε(φε(ξ)) = (
1
p
−

1
2q

)tp
ε (

∫
R2N

|η(ε|x|)ω(x) − η(ε|y|)ω(y)|p

|x − y|N+ps dxdy

+

∫
RN

V(εx + ξ)|η(ε|x|)ω|pdx)

= (
1
p
−

1
2q

)(
∫
R2N

|ω(x) − ω(y)|p

|x − y|N+ps dxdy + θ

∫
RN
|ω|pdx) + oε(1)

= cθκ + oε(1).

Moreover, the limit is uniformly in ξ.
The proof is completed. �

Let R > 0 be such that Λδ ⊂ BR(0). Define χ : RN → RN by χ(x) = x for x ∈ BR(0) and χ(x) = Rx
|x|

for x ∈ RN\BR(0). Now we define ρε : Nε → R
N by

ρε(u) =

∫
RN χ(εx)|u|pdx∫
RN |u|pdx

.

By the definition of χ and the Lebesgue’s theorm, we have that

ρε(φε(ξ)) =

∫
RN χ(εx)|η(|εx − ξ|)ω( εx−ξ

ε
)|pdx∫

RN |η(|εx − ξ|)ω( εx−ξ
ε

)|pdx

= ξ +

∫
RN (χ(εx + ξ) − ξ)|η(|εx|)ω(x)|pdx∫

RN |η(|εx|)ω(x)|pdx
(5.6)

= ξ + oε(1),

uniformly for ξ ∈ Λδ.
Let f (ε) be any positive function tending to 0 as ε→ 0. Set

Nε = {u ∈ Nε : Iε(u) ≤ cθκ + f (ε)}.

By Lemma 5.1, we see that Nε , ∅ for ε > 0 small enough.

Lemma 5.2.

lim
ε→0

sup
u∈Nε

inf
ξ∈Λδ

|ρε(u) − ξ| = 0.

Proof. Let εn → 0 as n→ ∞, by the definition, there exists a sequence {un} ⊂ Nεn such that

inf
ξ∈Λδ

|ρεn(un) − ξ| = sup
u∈Nε

inf
ξ∈Λδ

|ρε(u) − ξ| + on(1).

So it suffices to find a sequence {ξn} ⊂ Λδ satisfying

|ρεn(un) − ξn| = on(1). (5.7)
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Since {un} ⊂ Nεn ⊂ Nεn , by Lemma 2.2 we have that

cθκ ≤ cεn ≤ Iεn(un) ≤ cθκ + f (εn),

this implies Iεn(un)→ cθκ as n→ ∞. By the proof of Lemma 4.2, we obtain that there exists a sequence
{ξn} ⊂ R

N such that εnξn → z0 ∈ Λ and vn(x) = un(x+ξn) converges strongly in W s,p(RN) to v, a positive
ground state of (4.17). Set ξn = εnξn. Then by Lebesgue’s theorem,

ρεn(un) =

∫
RN χ(εnx + ξn)|vn(x)|pdx∫

RN |vn(x)|pdx

= ξn +

∫
RN (χ(εnx + ξn) − ξn)|vn(x)|pdx∫

RN |vn(x)|pdx
= ξn + on(1).

Thus (5.7) holds.
The proof is completed. �

Proof of Theorem 1.2. For a fixed δ > 0, by Lemma 5.1 there exists εδ > 0 such that Iε(φε(ξ)) ≤
cθκ + f (ε) for any ε ∈ (0, εδ) and ξ ∈ Λ. Using Lemma 5.2, we have dist(ρε(u),Λδ) < δ

2 for such ε and
u ∈ Nε. It follows that the map ρε ◦ φε : Λ → Λδ is well defined. Then, by (5.6) the map ρε ◦ φε is
homotopic to the inclusion map: Id : Λ→ Λδ. Applying homotopic and by the same arguments of [6],
we obtain that cat

Nε
(Nε) ≥ catΛδ

(Λ). By the definition of Nε and choosing εδ small, from Lemma
3.3, we have that Iε satisfies the (PS ) condition in Nε. Therefore, standard Ljusternik-Schnirelmann
theory implies that Iε has at least cat

Nε
(Nε) critical points on Nε. It is easy to check that Iε has at least

catΛδ
(Λ) critical points in Eε. The concentration behavior of these solutions as ε→ 0 are similar as in

the proof of Theorem 1.1. �
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