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Abstract: Let Fq be the finite field of order q where q = pk, k is a positive integer and p is an
odd prime. Let F∗q represent the nonzero elements of Fq. For f (x1, · · · , xn) ∈ Fq[x1, · · · , xn], we
used N

(
f (x1, · · · , xn) = 0

)
to denote the number of Fq-rational points of the affine hypersurface

f (x1, · · · , xn) = 0. In 2020, Zhao et al. obtained the explicit formulae for N(x4
1 + x4

2 = c),
N(x4

1+ x4
2+ x4

3 = c) and N(x4
1+ x4

2+ x4
3+ x4

4 = c) over Fq, with c ∈ F∗q. In this paper, by using Jacobi sums
and an analog of the Hasse-Davenport theorem, we arrived at explicit formulae for N(a1x4

1 + a2x4
2 = c)

and N(b1x4
1 + b2x4

2 + b3x4
3 = c) with ai, b j ∈ F

∗
q(1 ≤ i ≤ 2, 1 ≤ j ≤ 3) and c ∈ Fq. Furthermore,

by using the reduction formula for Jacobi sums, the number of rational points of the quartic diagonal
hypersurface a1x4

1 + a2x4
2 + · · · + anx4

n = c of n ≥ 4 variables with ai ∈ F
∗
q (1 ≤ i ≤ n), c ∈ Fq and

p ≡ 1(mod 4), can also be deduced. These extended and improved earlier results.
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1. Introduction and main results

Let Fq be the finite field of order q where q = pk, k is a positive integer and p is an odd prime. Let
F∗q represent the nonzero elements of Fq. For f (x1, · · · , xn) ∈ Fq[x1, · · · , xn], we use Nq( f ; n) to denote
the number of Fq-rational points of the affine hypersurface f (x1, · · · , xn) = 0, namely,

Nq( f ; n) = N( f (x1, · · · , xn) = 0) = #{(x1, · · · , xn) ∈ Fn
q| f (x1, · · · , xn) = 0}.

To evaluate the values of Nq( f ; n) is a fundamental problem in algebra, number theory and arithmetic
geometry. Generally speaking, it is difficult to give explicit formulae for Nq( f ; n). An explicit formula
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for Nq( f ; n) is known when deg( f ) ≤ 2 (see [13]). Finding the explicit formula for Nq( f ; n) under
certain conditions has attracted many researchers for many years (see, for instance, [2–11, 14–21]).

A special diagonal hypersurface over Fq is given by an equation of the type

a1xe
1 + a2xe

2 + · · · + anxe
n = c,

with e being a positive integer, coefficients a1, a2, · · · , an ∈ F
∗
q and c ∈ Fq. It is clear that

N(a1x1 + a2x2 + · · · + anxn = c) = qn−1.

For e = 2, there is an explicit formula for N(a1x2
1 + · · · + anx2

n = c) in [13]. When q = p2t with
pr ≡ −1(mod e) for a divisor r of t and e | (q − 1), Wolfmann [17] gave an explicit formula of the
number of rational points of the hypersurface

a1xe
1 + a2xe

2 + · · · + anxe
n = c

over Fq in 1992.
For the special case where a1 = a2 = · · · = an = 1, we denote by

M(e)
n (c) = N(xe

1 + xe
2 + · · · + xe

n = c).

In 1977, Chowla et al. [5] got the generating function
∞∑

n=1
M(3)

n (0)xn over Fp with p ≡ 1(mod 3). In 1979,

Myerson [14] extended the result in [5] to the field Fq, and also showed that the generating function
∞∑

n=1
M(4)

n (0)xn over Fq with p ≡ 1(mod 4) is a rational function in x.

In 2020, Zhao et al. [19, 20] investigated the number of rational points of the hypersurfaces

x4
1 + x4

2 = c, x4
1 + x4

2 + x4
3 = c and x4

1 + x4
2 + x4

3 + x4
4 = c

over Fq, with c ∈ F∗q. For any c ∈ Fq, in 2022, by using the cyclotomic theory and exponential sums,

Zhao et al. [21] showed that the generating function
∞∑

n=1
M(4)

n (c)xn is a rational function in x.

In this paper, we consider the problem of finding the explicit formula for the number of rational
points of the diagonal quartic hypersurface

f (x1, x2, · · · , xn) = a1x4
1 + a2x4

2 + · · · + anx4
n − c = 0

over Fq, where q = pk, a1, a2, · · · , an ∈ F
∗
q and c ∈ Fq.

If p ≡ 3(mod 4) and k is an odd integer, then gcd(4, q − 1) = 2. It follows that (see [12])

N(a1x4
1 + a2x4

2 + · · · + anx4
n = c) = N(a1x2

1 + a2x2
2 + · · · + anx2

n = c).

Throughout this paper, we let η be the quadratic multiplicative character of Fq. Then from
Theorems 6.26 and 6.27 in [13], the following result is deduced.

Theorem 1.1. Let q = pk with p ≡ 3(mod 4) and k be an odd integer. Let ψ(c) = −1 for c ∈ F∗q and
ψ(0) = q − 1. Then the number of rational points of the hypersurface

f (x1, x2, · · · , xn) = a1x4
1 + a2x4

2 + · · · + anx4
n − c
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over Fq is
qn−1 + ψ(c)q

n−2
2 η

(
(−1)

n
2 a1a2 · · · an

)
if n is even, and is

qn−1 + q
n−1

2 η
(
(−1)

n−1
2 ca1a2 · · · an

)
if n is odd.

If p ≡ 3(mod 4) and k is an even integer, the following result can be derived from [17, Theorem 1].

Theorem 1.2. Let p ≡ 3(mod 4) be a prime, k an even integer, q = pk, s = q−1
4 , n ≥ 2 and c ∈ Fq. Let

α be a primitive element of Fq. Denote by N the number of rational points of the hypersurface

a1x4
1 + a2x4

2 + · · · + anx4
n = c

over Fq, then

N = qn−1 +
1
4

(−1)kn/2qn/2−1(q − 1)
3∑

j=0

(−3)v( j)

if c = 0, and

N = qn−1 − (−1)k(n+1)/2qn/2−1

(−3)θ(c)q1/2 −
1
4

(
q1/2 − (−1)k/2

) 3∑
j=0

(−3)τ( j)


if c , 0, where v( j) is the number of i, 1 ≤ i ≤ n, such that

(α j)sas
i = (−1)k(p+1)/8;

θ(c) is the number of i, 1 ≤ i ≤ n, such that as
i = (−c)s and τ( j) is the number of i, 1 ≤ i ≤ n, such that

as
i = (α j)s.

However, the explicit formula for N(a1x4
1+a2x4

2+· · ·+anx4
n = c) is still unknown when p ≡ 1(mod 4).

In this paper, we solve this problem by using the Jacobi sums and an analog of the Hasse-Davenport
theorem. We give an explicit formula for the number of rational points of diagonal quartic hypersurface

f1(x1, x2) = a1x4
1 + a2x4

2 − c = 0 (1.1)

and

f2(x1, x2, x3) = b1x4
1 + b2x4

2 + b3x4
3 − c = 0 (1.2)

over Fq, with a1, a2, b1, b2, b3 ∈ F
∗
q, c ∈ Fq and the characteristic p ≡ 1(mod 4). The case with arbitrary

n ≥ 4 variables can be deduced from the reduction formula for Jacobi sums, but we omit the tedious
details here.

For a generator α of F∗q, we define the index of β ∈ F∗q with respect to α, denoted by indαβ, to be
the unique integer r ∈ [1, q − 1] such that β = αr (see, for instance, [13]). For any nonzero integer n
and prime number p, we define νp(n) as the greatest integer t such that pt divides n. Then νp(n) is a
nonnegative integer, and νp(n) ≥ 1 if and only if p divides n.

To give the main results, we need two concepts as follows.
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Definition 1.1. Let λ be a multiplicative character of Fq. Associated to λ, we define the function S λ

over F∗q as follows
S λ(β) := λ(β) + λ(β3).

Clearly, if λ is the multiplicative character of order 4 of Fq with λ(α) = i =
√
−1, then we have

S λ(β) =


2, if indαβ ≡ 0(mod 4),
0, if indαβ ≡ 1(mod 4) or indαβ ≡ 3(mod 4),
−2, if indαβ ≡ 2(mod 4).

Definition 1.2. Let r, s and k be positive integers, and we define

E(r, s, k) := rk −

k∑
m=1

ν2(m)=1

(
k
m

)
rk−msm +

k∑
m=1

ν2(m)≥2

(
k
m

)
rk−msm

and

O(r, s, k) :=
k∑

m=1
ν2(m+1)=1

(
k
m

)
rk−msm −

k∑
m=1

ν2(m+1)≥2

(
k
m

)
rk−msm.

Moreover, let α be a primitive element of Fq and β ∈ F∗q. Then associated to r, s and k, we define

W(r,s,k)(β) :=


2E(r, s, k), if indαβ ≡ 0(mod 4),
−2O(r, s, k), if indαβ ≡ 1(mod 4),
−2E(r, s, k), if indαβ ≡ 2(mod 4),
2O(r, s, k), if indαβ ≡ 3(mod 4).

Now we can state the main results of this paper as follows.

Theorem 1.3. Let k be a positive integer and q = pk with p = 4t + 1. Let α be a primitive element of
Fq, η be the quadratic multiplicative character of Fq and λ be a multiplicative character of order 4 of
Fq such that λ(α) = i. Let N1 denote the number of rational points of the hypersurface over Fq defined
by (1.1). Then

N1 = q + (q − 1)
(
(−1)tkS λ(a1a3

2) + η(a1a2)
)

if c = 0, and

N1 = q − (−1)tkS λ(a1a3
2) − η(a1a2) + (−1)k+1

(−1)ktW(u,−v,k)(α1) +
3∑

i=2

W(u,−v,k)(αi)


if c , 0, with α1 = c2a1a2, α2 = ca2

1a2, α3 = ca1a2
2 and the integers u and v being defined uniquely by

u2 + v2 = p, u ≡ −
(

2
p

)
(mod 4) and v ≡ uα(q−1)/4(mod p),

where
(

2
p

)
is the Legendre symbol.
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Theorem 1.4. Let k be a positive integer and q = pk with p = 4t + 1. Let α be a primitive element of
F∗q, η be the quadratic multiplicative character of Fq and λ be a multiplicative character of order 4 of
Fq such that λ(α) = i. Let N2 denote the number of rational points of the hypersurface over Fq defined
by (1.2). Then

N2 = q2 − (q − 1)(−1)(t+1)k
3∑

i=1

W(u,−v,k)(βi)

if c = 0, and

N2 =q2 + (−1)(t+1)k
3∑

i=1

W(u,−v,k)(βi) + (−1)ktW(u2−v2,−2uv,k)(cb1b2b3)

+ q

(−1)kt
6∑

j=1

S λ(γi) +
9∑

j=7

S λ(γi) + η(cb1b2b3)


if c , 0, with

β1 = b1b2b2
3, β2 = b1b2

2b3, β3 = b2
1b2b3, γ1 = cb3

1b3
2b3,

γ2 = c2b3
1b2

2b3, γ3 = cb3
1b2b3

3, γ4 = c2b3
1b2b2

3, γ5 = c3b3
1b2b3,

γ6 = c2b2
1b3

2b3, γ7 = cb3
1b2

2b2
3, γ8 = c3b2

1b2b2
3, γ9 = cb2

1b2
2b3

3

and the integers u and v being defined as in Theorem 1.3.
This paper is organized as follows. In Section 2, we recall some useful known lemmas that will be

needed later. Subsequently, in Section 3, we prove Theorems 1.3 and 1.4. Finally, in Section 4, we
supply two examples to illustrate the validity of our results.

2. Preliminary lemmas

In this section, we present some useful lemmas that are needed in the proof of Theorems 1.3 and 1.4.
Let q = pk, where k is a positive integer and p is a prime. For any element β ∈ E = Fq and F = Fp,

the norm of β relative to Fp is defined by (see, for example, [1, 13])

NE/F(β) := ββp · · · βpk−1
= β

q−1
p−1 .

For the simplicity, we write N(β) for NE/F(β). It is clear that if α is a primitive element of Fq, then N(α)
is a primitive element of Fp. Let χ be a multiplicative character of Fq. For any α ∈ Fq, if χ(α) = 1,
then we call the character χ is trivial. Let χ be a multiplicative character of Fp. Then χ can be lifted
to a multiplicative character λ of Fq by setting λ(β) = χ(N(β)). Any characters of Fp can be lifted
to characters of Fq, but not all the characters of Fq can be obtained by lifting a character of Fp. The
following lemma characterizes all the characters of Fq that can be obtained by lifting a character of Fp.

Lemma 2.1. [1] Let Fp be a finite field and Fq be an extension of Fp. A multiplicative character λ of Fq

can be lifted by a multiplicative character χ of Fp if and only if λp−1 is trivial.
Let λ1,· · · ,λn be n multiplicative characters of Fq. The Jacobi sum J(λ1, · · · , λn) is defined by

J(λ1, · · · , λn) :=
∑

γ1+···+γn=1

λ1(γ1) · · · λn(γn),

AIMS Mathematics Volume 9, Issue 1, 2167–2180.
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where the summation is taken over all n-tuples (γ1, · · · , γn) of elements of Fq with γ1 + · · · + γn = 1. It
is clear that if σ is a permutation of {1, · · · , n}, then

J(λσ(1), · · · , λσ(n)) = J(λ1, · · · , λn).

The readers are referred to [1, 13] for the basic facts on the Jacobi sum.
The following lemma is an analog of the Hasse-Davenport theorem which establishes an important

relationship between the Jacobi sums in Fq and the Jacobi sums in Fp.

Lemma 2.2. [13] Let χ1, · · · , χn be multiplicative characters of Fp, not all of which are trivial. Suppose
χ1, · · · , χn are lifted to characters λ1, · · · , λn, respectively, of the extension field Fq of Fp with degree
[Fq : Fp] = k. Then

J(λ1, · · · , λn) = (−1)(n−1)(k−1)J(χ1, · · · , χn)k.

Lemma 2.3. (Reduction formula for the Jacobi sums) [1] Let λ1, · · · , λs−1, λs be s nontrivial
multiplicative characters of Fq. If s ≥ 2, then

J(λ1, · · · , λs−1, λs) =
{
−qJ(λ1, · · · , λs−1), if λ1, · · · , λs−1 is trivial,
J(λ1, · · · , λs−1, λs)J(λ1, · · · , λs−1), if λ1, · · · , λs−1 is nontrivial.

Lemma 2.4. [1] Let p ≡ 1(mod 4) be a prime, q a power of p, α be a generator of F∗q, and let χ be a
multiplicative character of order 4 of Fp with χ(N(α)) = i. Then

J(χ, χ2) = u + iv,

where the integers u and v are uniquely determined by

u2 + v2 = p, u ≡ −
(

2
p

)
(mod 4) and v ≡ uα(q−1)/4(mod p).

Lemma 2.5. [1] Let p = 4t + 1 be a prime number. Let g be a primitive element of Fp and χ be a
multiplicative character of order 4 over Fp such that χ(g) = i. Let the integers u and v be defined as in
Lemma 2.4. Then the values of the 16 Jacobi sums J(χm, χn) (m, n = 0, 1, 2, 3) of order 4 are given in
Table 1.

Table 1. The values of the Jacobi sums J(χm, χn).

m \ n 0 1 2 3

0 p 0 0 0
1 0 (−1)t(u + vi) u + vi (−1)t+1

2 0 u + vi −1 u − vi

3 0 (−1)t+1 u − vi (−1)t(u − vi)

The following lemma gives a formula for the number of rational points of a diagonal hypersurface
in terms of the Jacobi sums.

Lemma 2.6. [1] Let k1, · · · , kn be positive integers. Let a1, · · · , an ∈ F
∗
q and c ∈ Fq. Set

di = gcd(ki, q − 1),

AIMS Mathematics Volume 9, Issue 1, 2167–2180.
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and let λi be a multiplicative character of Fq of order di, for i = 1, · · · , n. Then the number N of
rational points of the equation

a1xk1
1 + · · · + anxkn

n = c

over Fq is given by

N = qn−1 − (q − 1)
d1−1∑
j1=1

λ
j1
1 ···λ

jn
n trivial

· · ·

dn−1∑
jn=1

λ
j1
1 (a−1

1 ) · · · λ jn
n (a−1

n )J(λ j1
1 , . . . , λ

jn
n )

if c = 0, and by

N = qn−1 +

d1−1∑
j1=1

· · ·

dn−1∑
jn=1

λ
j1
1 (ca−1

1 ) · · · λ jn
n (ca−1

n )J(λ j1
1 , · · · , λ

jn
n )

if c , 0.

3. Proof of Theorems 1.3 and 1.4

In this section, we give the proofs of Theorems 1.3 and 1.4. First, we begin with a lemma.

Lemma 3.1. Let α be a primitive element of Fq and λ be a multiplicative character of order 4 of
Fq = Fpk such that λ(α) = i. Then for any positive integers r, s and β ∈ F∗q, we have

λ(β)(r + si)k + λ(β3)(r − si)k = W(r,s,k)(β),

where the function W(r,s,k)(β) is defined as in Definition 1.2.

Proof. If indαβ ≡ 0(mod 4), then
λ(β) = λ(β3) = 1.

Thus, one has

λ(β)(r + si)k + λ(β3)(r − si)k = (r + si)k + (r − si)k

=

k∑
m=0

(
k
m

)
rk−m[(si)m + (−si)m]

= 2rk +

k∑
m=1

m is even

(
k
m

)
rk−m[(si)m + (−si)m]

= 2rk − 2
k∑

m=1
ν2(m)=1

(
k
m

)
rk−msm + 2

k∑
m=1

ν2(m)≥2

(
k
m

)
rk−msm

= 2E(r, s, k).

If indαβ ≡ 1(mod 4), then
λ(β) = i and λ(β3) = −i.

AIMS Mathematics Volume 9, Issue 1, 2167–2180.
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Thus, one has

λ(β)(r + si)k + λ(β3)(r − si)k = (r + si)ki − (r − si)ki

=

k∑
m=0

(
k
m

)
rk−m[smim+1 + sm(−i)m+1]

= 2
k∑

m=1
m is odd

(
k
m

)
rk−msmim+1

= − 2
k∑

m=1
ν2(m+1)=1

(
k
m

)
rk−msm + 2

k∑
m=1

ν2(m+1)≥2

(
k
m

)
rk−msm

= − 2O(r, s, k).

If indαβ ≡ 2(mod 4), then
λ(β) = λ(β3) = −1,

and if indαβ ≡ 3(mod 4), then
λ(β) = −i and λ(β3) = i.

The results in these two cases can be proved similarly. □

We can now give the proof of Theorem 1.3.

Proof of Theorem 1.3. Let α be a primitive element of Fq and λ be a multiplicative character of Fq of
order 4 with λ(α) = i. Since q ≡ 1(mod 4), then

gcd(4, q − 1) = 4.

Using Lemma 2.6, by setting λ1 = λ2 = λ, one can deduce that the number N1 of rational points

a1x4
1 + a2x4

2 = c

in F2
q is given by

N1 = q − (q − 1)
3∑

j1=1

λ j1 λ j2 trivial

3∑
j2=1

λ(a− j1
1 a− j2

2 )J(λ j1 , λ j2) (3.1)

if c = 0, and by

N1 = q +
3∑

j1=1

3∑
j2=1

λ(c j1+ j2a− j1
1 a− j2

2 )J(λ j1 , λ j2) (3.2)

if c , 0.
Since p ≡ 1(mod 4), it follows that λp−1 is trivial. Thus, from Lemma 2.1, we know that the quartic

multiplicative character λ can be lifted by a quartic multiplicative character χ of Fp.
Using Lemmas 2.2, 2.5 and 3.1 and Definition 1.1, we have the following two cases, depending on

c = 0 or c , 0.

AIMS Mathematics Volume 9, Issue 1, 2167–2180.
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If c = 0, we derive that

3∑
j1=1

λ j1 λ j2 trivial

3∑
j2=1

λ(a− j1
1 a− j2

2 )J(λ j1 , λ j2)

= λ(a3
1a2)J(λ, λ3) + λ(a2

1a2
2)J(λ2, λ2) + λ(a1a3

2)J(λ3, λ)

= (−1)k−1
(
λ(a3

1a2)J(χ, χ3)k + λ(a1a3
2)J(χ3, χ)k + λ(a2

1a2
2)J(χ2, χ2)k

)
= (−1)tk−1

(
λ(a3

1a2) + λ(a1a3
2)
)
− λ(a2

1a2
2)

= (−1)tk−1S λ(a3
1a2) − η(a1a2). (3.3)

Thus, from (3.1) and (3.3), the first part of Theorem 1.3 follows immediately.
If c , 0, we obtain

3∑
j1=1

3∑
j2=1

λ(c j1+ j2a− j1
1 a− j2

2 )J(λ j1 , λ j2)

= λ(a3
1a2)J(λ, λ3) + λ(a2

1a2
2)J(λ2, λ2) + λ(a1a3

2)J(λ3, λ)
+ λ(c2a3

1a3
2)J(λ, λ) + λ(c2a1a2)J(λ3, λ3) + λ(c3a3

1a2
2)J(λ, λ2)

+ λ(ca1a2
2)J(λ3, λ2) + λ(c3a2

1a3
2)J(λ, λ2) + λ(ca2

1a2)J(λ2, λ3)

= (−1)tk−1S λ(a3
1a2) − η(a1a2) + (−1)k−1

(
λ(c2a3

1a3
2)J(χ, χ)k

+ λ(c2a1a2)J(χ3, χ3)k + λ(c3a3
1a2

2)J(χ, χ2)k + λ(ca1a2
2)J(χ3, χ2)k

+ λ(c3a2
1a3

2)J(χ, χ2)k + λ(ca2
1a2)J(χ2, χ3)k

)
= (−1)tk−1S λ(a3

1a2) − η(a1a2) + (−1)k−1
(
(−1)tk(λ(c2a3

1a3
2)(u + vi)k

+ λ(c2a1a2)(u − vi)k) + λ(c3a3
1a2

2)(u + vi)k + λ(ca1a2
2)(u − vi)k

+ λ(c3a2
1a3

2)(u + vi)k + λ(ca2
1a2)(u − vi)k

)
= (−1)tk−1S λ(a3

1a2) − η(a1a2) + (−1)k+1
(
(−1)tkW(u,−v,k)(c2a1a2)

+W(u,−v,k)(ca1a2
2) +W(u,−v,k)(ca2

1a2)
)
. (3.4)

Thus, from (3.2) and (3.4), the desired result follows immediately. □
Now, we can turn our attention to prove Theorem 1.4.

Proof of Theorem 1.4. By the same argument as in the proof of Theorem 1.3, let α be a primitive
element of Fq and λ be the multiplicative character of Fq of order 4 with λ(α) = i. One has

N2 = q2 − (q − 1)
3∑

j1=1

3∑
j2=1

λ j1 λ j2 λ j3 trivial

3∑
j3=1

λ(b− j1
1 b− j2

2 b− j3
3 )J(λ j1 , λ j2 , λ j3) (3.5)

if c = 0, and

N2 = q2 +

3∑
j1=1

3∑
j2=1

3∑
j3=1

λ(c j1+ j2+ j3b− j1
1 b− j2

2 b− j3
3 )J(λ j1 , λ j2 , λ j3) (3.6)
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if c , 0.
Clearly, the quartic multiplicative character λ can be lifted by a quartic multiplicative character χ of

Fp. Thus, from Lemmas 2.2, 2.3, 2.5 and 3.1 and Definition 1.2, one gets that

3∑
j1=1

3∑
j2=1

λ j1 λ j2 λ j3 trivial

3∑
j3=1

λ(b− j1
1 b− j2

2 b− j3
3 )J(λ j1 , λ j2 , λ j3)

= λ(b3
1b3

2b2
3)J(χ2, χ2)kJ(χ, χ)k + λ(b3

1b2
2b3

3)J(χ3, χ)kJ(χ, χ2)k

+ λ(b2
1b3

2b3
3)J(χ3, χ)kJ(χ, χ2)k + λ(b2

1b2b3)J(χ, χ3)kJ(χ2, χ3)k

+ λ(b1b2
2b3)J(χ, χ3)kJ(χ2, χ3)k + λ(b1b2b2

3)J(χ2, χ2)kJ(χ3, χ3)k

= (−1)(t+1)k[λ(b3
1b3

2b2
3)(u + vi)k + λ(b1b2b2

3)(u − vi)k + λ(b3
1b2

2b3
3)(u + vi)k

+ λ(b1b2
2b3)(u − vi)k + λ(b2

1b3
2b3

3)(u + vi)k + λ(b2
1b2b3)(u − vi)k]

= (−1)(t+1)k
(
W(u,−v,k)(b1b2b2

3) +W(u,−v,k)(b1b2
2b3) +W(u,−v,k)(b2

1b2b3)
)
. (3.7)

Then, from (3.5) and (3.7), the first part of Theorem 1.4 follows immediately.
We can now turn our attention to prove the second part of Theorem 1.4. Clearly,

3∑
j1=1

3∑
j2=1

3∑
j3=1

λ(c j1+ j2+ j3b− j1
1 b− j2

2 b− j3
3 )J(λ j1 , λ j2 , λ j3)

= (−1)(t+1)k
(
W(u,−v,k)(b1b2b2

3) +W(u,−v,k)(b1b2
2b3) +W(u,−v,k)(b2

1b2b3)
)

+ λ(c3b3
1b3

2b3
3)J(χ2, χ)kJ(χ, χ)k + λ(cb1b2b3)J(χ2, χ3)kJ(χ3, χ3)k

+ (−1)kqJ(χ, χ3)k[λ(cb3
1b3

2b3) + λ(c3b1b2b3
3) + λ(c2b3

1b2
2b3) + λ(c2b1b2

2b3
3)

+ λ(cb3
1b2b3

3) + λ(c3b1b3
2b3) + λ(c2b3

1b2b2
3) + λ(c2b1b3

2b2
3)

+ λ(c3b3
1b2b3) + λ(cb1b3

2b3
3) + λ(c2b2

1b3
2b3) + λ(c2b2

1b2b3
3)]

+ (−1)kqJ(χ2, χ2)k[λ(cb3
1b2

2b2
3) + λ(c3b1b2

2b2
3) + λ(c3b2

1b2b2
3) + λ(cb2

1b3
2b2

3)
+ λ(cb2

1b2
2b3

3) + λ(c3b2
1b2

2b3)] + (−1)kqJ(χ2, χ2)kλ(c2b2
1b2

2b2
3). (3.8)

By Lemmas 2.5 and 3.1 and Definition 1.2, we derive that

λ(c3b3
1b3

2b3
3)J(χ2, χ)kJ(χ, χ)k + λ(cb1b2b3)J(χ2, χ3)kJ(χ3, χ3)k

= (−1)kt[λ(c3b3
1b3

2b3
3)(u2 − v2 + 2uvi)k + λ(cb1b2b3)(u2 − v2 − 2uvi)k]

= (−1)ktW(u2−v2,−2uv,k)(cb1b2b3). (3.9)

Using Lemma 2.5, one has

(−1)kqJ(χ, χ3)k = (−1)tkq and (−1)kqJ(χ2, χ2)k = q. (3.10)

Thus, from (3.6), (3.8)–(3.10) and Definition 1.1, the desired result of the second part of
Theorem 1.4 follows immediately. □
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4. Examples

In this section, we present two examples to demonstrate the validity of Theorems 1.3 and 1.4. We
have validated these two examples by using the Magma which is a powerful algebraic computation
program package.

Example 4.1. Let p = 5 and k = 5. It can be checked easily that 2 is a primitive element of F5. Choose
a primitive element ω of F55 with N(ω) = 2. We consider the numbers of rational points (x1, x2) ∈ F2

55

of the quartic hypersurfaces
x4

1 + ω
2x4

2 = 0 and x4
1 + ω

2x4
2 = ω

over F55 .
Now, the Legendre symbol (

2
5

)
= −1 and ω

55−1
4 = N(ω) = 2.

Thus, the integers u and v are determined by

u2 + v2 = 5, u ≡ 1(mod 4) and v ≡ 2u(mod 5).

Then, one has u = 1, v = 2. Thus, by Theorem 1.3, we obtain

N(x4
1 + ω

2x4
2 = 0) = 12497 and N(x4

1 + ω
2x4

2 = ω) = 3040.

Example 4.2. Let p = 13 and k = 2. We know that 2 is a primitive element of F13. Choose a primitive
element ω of F132 with N(ω) = 2. We consider the numbers of rational points (x1, x2, x3) ∈ F3

132 of the
quartic hypersurfaces

x4
1 + ωx4

2 + ω
2x4

3 = 0 and x4
1 + ωx4

2 + ω
2x4

3 = ω

over F132 .
Now, the Legendre symbol (

2
13

)
= −1 and ω

132−1
4 = N(ω)3 = 23.

Thus, the integers u and v are determined by

u2 + v2 = 13, u ≡ 1(mod 4) and v ≡ 23u(mod 13).

Therefore,
u = −3, v = 2.

By Theorem 1.4, we have

N(x4
1 + ωx4

2 + ω
2x4

3 = 0) = 26881 and N(x4
1 + ωx4

2 + ω
2x4

3 = ω) = 28164.
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5. Conlusions

Studying the number of rational points of the polynomial equation

f (x1, x2, · · · , xn) = 0

over Fq is a fundamental problem in algebra, number theory and arithmetic geometry. Generally
speaking, it is difficult to give an explicit formula for the number of solutions of the equation

f (x1, x2, · · · , xn) = 0.

There are many researchers who concentrated on finding the formula for the number of solutions of

f (x1, x2, · · · , xn) = 0

under certain conditions. Exponential sums are important tools for solving problems involving the
number of solutions of the equation

f (x1, x2, · · · , xn) = 0

over Fq. In this paper, by using the Jacobi sums and an analog of the Hasse-Davenport theorem, we
arrived at explicit formulae for

N(a1x4
1 + a2x4

2 = c)

and
N(b1x4

1 + b2x4
2 + b3x4

3 = c),

with
ai, b j ∈ F

∗
q(1 ≤ i ≤ 2, 1 ≤ j ≤ 3)

and c ∈ Fq. Furthermore, by using the reduction formula for Jacobi sums, the number of rational points
of the quartic diagonal hypersurface

a1x4
1 + a2x4

2 + · · · + anx4
n = c

of n ≥ 4 variables with
ai ∈ F

∗
q(1 ≤ i ≤ n), c ∈ Fq

and p ≡ 1(mod 4), can also be deduced.
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