Research article

Counting rational points of quartic diagonal hypersurfaces over finite fields

  • Received: 06 November 2023 Revised: 09 December 2023 Accepted: 12 December 2023 Published: 21 December 2023
  • MSC : 11T06, 11T24

  • Let $ \mathbb{F}_q $ be the finite field of order $ q $ where $ q = p^{k} $, $ k $ is a positive integer and $ p $ is an odd prime. Let $ \mathbb{F}_q^* $ represent the nonzero elements of $ \mathbb{F}_{q} $. For $ f(x_1, \cdots, x_n)\in\mathbb{F}_q[x_1, \cdots, x_n] $, we used $ N\big(f(x_1, \cdots, x_n) = 0\big) $ to denote the number of $ \mathbb{F}_q $-rational points of the affine hypersurface $ f(x_1, \cdots, x_n) = 0 $. In 2020, Zhao et al. obtained the explicit formulae for $ N(x_1^4+x_2^4 = c) $, $ N(x_1^4+x_2^4+x_3^4 = c) $ and $ N(x_1^4+x_2^4+x_3^4+x_4^4 = c) $ over $ \mathbb{F}_q $, with $ c\in\mathbb{F}_q^* $. In this paper, by using Jacobi sums and an analog of the Hasse-Davenport theorem, we arrived at explicit formulae for $ N(a_1x_1^4+a_2x_2^4 = c) $ and $ N(b_1x_1^4+b_2x_2^4+b_3x_3^4 = c) $ with $ a_i, b_j\in \mathbb{F}_q^* (1\leq i \leq 2, 1 \leq j \leq 3) $ and $ c\in \mathbb{F}_q $. Furthermore, by using the reduction formula for Jacobi sums, the number of rational points of the quartic diagonal hypersurface $ a_1x_1^4+a_2x_2^4+\cdots+a_nx_n^4 = c $ of $ n\geq 4 $ variables with $ a_i\in\mathbb{F}_q^* $ $ (1\leq i\leq n) $, $ c\in\mathbb{F}_q $ and $ p\equiv1({\rm{mod}} \ 4) $, can also be deduced. These extended and improved earlier results.

    Citation: Shuangnian Hu, Yanyan Li, Rongquan Feng. Counting rational points of quartic diagonal hypersurfaces over finite fields[J]. AIMS Mathematics, 2024, 9(1): 2167-2180. doi: 10.3934/math.2024108

    Related Papers:

  • Let $ \mathbb{F}_q $ be the finite field of order $ q $ where $ q = p^{k} $, $ k $ is a positive integer and $ p $ is an odd prime. Let $ \mathbb{F}_q^* $ represent the nonzero elements of $ \mathbb{F}_{q} $. For $ f(x_1, \cdots, x_n)\in\mathbb{F}_q[x_1, \cdots, x_n] $, we used $ N\big(f(x_1, \cdots, x_n) = 0\big) $ to denote the number of $ \mathbb{F}_q $-rational points of the affine hypersurface $ f(x_1, \cdots, x_n) = 0 $. In 2020, Zhao et al. obtained the explicit formulae for $ N(x_1^4+x_2^4 = c) $, $ N(x_1^4+x_2^4+x_3^4 = c) $ and $ N(x_1^4+x_2^4+x_3^4+x_4^4 = c) $ over $ \mathbb{F}_q $, with $ c\in\mathbb{F}_q^* $. In this paper, by using Jacobi sums and an analog of the Hasse-Davenport theorem, we arrived at explicit formulae for $ N(a_1x_1^4+a_2x_2^4 = c) $ and $ N(b_1x_1^4+b_2x_2^4+b_3x_3^4 = c) $ with $ a_i, b_j\in \mathbb{F}_q^* (1\leq i \leq 2, 1 \leq j \leq 3) $ and $ c\in \mathbb{F}_q $. Furthermore, by using the reduction formula for Jacobi sums, the number of rational points of the quartic diagonal hypersurface $ a_1x_1^4+a_2x_2^4+\cdots+a_nx_n^4 = c $ of $ n\geq 4 $ variables with $ a_i\in\mathbb{F}_q^* $ $ (1\leq i\leq n) $, $ c\in\mathbb{F}_q $ and $ p\equiv1({\rm{mod}} \ 4) $, can also be deduced. These extended and improved earlier results.



    加载中


    [1] B. C. Berndt, R. J. Evans, K. S. Williams, Gauss and Jacobi sums, Wiley, 1998.
    [2] W. Cao, On generalized Markoff-Hurwitz-type equations over finite fields, Acta Appl. Math., 112 (2010), 275–281. http://doi.org/10.1007/s10440-010-9568-4 doi: 10.1007/s10440-010-9568-4
    [3] W. Cao, Q. Sun, On a class of equations with special degrees over finite fields, Acta Arith., 130 (2007), 195–202. http://doi.org/10.4064/aa130-2-8 doi: 10.4064/aa130-2-8
    [4] L. Carlitz, Pairs of quadratic equations in a finite field, Amer. J. Math., 76 (1954), 137–154. https://doi.org/10.2307/2372405 doi: 10.2307/2372405
    [5] S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. http://doi.org/10.1016/0022-314X(77)90010-5 doi: 10.1016/0022-314X(77)90010-5
    [6] S. Hong, C. Zhu, On the number of zeros of diagonal cubic forms over finite fields, Forum Math., 33 (2021), 697–708. http://doi.org/10.1515/forum-2020-0354 doi: 10.1515/forum-2020-0354
    [7] S. Hu, S. Hong, W. Zhao, The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory, 156 (2015), 135–153. http://doi.org/10.1016/j.jnt.2015.04.006 doi: 10.1016/j.jnt.2015.04.006
    [8] S. Hu, X. Qin, J. Zhao, Counting rational points of an algebraic variety over finite fields, Results Math., 74 (2019), 37. https://doi.org/10.1007/s00025-019-0962-6 doi: 10.1007/s00025-019-0962-6
    [9] S. Hu, J. Zhao, The number of rational points of a family of algebraic varieties over finite fields, Algebra Colloq., 24 (2017), 705–720. http://doi.org/10.1142/S1005386717000475 doi: 10.1142/S1005386717000475
    [10] H. Huang, W. Gao, W. Cao, Remarks on the number of rational points on a class of hypersurfaces over finite fields, Algebra Colloq., 25 (2018), 533–540. https://doi.org/10.1142/S1005386718000366 doi: 10.1142/S1005386718000366
    [11] L. K. Hua, H. S. Vandiver, On the number of solutions of some trinomial equations in a finite field, Proc. Natl. Acad. Sci., 35 (1949), 477–481. http://doi.org/10.1073/pnas.35.8.477 doi: 10.1073/pnas.35.8.477
    [12] K. Ireland, M. Rosen, A classical introduction to modern number theory, 2 Eds., Springer-Verlag, 1990.
    [13] R. Lidl, H. Niederreiter, Finite fields, 2 Eds., Cambridge University Press, 1996. http://doi.org/10.1017/CBO9780511525926
    [14] G. Myerson, On the number of zeros of diagonal cubic forms, J. Number Theory, 11 (1979), 95–99. http://doi.org/10.1016/0022-314X(79)90023-4 doi: 10.1016/0022-314X(79)90023-4
    [15] D. Wan, J. Zhang, Complete symmetric polynomials over finite fields have many rational zeros, Sci. Sin. Math., 51 (2021), 1677–1684. http://doi.org/10.1360/ssm-2020-0328 doi: 10.1360/ssm-2020-0328
    [16] A. Weil, Number of solutions of equations in finite field, Bull. Amer. Math. Soc., 55 (1949), 497–508. http://doi.org/10.1090/S0002-9904-1949-09219-4 doi: 10.1090/S0002-9904-1949-09219-4
    [17] J. Wolfmann, The number of solutions of certain diagonal equations over finite fields, J. Number Theory, 42 (1992), 247–257. http://doi.org/10.1016/0022-314x(92)90091-3 doi: 10.1016/0022-314x(92)90091-3
    [18] J. Zhang, D. Wan, Rational points on complete symmetric hypersurfaces over finite fields, Discrete Math., 11 (2020), 112072. http://doi.org/10.1016/j.disc.2020.112072 doi: 10.1016/j.disc.2020.112072
    [19] J. Zhao, S. Hong, C. Zhu, The number of rational points of certain quartic diagonal hypersurfaces over finite fields, AIMS Math., 5 (2020), 2710–2731. http://doi.org/10.3934/math.2020175 doi: 10.3934/math.2020175
    [20] J. Zhao, Y. Zhao, Y. Niu, On the number of solutions of two-variable diagonal quartic equations over finite fields, AIMS Math., 5 (2020), 2979–2991. http://doi.org/10.3934/math.2020192 doi: 10.3934/math.2020192
    [21] J. Zhao, Y. Feng, S. Hong, C. Zhu, On the number of zeros of diagonal quartic forms over finite fields, Forum Math., 34 (2022), 385–405. http://doi.org/10.1515/forum-2021-0196 doi: 10.1515/forum-2021-0196
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(725) PDF downloads(46) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog