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Abstract: In this article, we propose two numerical schemes for solving the time-fractional heat
equation (TFHE). The proposed methods are based on applying the collocation and tau spectral
methods. We introduce and employ a new set of basis functions: The unified Chebyshev polynomials
(UCPs) of the first and second kinds. We establish some new theoretical results regarding the new
UCPs. We employ these results to derive the proposed algorithms and analyze the convergence of the
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deriving the proposed algorithms. We present some examples to verify the efficiency and applicability
of the proposed algorithms.
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1. Introduction

Many different areas of mathematics and applied sciences can benefit from Chebyshev polynomials
(CPs). For example, the area of approximation theory frequently employs CPs. Moreover, they are
very helpful in numerical analysis. Spectral methods can utilize CPs and their various combinations
as basis functions to obtain numerical solutions for various differential equations. These methods have
the potential to achieve both rapid convergence and highly efficient solutions. For some articles that
employ different types of CPs, see, for example, [1–5].

Fractional differential equations (FDEs) are crucial in different disciplines of the applied sciences.
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In fact, they describe many phenomena that cannot be described by ordinary differential equations.
This is due to their ability to model complex phenomena involving memory and hereditary properties.
For example, they model several biological and physiological processes, such as tumor growth and the
behavior of neurons (see [6]). These equations are also used to simulate anomalous diffusion, wave
propagation in complex media and electromagnetic phenomena (see [7]). In addition, the complicated
mechanical reaction of viscoelastic materials under stress or strain has been frequently modeled using
FDEs (see [8]). The use of fractional calculus has been seen in the domain of signal processing, namely
in the areas of denoising, filtering and feature extraction; see, for example, [9].

Due to the importance of partial FDEs and the non-availability of solving them analytically in
most cases, a lot of effort has been put into creating trustworthy numerical and analytical methods for
treating these types of equations. Researchers have presented various methods, such as the Adomian
decomposition method [10], the operational matrix methods [11, 12] and the splines method [13], to
solve different partial FDEs.

The various types of time-FDEs have been studied by many researchers. For example, the authors
in [14] employed a finite difference method for treating the time-fractional diffusion equation. In [15],
the authors followed an approach for treating the time-fractional Fisher’s equations. The authors
in [16] followed another approach for treating some types of time-fractional PDE. An integral method
was followed in [17] for treating some time-FDEs. In [18], the authors treated other space-time
FDEs. The authors in [19] combined the dual reciprocity method and the Laplace transformation
approach with the singular boundary method to obtain solutions to anomalous heat conduction issues
in functionally graded materials. In [20], the authors introduced a novel localized collocation method
utilizing fundamental solutions to analyze long-term anomalous heat conduction in functionally graded
materials. In [21], the authors followed a quadratic spline collocation method for the time fractional
subdiffusion equation. Another approach is followed in [22] to handle the fractional-diffusion equation.
In [23], the authors followed a certain collocation method for the time tempered fractional diffusion
equation.

Among the important time-FDEs is TFHE. Researchers have utilized different numerical algorithms
to solve this equation. For instance, the authors in [24] utilized an implicit difference scheme to handle
the TFHE. The authors of [25] followed an approach for treating the TFHE. In [26], the authors
employed another collocation algorithm to treat the same equation. Because the Caputo derivative
is not local, solving TFHE is notoriously hard and takes a long time. For this reason, fast and parallel
numerical solutions for these kinds of TFHEs are desirable [27, 28].

Various types of DEs, including PDEs, can be treated numerically using different versions of
spectral methods due to their high accuracy and versatility. When compared to other numerical
approaches used to solve PDEs, spectral methods have many benefits. They provide high precision and
efficient solutions since the error drops exponentially as you add more terms to the proposed expansion.
In these methods, the numerical solution is expressed as combinations of different special functions,
which are called basis functions. The choice of suitable basis functions depends on the spectral method
that will be applied. For some books regarding the different spectral methods and their applications, one
can be referred to [29–33]. There are three celebrated spectral approaches. The Galerkin method has
some restrictions on choosing the basis functions; see, for example, [34–38], where such restrictions
do not exist when collocation and tau methods are applied; see, for example, [39–43].

In this paper, we will introduce a new type of polynomial that generalizes the first and second kinds
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of CPs. These polynomials are new and differ from the existing generalizing polynomials of CPs, such
as Gegenbauer and Jacobi polynomials. This motivates us to study and employ such polynomials.
Furthermore, we have two advantages to using these polynomials:

• Several solutions can be obtained if these polynomials are used as basis functions due to the
presence of two parameters.
• If these polynomials are used to treat TFHE, it will be shown that the Chebyshev first and

second kinds of approximations are not always the best among the other approximations. This
demonstrates the benefit of introducing such polynomials.

The article’s primary aims can be summed up as follows:

(i) We introduce a new type of polynomials, named unified Chebyshev polynomials (UCPs), that unify
CPs of the first and second kinds.

(ii) We implement some new formulas related to the UCPs and the shifted ones that are essential for
our suggested algorithms.

(iii) We utilize the introduced polynomials along with the collocation and tau spectral methods to treat
the TFHE.

The rest of the paper is organized as follows: The next section gives an overview of CPs and a new
set of UCPs, as well as some definitions of fractional calculus. In Section 3, we present new formulas
for the UCPs and the shifted ones that are necessary for our proposed algorithms. In Section 4.1, we
employ the spectral tau method to treat the TFHE. In Section 4.2, we employ another collocation
procedure to solve the same type of equation. In Section 5, we deeply discuss convergence and
error analysis. In Section 6, we present several numerical examples that involve tables, figures and
comparisons. Finally, Section 7 reports some conclusions.

2. Some fundamentals and preliminaries

In this section, the fractional differential operator in the Caputo sense is presented, and some
useful properties are utilized throughout the paper. In addition, some essentials regarding the CPs
are presented.

2.1. Some definitions of fractional calculus

Definition 2.1. [6, 8] The fractional differential operator in Caputo sense is defined as

(Dν f )(t) =


1

Γ(n − ν)

∫ t

0
(t − τ)n−ν−1 f (n)(τ) dτ, ν > 0, t > 0,

f (n)(t), ν = n,

(2.1)

where n − 1 ≤ ν ≤ n, n ∈ N.
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Here are some properties that are satisfied by Dν for n − 1 ≤ ν ≤ n,

Dν(µ1 f (t) + µ2g(t)) = µ1 Dν f (t) + µ2 Dνg(t),
(2.2)

Dν tk =


Γ(k + 1)

Γ(k + 1 − ν)
tk−ν, k ∈ N, k ≥ dνe,

0, k < dνe,
(2.3)

where dνe denotes the smallest integer greater than or equal to ν. For more properties of fractional
derivatives, see, for example, [44].

2.2. An overview on CPs as a type of new UCPs

It is well known that the well-known four kinds of CPs are all particular types of Jacobi polynomials
(see, [45]). All of these polynomials satisfy the following recurrence relation:

φk(θ) = 2 θ φk−1(θ) − φk−2(θ), k ≥ 2, θ ∈ [−1, 1], (2.4)

but with the following different initial values:

T0(θ) = 1, T1(θ) = θ, U0(θ) = 1, U1(θ) = 2θ,

V0(θ) = 1, V1(θ) = 2θ − 1, W0(θ) = 1, W1(θ) = 2θ + 1,

where Ti(θ),Ui(θ),Vi(θ) and Wi(θ) denote, respectively, the four kinds of CPs, each of degree i.
Among the important properties of CPs is that φ− j(θ), j ≥ 0 can be expressed in terms of φ j(θ). In

fact, we have
T− j(θ) = T j(θ), U− j(θ) = −U j−2(θ),

V− j(θ) = V j−1(θ), W− j(θ) = −W j−1(θ).

In this paper, we will introduce a new type of polynomials that unify the first- and second-kinds of CPs.
These polynomials will be referred to as “Unified Chebsyhev polynomials (UCPs)”. The sequence of
UCP, GA,B

k (θ), A, B > 0, may be constructed using the recurrence relation:

GA,B
k+1(θ) = 2 θGA,B

k−1(θ) −GA,B
k (θ), GA,B

0 (θ) = A, GA,B
1 (θ) = B θ, k ≥ 1. (2.5)

The first few UCPs GA,B
k (θ), k = 2, 3, . . . , 7, are:

GA,B
2 (θ) = 2B θ2 − A,

GA,B
3 (θ) = 4B θ3 − (2A + B) θ,

GA,B
4 (θ) = 8B θ4 − 4(A + B) θ2 + A,

GA,B
5 (θ) = 16B θ5 − 4(2A + 3B) θ3 + (4A + B) θ,

GA,B
6 (θ) = 32B θ6 − 8(2A + 4B) θ4 + 3(4A + 2B) θ2 − A,

GA,B
7 (θ) = 64B θ7 − 16(2A + 5B) θ5 + 8(4A + 3B) θ3 − (6A + B) θ.

Remark 2.1. It is evident that the UCPs are generalizations of both the first- and second-kind CPs.
We have

Tk(θ) = G1,1
k (θ), Uk(θ) = G2,1

k (θ).
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3. Some new formulas concerned with UCPs

In this section, we will establish some new formulas concerned with UCPs and their shifted
polynomials on [0, `] that will be employed in the next section to derive our proposed algorithms.

3.1. Some new results for the UCPs

We are going to state and prove a basic theorem regarding the UCPs. The UCPs can be expressed as
a combination of two terms of CPs of the second kind, as we will demonstrate. The following theorem
exhibits this important result.

Theorem 3.1. The following expression for the UCPs is valid

GA,B
n (θ) =

1
2

(B − 2A)Un−2(θ) +
B
2

Un(θ), n ≥ 0. (3.1)

Proof. Consider the polynomial:

ξn(θ) =
1
2

(B − 2A)Un−2(θ) +
B
2

Un(θ).

It is easy to see that ξ0(θ) = GA,B
0 (θ) and ξ1(θ) = GA,B

1 (θ). Now, we are going to prove that ξn(θ) =

GA,B
n (θ), ∀ n ≥ 2. We will prove that they have the same recursive formula. That is, we will prove that

ξn+2(θ) − 2 θ ξn+1(θ) + ξn(θ) = 0.

We have

ξn+2(θ) − 2 θ ξn+1(θ) + ξn(θ) =
1
2

(B − 2A)Un(θ) +
1
2

BUn+2(θ)

− 2 θ
(
1
2

(B − 2A)Un−1(θ) +
1
2

BUn+1(θ)
)

+
1
2

(B − 2A)Un−2(θ) +
B
2

Un(θ).

Using the well-known formula

θUn(θ) =
1
2

(Un−1(θ) + Un+1(θ)) ,

we see that
ξn+2(θ) − 2 θ ξn+1(θ) + ξn(θ) = 0.

Theorem 3.1 is now proved. �

Theorem 3.2. The analytic form of GA,B
n (θ) is:

GA,B
i (θ) =

b i
2c∑

r=0

(−1)r2i−2r−1(B(i − 2r) + 2Ar)(1 + i − 2r)r−1

r!
θi−2r. (3.2)
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Proof. Formula (3.2) can be obtained directly from the expression in (3.1) along with the analytic form
of Ui(θ) given by

Ui(θ) =

b i
2c∑

r=0

(−1)r 2i−2r (i − r)!
(i − 2r)! r!

θi−2r. (3.3)

�

The following theorem gives the connection formula between the second-kind CPs Un(θ) and the UCPs.

Theorem 3.3. For every non-negative integer j, the following expression for U j(θ) holds

U j(θ) = 2

⌊ j
2

⌋∑
r=0

c j−2r (2A − B)r

Br+1 G j−2r(θ), (3.4)

where

ci =


B

2 A
, i = 0,

1. i ≥ 1.

(3.5)

Proof. The proof can be easily accomplished by induction on j. �

Now, we will give the inversion formula to GA,B
n (θ) in the following theorem.

Theorem 3.4. For every non-negative integer m, the following formula holds

θm =

bm
2 c∑

i=0

cm−2i S i,m GA,B
m−2i(θ), (3.6)

where

S i,m = AiB−i−121−m+i +

i∑
j=1

Ai− jB j−i−121−m− j+i(m − j − i)(m − i + 1) j−1

j!
. (3.7)

Proof. The proof is based on making use of the inversion formula of U j(θ) given by

θ j = 2− j

⌊ j
2

⌋∑
m=0

(1 + j − 2m) j!
( j − m + 1)! m!

U j−2m(θ), (3.8)

along with the connection formula that is given by (3.4). �
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3.2. Some formulas of the shifted UCPs

In this paper, it is useful to define the so-called shifted UCPs on [0, `] as

GA,B
n,` (x) = GA,B

n

(
2 x
`
− 1

)
, n ≥ 1, 0 ≤ x ≤ `.

According to this definition, it is easy to see from (3.1) that GA,B
n,` (x) can be expressed in terms of the

shifted second-kind CPs as in the following corollary:

Corollary 3.1. For every positive integer n, one has

GA,B
n,` (x) =

1
2

(B − 2A)Un−2,`(x) +
B
2

Un,`(x), n ≥ 0, (3.9)

where Un,`(x) = Un,1

(
2 x
`
− 1

)
is the shifted CPs of second kind.

Proof. Formula (3.9) is a direct consequence of (3.1) by replacing x by
(

2 x
`
− 1

)
. �

The following two corollaries are of interest hereafter. They are regarding the analytic and inversion
formulas of the shifted polynomials GA,B

n,` (x).

Theorem 3.5. Let n be a positive integer. GA,B
n,` (x) has the following analytic formula

GA,B
n,` (x) =

n∑
m=0

d(n)
m `−m xm, (3.10)

where

d(n)
m =


(−1)n(A + (B − A) n), m = 0,
4m(−1)n−m(m + n − 1)!

(
(B − A)

(
m2 + m + n2

)
+ A(2m + 1)n

)
(2m + 1)! (n − m)!

, m = 1, 2, . . . , n.
(3.11)

Proof. Using the analytical expansion of Un,`(x):

Un,`(x) =

n∑
i=0

(−1)i

(
4
`

)n−i (2n − i + 1)!
i!(2n − 2i + 1)!

xn−i, n > 0, (3.12)

together with (3.9), formula (3.10) can be obtained. �

In the following theorem, we give the inversion formula of GA,B
n,` (x) which will play a pivotal role in

investigating the convergence analysis of the proposed expansion.

Theorem 3.6. For every positive integer m, the following inversion formula holds

xm =

m∑
p=0

Fp,m GA,B
p,` (x), (3.13)

where

Fp,m = cp(2m + 1)!`m
b

m−p
2 c∑

k=0

41−mB−k−1(2A − B)k(2k + p + 1)
(m − p − 2k)!(2k + m + p + 2)!

, (3.14)

and cp is as defined in (3.5).
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Proof. The proof is based on making use of the inversion formula of the shifted second kind of CPs
U j,`(x) on [0, `] given by

xm = (2m + 1)!`m 21−2m
m∑

p=0

(p + 1)
(m − p)!(m + p + 2)!

Up,`(x), (3.15)

along with the connection formula

U j,`(x) = 2

⌊ j
2

⌋∑
r=0

c j−2r (2A − B)r

Br+1 G j−2r,`(x), (3.16)

which can be obtained form (3.4) only if (2 x
`
− 1) is substituted instead of x. �

Remark 3.1. It is worth mentioning here that when B = 2A, we get

GA,2A
n (x) = A Un(x), GA,2A

n,` (x) = A Un,`(x),

while when B = A, we get

GA,A
n (x) = A Tn(x), GA,A

n,` (x) = A Tn,`(x).

The following two theorems are pivotal in deriving our proposed numerical algorithms. They consist
of the integer and fractional derivatives of GA,B

j,` (x).

Theorem 3.7. The qth derivative of GA,B
j,` (x) can be expressed as:

Dq GA,B
n,` (x) =

n−q∑
m=0

h(q)
m,n GA,B

m,` (x), n ≥ q ≥ 1, (3.17)

where

h(q)
m,n =

n−q∑
r=m

(r + q)!
r! `r+q d(n)

r+q Fm,r.

Proof. The proof is a direct consequence of Theorems 3.5 and 3.6. �

Theorem 3.8. Let α be a positive real number. We have

Dα GA,B
n,` (x) = x−α

n∑
m=0

h̃(α)
m,nG

A,B
m,` (x), n > α > 0, (3.18)

where

h̃(α)
m,n =

n∑
r=max(m, dαe)

r!
`r Γ(r + 1 − α)

d(n)
r Fm,r. (3.19)

Proof. The proof of (3.18) can be obtained by applying the fractional derivative Dα to (3.10) and
using (2.2), relation (3.13) leads to (3.18) and the proof of theorem is complete. �
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3.3. Some useful integral formulas involve the UCPs

In this part, we will develop some useful formulas that will be utilized in the derivation of our
proposed algorithms.

Lemma 3.1. For every real positive real number β, and positive integers n and m, the following integral
formula holds: ∫ `

0
ω`(x)xβUn,`(x) dx = I(n, β, `), n = 0, 1, 2, . . . , (3.20)

with

I(n, β, `) =

√
π (n + 1) `β+2 Γ

(
β + 3

2

)
Γ(β + 1)

2 Γ(n + β + 3) Γ(β + 1 − n)
, (3.21)

and in general ∫ `

0
ω`(x)xβ Un,`(x)Um,`(x) dx = I(n,m, β, `), (3.22)

where

ω`(x) =
√

x (` − x), I(n,m, β, `) =

min(n,m)∑
k=0

I(|n − m| + 2k, β, `).

Proof. First, we prove (3.20) by induction. It is easy to see that this formula holds for n = 0. Now,
suppose that (3.20) holds for all n < m, and we need to show that it holds at n = m. Making use of the
recurrence relation

Un+1,`(x) = 2(2 x/` − 1)Un,`(x) − Un−1,`(x),

we get ∫ `

0
ω`(x)xβUn,`(x) dx =

∫ `

0
ω`(x)xβ

(
4
`

x Un−1,`(x) − 2Un−1,`(x) − Un−2,`(x)
)

dx. (3.23)

By using the induction hypothesis, we obtain∫ `

0
ω`(x)xβUn,`(x) dx =

4
`

I(n − 1, β + 1, `) − 2 I(n − 1, β, `) − I(n − 2, β, `). (3.24)

Substitution of (3.21) into (3.24) and performing some calculations lead to (3.20). Now, to
prove (3.22), we make use of the well-known linearization formula

Un(x)Um(x) =

n∑
k=0

Um−n+2k(x), m ≥ n,

along with (3.20). �

Corollary 3.2. For every real positive real number β, and positive integers n and m, the following
integral formula holds:∫ `

0
ω`(x) xβ GA,B

n,` (x) Um,`(x) dx = J(n,m, β, `), n,m = 0, 1, 2, . . . , (3.25)

where
J(n,m, β, `) =

1
2

(B − 2A)I(n − 2,m, β, `) +
B
2

I(n,m, β, `). (3.26)

Proof. Formula (3.25) is a direct result of Lemma 3.1 along with the expression in (3.9). �
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4. Tau and collocation solutions for TFHE

This section is concerned with analyzing two numerical algorithms for handling TFHE, providing
a detailed explanation of the proposed algorithms, namely, the unified shifted Chebyshev tau method
(USCTM) and the unified shifted Chebyshev collocation method (USCCM) that will be used for the
following TFHE (see [24, 26, 46]):

∂αy(x, t)
∂ tα

=
∂2y(x, t)
∂ x2 + z(x, t), 0 < α ≤ 1, (4.1)

governed by the nonlocal conditions

y(x, 0) − y(x, `2) = f (x), 0 < x < `1, (4.2)

and
y(0, t) = y(`1, t) = 0, 0 < t ≤ `2. (4.3)

In this instance, the known functions are z(x, t) and f (x), whereas the unknown function is given by
y(x, t). Now, consider the space:

Ω = span{GA,B
n,`1

(x) GA,B
m,`2

(t) : n,m = 0, 1, . . . ,N},

and suppose that y(x, t) ∈ Ω may be approximately represented as

yN(x, t) =

N∑
n=0

N∑
m=0

cn,m GA,B
n,`1

(x) GA,B
m,`2

(t). (4.4)

To be able to apply both tau and collocation methods, we sholud first get the residual of Eq (4.1). This
residual may be obtained using the following formula:

RN(x, t) =
∂αyN(x, t)
∂ tα

−
∂2yN(x, t)
∂ x2 − z(x, t). (4.5)

4.1. Tau approach for treating TFHE

This section provides a detailed explanation of the algorithm (USCTM) that will be used to handle
TFHE (4.1) using tau spectral method. The tau method’s main goal is to identify yN(x, t) such that

(tα RN(x, t),Ui,`1(x) U j,`2(t))ω̃(x,t) = 0, 0 ≤ i ≤ N − 2, 0 ≤ j ≤ N − 1, (4.6)

where ω̃(x, t) = ω`1(x)ω`2(t).
Now, to be able to compute the integral in the left-hand side of (4.6), use the explicit representation

of the fractional derivatives Dα GA,B
n,` (x) in (3.18) to obtain the following two important integrals for a

positive integer q and a positive real number α∫ `

0
ω`(t) xαDαGA,B

m,` (t) U j,`(t) dt = a(α)
m, j(`), m, j = 0, 1, 2, . . . , (4.7)
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with

a(α)
m, j(`) =

m∑
k=0

h̃(α)
k,m J(k, j, 0, `),

and ∫ `

0
ω`(x) xα DqGA,B

n,` (x)Ui,`(x) dt = b(q)
n,i (α, `), n, i = 0, 1, 2, . . . , (4.8)

with

b(q)
n,i (α, `) =

n−q∑
k=0

h(q)
k,n J(k, i, α, `),

where h̃(α)
k,m and J(k, j, 0, `) can be computed from (3.19) and (3.26), respectively.

The nonlocal conditions (4.2) and (4.3) give

yN(xi, 0) − yN(xi, `2) = f (xi), 0 ≤ i ≤ N, (4.9)

yN(0, t j) = 0, 0 ≤ j ≤ N − 1, (4.10)

and
yN(`1, t j) = 0, 0 ≤ j ≤ N − 1, (4.11)

where xi and t j, i, j = 0, . . . ,M, are the zeros of GA,B
n,`1

(x) and GA,B
m,`2

(t), respectively. The integrals in (4.7)
and (4.8) enable one to write (4.6)–(4.11) as follows:

N∑
n=0

N∑
m=0

cn,mHn,m,i, j = zi, j, 0 ≤ i ≤ N − 2, 0 ≤ j ≤ N − 1, (4.12)

and
N∑

n=0

N∑
m=0

cn,mKn,m,i = fi, 0 ≤ i ≤ N,

N∑
n=0

N∑
m=0

cn,mLn,m, j = 0, 0 ≤ j ≤ N − 1,

N∑
n=0

N∑
m=0

cn,mMn,m, j = 0, 0 ≤ j ≤ N − 1,


(4.13)

where

Hn,m,i, j = J(n, i, 0, `1) a(α)
m, j(`2) − J(m, j, α, `2) b(2)

n,i (0, `1), 0 ≤ i ≤ N − 2, 0 ≤ j ≤ N − 1, (4.14)

and
Kn,m,i = GA,B

n,`1
(xi)(GA,B

m,`2
(0) −GA,B

m,`2
(`2)), 0 ≤ i ≤ N,

Ln,m, j = GA,B
n,`1

(0) GA,B
m,`2

(t j), 0 ≤ j ≤ N − 1,

Mn,m, j = GA,B
n,`1

(`1) GA,B
m,`2

(t j), 0 ≤ j ≤ N − 1,

fi = f (xi).


(4.15)

The system (4.12) and (4.13) consists of (N + 1)2 equations in (N + 1)2 unknowns,
c0,0, . . . , c0,N , . . . , cN,0, . . . , cN,N .
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4.2. The collocation approach for treating TFHE

This section provides a detailed explanation of the algorithm (USCCM) that will be used to handle
TFHE (4.1) using collocation spectral method as follows:

Suppose that y(x, t) ∈ Ω may be approximately represented as (4.4). The Collocation method’s
main goal is to identify yN(x, t) such that

RN(xi, t j) = 0, 0 ≤ i ≤ N − 2, 0 ≤ j ≤ N − 1, (4.16)

which gives
N∑

n=0

N∑
m=0

cn,mĤn,m,i, j = zi, j, 0 ≤ i ≤ N − 2, 0 ≤ j ≤ N − 1, (4.17)

where

Ĥn,m,i, j = GA,B
n,`1

(xi) DαGA,B
m,`2

(t j) −GA,B
m,`2

(t j) D2GA,B
n,`1

(xi), 0 ≤ i ≤ N − 2, 0 ≤ j ≤ N − 1,

zi, j = z(xi, t j),

 (4.18)

and xi, ti (0 ≤ i ≤ N) are choosen to be either the zeros of GA,B
N+1,`(x) or xi, ti =

i + 1
N + 2

(0 ≤

i ≤ N), in addition to Eq (4.15) which provide us (N + 1)2 equations in the (N + 1)2 unknowns,
c0,0, . . . , c0,N , . . . , cN,0, . . . , cN,N .

Remark 4.1. Attempting to demonstrate how to use the two algorithms—USCTM and
USCCM—presented. While the stages for solving the TFHE using Algorithm 1 are expressed using the
USCTM notation, Algorithm 2 uses the USCCM notation. The Mathematica application, version 13.1,
is used to do the necessary computations.

Algorithm 1 USCTM Algorithm
Step 1. Given A, B, `1, `2, α and N
Step 2. Find GA,B

n,`1
(x), D(2)

x GA,B
n,`1

(x) and D(α)
t GA,B

m,`2
(t)

Step 3. Evaluate RN(x, t) defined in (4.5)
Step 4. Evaluate the used collocation points xi and ti, i = 0, 1, . . . ,N
Step 5. Evaluate Hn,m,i, j, Kn,m,i, Ln,m, j,Mn,m, j, f j as defined in (4.14) and (4.15)
Step 6. List the equations system as defined in (4.12) and (4.13)
Step 7. Join [Output 6]
Step 8. Solve [Output 7]

5. Investigation of convergence and error analysis

In this part, we extensively examine the suggested expansion’s convergence and error analysis (4.4).
The following lemmas are necessary to continue with our investigation.

Lemma 5.1. The polynomials GA,B
n,` (x) satisfy the following inequality

|GA,B
n,` (x)| < ρn, x ∈ [0, `], (5.1)
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Algorithm 2 USCCM Algorithm
Step 1. Given A, B, `1, `2, α and N
Step 2. Find GA,B

n,`1
(x), D(2)

x GA,B
n,`1

(x) and D(α)
t GA,B

m,`2
(t, `2)

Step 3. Evaluate RN(x, t) defined in (4.5)
Step 4. Evaluate the used collocation points xi and ti, i = 0, 1, . . . ,N
Step 5. Evaluate Ĥn,m,i, j, Kn,m,i, Ln,m, j,Mn,m, j, f j as defined in (4.15) and (4.18)
Step 6. List the equations system as defined in (4.13) and (4.17)
Step 7. Join [Output 6]
Step 8. Solve [Output 7]

where

ρn =


A, B = A,

A(n + 1), B = 2A,

rn, otherwise,

(5.2)

such that rn is defined as

rn =


A, n = 0,
B, n = 1,
ρ n, n ≥ 2,

(5.3)

where ρ = max{|B − 2A|, B}.

Proof. According to Remark 3.1 and formula (3.1), it is easy to prove (5.1). �

Lemma 5.2. The coefficients Fp,m that appear in the inversion formula (3.13) satisfy the following
inequality

|Fp,m| <
ρ cp(2m)!`m

B22m−1(m − p)!(m + p)!
. (5.4)

Proof. Formula (3.14) leads to the following inequality:

|Fp,m| ≤ ρ cpB−1(2m + 1)!41−m`m S p,m, (5.5)

where

S p,m =

b
m−p

2 c∑
k=0

(2k + p + 1)
(m − p − 2k)!(2k + m + p + 2)!

.

By using computer algebra algorithms, especially Zeilberger’s algorithm (see, [47]), S p,m are able to
meet the first-order recurrence relation shown below:

(m + p + 1)S p+1,m − (m − p)S p,m = 0, S 0,m =
1

2(2m + 1)(m!)2 . (5.6)

The exact solution to this recurrence relation has the form

S p,m =
1

2(2m + 1)(m − p)!(m + p)!
. (5.7)

Inserting (5.7) into (5.5) yields (5.4). The lemma’s proof is now complete. �
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Theorem 5.1. Let y(x, t) be an infinitely differentiable function at the origin with
∣∣∣∣ ∂i+ jy
∂ xi ∂ t j (0, 0)

∣∣∣∣ < M.
Then it has the following expansion

y(x, t) =

∞∑
i=0

∞∑
j=0

Yi, j GA,B
i,`1

(x) GA,B
j,`2

(t), (5.8)

where

Yi, j =

∞∑
p=0

∞∑
q=0

yi+p, j+q Fi,p+i F j,q+ j, yi, j =
1

i! j!
∂i+ jy
∂ xi ∂ t j (0, 0).

These expansion coefficients satisfy the following inequalities

|Y0,0| ≤
Mρ2

A2 e`1e`2 ,

|Yi,0| <
8 Mρ2 e`2e`1

A B
`i

1

i! 4i , i ≥ 1,

|Y0, j| <
8 Mρ2 e`1e`2

A B
`

j
2

j! 4 j , j ≥ 1,

|Yi, j| <
64 Mρ2 e`1e`2

B2

`i
1`

j
2

i! j! 4i 4 j , i, j ≥ 1.


(5.9)

The inequalities in (5.9) can be combined to give the following expression

|Yi, j| .
`i

1`
j
2

i! j! 4i 4 j , ∀i, j ≥ 0, (5.10)

where . means that a generic constant d exists such that |Yi, j| ≤
d `i

1`
j
2

i! j! 4i 4 j . The series in (5.8) converges
uniformly to y(x, t).

Proof. First, we expand y(x, t) as

y(x, t) =

∞∑
i=0

∞∑
j=0

yi, j xi t j. (5.11)

This expansion can be written in the form:

y(x, t) =

∞∑
i=0

bi(t)xi, (5.12)

where

bi(t) =

∞∑
j=0

yi, j t j. (5.13)

Inserting (3.13) into (5.12) enables one to write

y(x, t) =

∞∑
i=0

bi(t)
i∑

p=0

Fp,i GA,B
p,`1

(x). (5.14)
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Expanding the right hand side of (5.14), and rearranging the similar terms, the following expansion is
obtained

y(x, t) =

∞∑
i=0

 ∞∑
p=0

bp+i(t) Fi,p+i

GA,B
i,`1

(x). (5.15)

Now, we have

∞∑
p=0

bp+i(t) Fi,p+i =

∞∑
p=0

 ∞∑
j=0

yp+i, j t j

 Fi,p+i =

∞∑
j=0

 ∞∑
p=0

yp+i, j Fi,p+i

 t j. (5.16)

Inserting (3.13) into (5.16) and following the same procedures enables one to write

∞∑
p=0

bp+i(t) Fi,p+i =

∞∑
j=0

 ∞∑
p=0

∞∑
q=0

yp+i, j+q Fi,p+i F j,q+ j

 GA,B
j,`2

(t). (5.17)

Substituting (5.17) for (5.15) immediately proves (5.8). The first part of Theorem is now proved.
Now, we need to prove (5.9). Using Lemma 5.2, one can write

|Yi, j| ≤ M
∞∑

p=0

∞∑
q=0

1
(i + p)!( j + q)!

|Fi,p+i||F j,q+ j|,

≤
Mρ2 cic j`

i
1`

j
2

B2 22(i+ j−1)

∞∑
p=0

∞∑
q=0

1
(i + p)!( j + q)!

(2(p + i))!(2(q + j))!`p
1`

q
2

22(p+q) p!q!(p + 2i)!(q + 2 j)!
, i, j ≥ 0.

(5.18)

Using (2n)! = 22nn!(1/2)n, we obtain

|Yi, j| ≤
4 Mρ2 cic j`

i
1`

j
2

B2

∞∑
p=0

∞∑
q=0

(1/2)p+i(1/2)q+ j`
p
1`

q
2

p!q!(p + 2i)!(q + 2 j)!
, i, j ≥ 0. (5.19)

Using (1/2)p

p! ≤ 1, p ≥ 0, it is easy to see that

|Y0,0| ≤
Mρ2

A2 e`1e`2 , (5.20)

|Yi,0| ≤
2 Mρ2 `i

1 e`2

A B

∞∑
p=0

(1/2)p+i `
p
1

p!(p + 2i)!
, i ≥ 1, (5.21)

and

|Y0, j| ≤
2 Mρ2 `

j
2 e`1

A B

∞∑
q=0

(1/2)q+ j `
q
2

q!(q + 2 j)!
, j ≥ 1. (5.22)

Using `p

p! < e`, p ≥ 0, the three relations (5.19), (5.21) and (5.22) take respectively the forms

|Yi, j| <
4 Mρ2 `i

1`
j
2e`1e`2

B2

∞∑
p=0

∞∑
q=0

(1/2)p+i(1/2)q+ j

(p + 2i)!(q + 2 j)!
, i, j ≥ 1, (5.23)
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|Yi,0| <
2 Mρ2 `i

1e`2e`1

A B

∞∑
p=0

(1/2)p+i

(p + 2i)!
, i ≥ 1, (5.24)

and

|Y0, j| <
2 Mρ2 `

j
2e`1e`2

A B

∞∑
q=0

(1/2)q+ j

(q + 2 j)!
, j ≥ 1. (5.25)

Then by using (a)n+k = (a)k(a + k)n and Chu-V Gauss formula [48], one can get

∞∑
p=0

(1/2)p+i

(p + 2i)!
=

(1/2)i

(1)2i

∞∑
p=0

(1/2 + i)p(1)p

p!(1 + 2i)p
=

(1/2)i

(1)2i
2F1

(
1/2 + i, 1

1 + 2i

∣∣∣∣1) =
Γ
(

1
2 (2i − 1)

)
√
πΓ(2i)

. (5.26)

Again, using (2n)! = 22nn!(1/2)n, leads to

∞∑
p=0

(1/2)p+i

(p + 2i)!
=

2i Γ
(

1
2 (2i − 1)

)
√
π (2i)!

=
1

(i − 1)!(2i − 1)4i−1 ≤
1

i!4i−1 , i ≥ 1. (5.27)

Hence the three relations (5.23)–(5.25) take respectively the forms

|Yi, j| <
64 Mρ2 `i

1`
j
2e`1e`2

B2

1
4i i!

1
4 j j!

, i, j ≥ 1, (5.28)

|Yi,0| <
8 Mρ2 `i

1e`2e`1

A B
1

4i i!
, i ≥ 1, (5.29)

and

|Y0, j| <
8 Mρ2 `

j
2e`1e`2

A B
1

4 j j!
, j ≥ 1. (5.30)

At this point, the second part of the theorem is now proved.
Now, in view of Lemma 5.1, we can see that

∞∑
i=0

∞∑
j=0

|Yi, j GA,B
i,`1

(x) GA,B
j,`2

(t)| ≤ d
∞∑

i=0

∞∑
j=0

`i
1

4i i!
`

j
2

4 j j!
ρi ρ j ≤ C e`1/4e`2/4, (5.31)

where C is a constant depending on the two constants A and B. This shows that the series in (5.8)
converges uniformly to y(x, t). The theorem’s proof is complete. �

Theorem 5.2. If y(x, t) satisfies the hypothesis of Theorem 5.1, and if

y(x, t) =

N∑
i=0

N∑
j=0

Yi, j GA,B
i,`1

(x) GA,B
j,`2

(t), (5.32)

then the following error estimate is satisfied:

|y − yN | .
1

4N+1 . (5.33)
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Proof. The truncation error may be written as:

|y − yN | =

∣∣∣∣∣∣∣
∞∑

i=0

∞∑
j=0

Yi, j GA,B
i,`1

(x) GA,B
j,`2

(t) −
N∑

i=0

N∑
j=0

Yi, j GA,B
i,`1

(x) GA,B
j,`2

(t)

∣∣∣∣∣∣∣
≤

N∑
i=0

∞∑
j=N+1

|Yi, j| |GA,B
i,`1

(x)| |GA,B
j,`2

(t)| +
∞∑

i=N+1

∞∑
j=0

|Yi, j| |GA,B
i,`1

(x)| |GA,B
j,`2

(t)|

≤ d
N∑

i=0

∞∑
j=N+1

`i
1`

j
2

i! j! 4 j 4i ρi ρ j + d
∞∑

i=N+1

∞∑
j=0

`i
1`

j
2

i! j! 4i 4 j ρi ρ j,

≤ d
1

4N+1

N∑
i=0

∞∑
j=N+1

`i
1`

j
2

i! j! 4i ρi ρ j + d
1

4N+1

∞∑
i=N+1

∞∑
j=0

`i
1`

j
2

i! j! 4 j ρi ρ j,

(5.34)

we have ρi has the forms λ, λ i or λ(i + 1), where λ is a constant. So, we have three cases:

Case 1: ρi = λ

|y − yN | ≤ d
λ

4N+1

N∑
i=0

∞∑
j=N+1

`i
1`

j
2

i! j! 4i + d
λ

4N+1

∞∑
i=N+1

∞∑
j=0

`i
1`

j
2

i! j! 4 j

≤ d
λ

4N+1 e`1/4e`2 + d
λ

4N+1 e`1e`2/4 .
1

4N+1 .

(5.35)

Case 2: ρi = λ i

|y − yN | ≤ d
λ `1

4N+2

N−1∑
i=0

∞∑
j=N+1

`i
1`

j
2

i! j! 4i + d
λ `2

4N+2

∞∑
i=N+1

∞∑
j=0

`i
1`

j
2

i! j! 4 j

≤ d
λ `1

4N+2 e`1/4e`2 + d
λ `2

4N+2 e`1e`2/4 .
1

4N+1 .

(5.36)

Case 3: ρi = λ (i + 1) By the same way, it can be proven that

|y − yN | .
1

4N+1 . (5.37)

�

Error stability is further emphasized in the following theorem through an estimation of error
propagation.

Theorem 5.3. For any two successive approximations of y(x, t), we get:

|yN+1 − yN | .
1

4N+1 . (5.38)

Proof. In view of (5.33), it is not difficult to obtain (5.38). �
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6. Numerical examples

To demonstrate the effectiveness, high accuracy and application of the two suggested algorithms,
this part focuses on the presentation of some numerical results followed by comparisons with certain
numerical findings from the literature. The error is measured using the maximum absolute error (MAE)
in the tests that follow, namely:

EN = max
(x,t)∈I

EN(x, t), I = [0, 1] × [0, 1], (6.1)

where

EN(x, t) = |y(x, t) − yN(x, t)|, (x, t) ∈ I. (6.2)

Example 6.1. Consider the following fractional initial value problem:
∂0.5y(x, t)
∂ t0.5 =

∂2y(x, t)
∂ x2 + 2t −

2
√

t(x − 1)x
√
π

, 0 < x, t < 1,

y(x, 0) − y(x, 1) = −x (1 − x), 0 < x < 1,
y(0, t) = y(1, t) = 0, 0 < t ≤ 1.

(6.3)

If USCTM or USCCM are applied with N = 2, then the following nine coefficients are obtained:

c0,0 = c0,1 = −
A − 2B
16A2B

, c2,0 = −
1

16AB
, c2,1 = −

1
16B2 , c0,2 = c1,0 = c1,1 = c1,2 = c2,2 = 0, (6.4)

and consequently y2(x, t) = x(1 − x) t, which is the exact solution.

If USCTM and USCCM are applied to the following three TFHEs (6.5)–(6.7) using some different
values of N, then the obtained numerical results are presented in Tables 1–12 and they affirm that
compared to other approaches, the suggested methods provide more accurate findings. Additionally,
Figures1–10 show that the exact and approximate solutions to the given problems agree very well.
They also show how error depends on N and how the solutions to Examples 6.2–6.5 converge when
USCTM and USCCM are used. Furthermore, the stability of solutions is demonstrated.

Example 6.2. Consider the following TFHE:
∂αy(x, t)
∂ tα

=
∂2y(x, t)
∂ x2 + 2 t2

(
t−α

Γ(3 − α)
+ 2π2

)
sin(2πx), 0 < x < 1, 0 < t ≤ 1,

y(x, 0) − y(x, 1) = − sin(2 π x), 0 < x < 1,
y(0, t) = y(1, t) = 0, 0 < t ≤ 1,

(6.5)

where the exact solution is y(x, t) = t2 sin(2 π x). Table 1 presents MAE for Example 6.2 for different
N, A, B and α = 0.5 using the two proposed numerical methods, while Table 2 presents a comparison
with some other methods. The results of this table show that our methods are more accurate.
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Table 1. Maximum absolute error EN for Example 6.2 (α = 0.5).

A B Method N = 4 N = 8 N = 12 N = 16 N = 19 N = 20
1 1 USCTM 1.4 . 10−2 1.5 . 10−5 3.1 . 10−9 2.7 . 10−13 2.3 . 10−15 1.1. 10−15

USCCM 2.8 . 10−2 1.3 . 10−4 1.2 . 10−7 1.3 . 10−10 2.9 . 10−13 6.9. 10−13

0.9 0.9 USCTM 1.5 . 10−2 1.7 . 10−5 3.5 . 10−9 2.4 . 10−12 4.1 . 10−14 1.2. 10−14

USCCM 2.3 . 10−2 1.4 . 10−4 1.3 . 10−7 2.3 . 10−10 6.9 . 10−13 5.1. 10−14

0.9 1.1 USCTM 2.4 . 10−2 3.3 . 10−5 8.0 . 10−9 6.0 . 10−13 4.0 . 10−15 2.9. 10−15

USCCM 2.3 . 10−2 1.5 . 10−4 1.4 . 10−7 4.6 . 10−10 4.9 . 10−13 2.1. 10−13

0.6 0.8 USCTM 1.8 . 10−2 3.3 . 10−5 5.1 . 10−9 8.0 . 10−13 4.1 . 10−15 3.8. 10−15

USCCM 2.4 . 10−2 1.1 . 10−4 1.5 . 10−7 2.3 . 10−10 6.9 . 10−13 1.5. 10−14

Table 2. Comparison between different methods of Example 6.2 (A = 0.6, B = 0.8, α = 0.5).

USCTM USCCM [46] [24](N = M) [26] [25]
N MAE N MAE N MAE N MAE N MAE N MAE

4 1.8 . 10−2 4 2.4 . 10−2 6 2.5 . 10−2 4 2.3 . 10−1 4 3.6 . 10−1 4 3.0 . 10−2

8 3.3 . 10−5 8 1.1 . 10−4 8 8.8 . 10−4 8 5.4 . 10−2 6 5.9 . 10−1 6 2.9 . 10−3

12 5.1 . 10−9 12 1.5 . 10−7 10 2.1 . 10−5 16 1.4 . 10−2 8 5.0 . 10−3 8 1.6 . 10−4

16 8.0 . 10−13 16 2.3 . 10−10 12 1.8 . 10−6 32 3.8 . 10−3 10 2.7 . 10−4 10 6.4 . 10−6

19 4.1 . 10−14 19 6.9 . 10−13 16 1.0 . 10−7 64 1.2 . 10−3 12 9.6 . 10−6 12 1.7 . 10−7

20 3.8 . 10−15 20 1.5 . 10−14 18 4.4 . 10−7 256 1.4 . 10−4 14 3.6 . 10−9

Example 6.3. Consider the following TFHE:


∂αy(x, t)
∂ tα

=
∂2y(x, t)
∂ x2 +

Γ(β + 1)
Γ(β − α + 1)

tβ−α(1 − x) sin(x) + tβ(2 cos(x) + (1 − x) sin(x)), 0 < x < 1, 0 < t ≤ 1,

y(x, 0) − y(x, 1) = (x − 1) sin(x), 0 < x < 1,

y(0, t) = y(1, t) = 0, 0 < t ≤ 1,

(6.6)

where the exact solution is y(x, t) = tβ (1 − x) sin x.

Table 3. Maximum absolute error EN for Example 6.3 ( β = 2, A = 1, B = 1).

α = 0.1 α = 0.5 α = 0.95

N USCTM N USCCM N USCTM N USCCM N USCTM N USCCM

4 5.8 .10−04 4 5.1 .10−04 4 1.5 .10−04 5 5.1 .10−04 4 1.1 .10−04 5 2.0 .10−04

8 1.1 .10−09 8 1.5 .10−08 8 3.1 .10−10 8 1.2 .10−08 8 2.2 .10−10 10 1.5 .10−11

11 2.2 .10−14 12 1.1 .10−14 11 6.2 .10−15 13 1.1 .10−15 11 3.1 .10−15 13 1.2 .10−15

15 6.1 .10−15 13 8.1 .10−16 15 5.2 .10−16 14 7.2 .10−16 12 1.9 .10−16 15 8.1 .10−16
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Table 4. Maximum absolute error EN for Example 6.3 ( β = 2, A = 1, B = 2).

α = 0.1 α = 0.5 α = 0.95

N USCTM N USCCM N USCTM N USCCM N USCTM N USCCM

4 1.0 .10−3 4 6.1 .10−04 4 2.0 .10−04 4 6.0 .10−04 4 1.5 .10−04 4 6.0 .10−03

8 3.0 .10−9 8 1.6 .10−08 8 8.0 .10−10 8 1.5 .10−08 8 4.0 .10−10 8 1.5 .10−08

11 1.5 .10−14 12 2.2 .10−14 11 1.5 .10−14 12 2.0 .10−14 11 1.5 .10−14 11 1.4 .10−12

13 1.0 .10−14 13 1.3 .10−15 12 2.0 .10−15 13 2.0 .10−15 12 8.0 .10−16 12 2.0 .10−14

15 6.0 .10−15 14 1.4 .10−15 15 6.0 .10−16 14 1.5 .10−15 15 8.3 .10−16 13 1.0 .10−15

Table 5. Maximum absolute error EN for Example 6.3 ( β = 2, A = 0.5, B = 0.6).

α = 0.1 α = 0.45 α = 0.9

N USCTM N USCCM N USCTM N USCCM N USCTM N USCCM

4 1.3 .10−4 4 2.3 .10−04 4 2.1 .10−04 4 5.1 .10−04 4 1.6 .10−04 5 1.8 .10−04

8 3.2 .10−9 9 1.2 .10−09 8 8.1 .10−10 9 1.0 .10−09 8 4.0 .10−09 9 1.1 .10−09

12 3.1 .10−14 12 1.5 .10−14 12 2.2 .10−14 12 1.4 .10−14 12 2.4 .10−14 12 1.5 .10−14

13 4.0 .10−15 13 5.5 .10−16 13 7.1 .10−16 13 1.1 .10−16 13 3.1 .10−16 13 1.4 .10−16

15 3.1 .10−16 14 1.2 .10−16 14 5.8 .10−16 14 6.3 .10−16 14 2.3 .10−16 14 4.1 .10−16

Table 6. Maximum absolute error EN for Example 6.3 (α = 0.5, A = 0.9, B = 1.9).

β = 0.1 β = 0.5 β = 0.95

N USCTM N USCCM N USCTM N USCCM N USCTM N USCCM

4 1.2 .10−2 4 4.3 .10−03 4 1.1 .10−04 4 2.0 .10−04 4 1.4 .10−04 4 1.8 .10−04

8 2.2 .10−8 9 2.5 .10−08 8 2.0 .10−10 9 1.7 .10−09 6 2.2 .10−07 6 1.2 .10−08

12 7.2 .10−13 12 2.2 .10−13 12 3.0 .10−14 12 1.5 .10−15 8 5.0 .10−10 8 3.3 .10−10

13 5.0 .10−14 13 4.4 .10−14 13 5.0 .10−15 13 2.2 .10−15 12 2.0 .10−15 12 1.2 .10−15

14 3.1 .10−14 14 3.2 .10−15 15 4.0 .10−16 14 2.4 .10−16 14 1.7 .10−16 14 2.5 .10−16

Table 7. Comparison between different methods of Example 6.3 ( β = 2, A = 0.7, B =

1.5, α = 0.95).

USCTM USCCM [26] [25]

N MAE N MAE N MAE N MAE

6 1.3 . 10−07 7 7.4 . 10−07 4 1.7 . 10−4 4 8.5 . 10−7

8 2.0 . 10−10 10 2.1 . 10−11 6 9.9 . 10−6 6 1.1 . 10−9

10 1.1 . 10−13 12 2.0 . 10−14 8 7.7 . 10−6 8 1.8 . 10−12

11 3.0 . 10−15 13 3.1 . 10−15 10 6.0 . 10−6 10 1.4 . 10−13

12 1.7 . 10−16 14 2.9 . 10−15 12 4.4 . 10−6 12 2.3 . 10−12

AIMS Mathematics Volume 9, Issue 1, 2137–2166.



2157

Remark 6.1. It is known that the exact solution of TFHE has a weak singularity near the initial time
point, i.e., the exact solution is nonsmooth near the initial time t = 0 (see [49] ). Table 6 presents
the numerical solutions obtained for the TFHE Eq (6.6) (for α = 0.5), whose exact solution is a
nonsmooth solution for values of β, 0 < β < 1. These results show that our algorithm still provides
accurate solutions.

Example 6.4. Consider the following TFHE:
∂αy(x, t)
∂ tα

=
∂2y(x, t)
∂ x2 +

2
Γ(3 − α)

t2−α ln(1 + x − x2) + t2 2 x2 − 2 x + 3
(x2 − x − 1)2 , 0 < x < 1, 0 < t ≤ 1,

y(x, 0) − y(x, 1) = − ln(1 + x − x2), 0 < x < 1,
y(0, t) = y(1, t) = 0, 0 < t ≤ 1,

(6.7)
where the exact solution is y(x, t) = t2 ln(1 + x − x2).

Table 8. Maximum absolute error EN for Example 6.4 (A = 0.8, B = 1.2).

α = 0.1 α = 0.5 α = 0.9

N USCTM N USCCM N USCTM N USCCM N USCTM N USCCM

4 4.0 .10−03 4 2.1 .10−3 4 1.0 .10−03 4 6.0 .10−3 4 8.0 .10−04 4 1.3 .10−3

8 1.0 .10−05 9 1.0 .10−5 8 3.0 .10−06 9 2.6 .10−5 8 2.0 .10−06 9 2.0 .10−5

11 4.0 .10−08 12 3.1 .10−7 14 4.0 .10−10 12 5.1 .10−7 12 6.0 .10−09 12 4.1 .10−7

15 1.5 .10−10 15 4.3 .10−9 18 4.2 .10−12 16 4.3 .10−9 14 3.0 .10−10 16 5.3 .10−9

18 6.0 .10−13 20 1.3 .10−11 20 2.1 .10−14 20 2.4 .10−11 18 3.0 .10−13 20 1.1 .10−11

22 6.0 .10−15 22 4.3 .10−13 22 1.5 .10−15 22 4.3 .10−13 22 3.0 .10−15 22 5.3 .10−13

Table 9. Maximum absolute error EN for Example 6.4 (A = 1.6, B = 2.2).

α = 0.1 α = 0.5 α = 0.9

N USCTM N USCCM N USCTM N USCCM N USCTM N USCCM

4 4.0 .10−03 4 3.0 .10−3 4 1.0 .10−03 4 1.3 .10−3 4 8.0 .10−04 4 1.5 .10−3

8 7.0 .10−06 9 1.1 .10−6 8 2.0 .10−06 9 2.5 .10−5 8 2.0 .10−06 9 4.0 .10−5

11 2.0 .10−08 12 3.1 .10−7 12 6.0 .10−09 12 5.4 .10−7 12 4.0 .10−09 12 6.0 .10−7

15 1.0 .10−10 16 2.5 .10−9 16 2.0 .10−11 16 4.3 .10−9 14 3.0 .10−10 16 4.0 .10−9

19 4.0 .10−13 20 1.5 .10−11 19 4.0 .10−13 20 4.3 .10−11 18 6.0 .10−13 19 5.3 .10−11

21 2.0 .10−14 24 1.5 .10−13 20 4.0 .10−14 24 2.3 .10−13 20 3.0 .10−14 24 3.5 .10−13
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Table 10. Comparison between different methods of Example 6.4 (A = 0.4, B = 0.6, α =

0.95).

USCTM USCCM [46] [24](M=16) [26] [25]

N MAE N MAE N MAE N MAE N MAE N MAE

4 8.0 . 10−4 5 6.0 . 10−03 4 1.1 . 10−3 4 7.5 . 10−3 4 1.3 . 10−03 4 6.8 . 10−04

8 2.0 . 10−6 9 5.1 . 10−05 8 5.9 . 10−5 8 2.3 . 10−3 6 1.1 . 10−04 6 1.8 . 10−05

12 6.0 . 10−9 16 1.2 . 10−09 12 5.1 . 10−7 16 1.4 . 10−3 8 1.0 . 10−05 8 1.3 . 10−06

16 1.5 . 10−11 19 1.5 . 10−10 14 2.8 . 10−7 32 9.6 . 10−4 10 1.3 . 10−05 10 1.2 . 10−07

20 4.0 . 10−14 20 2.0 . 10−11 16 1.7 . 10−7 64 7.3 . 10−4 12 1.1 . 10−05 12 1.2 . 10−08

22 1.7 . 10−15 22 1.5 . 10−13 18 1.7 . 10−7 256 5.6 . 10−4 16 4.1 . 10−09

Table 11. Comparison between different methods of Example 6.4 (A = 1.4, B = 1.6, α =

0.45).

USCTM USCCM [46] [24] [26]

N MAE N MAE N MAE M(N = 16) MAE N MAE

4 1.0 . 10−3 4 8.0 . 10−03 4 1.1 . 10−3 4 9.5 . 10−3 4 1.4 . 10−03

8 2.0 . 10−6 7 7.1 . 10−04 8 6.3 . 10−6 8 3.7 . 10−3 6 1.2 . 10−04

12 4.0 . 10−9 10 5.2 . 10−06 12 9.0 . 10−7 16 2.3 . 10−3 8 1.1 . 10−05

15 8.0 . 10−11 12 6.1 . 10−07 14 5.1 . 10−7 32 1.9 . 10−3 10 4.1 . 10−06

18 6.1 . 10−13 16 3.2 . 10−09 16 3.1 . 10−7 64 1.8 . 10−3 12 3.3 . 10−06

20 2.9 . 10−14 20 4.0 . 10−12 18 1.9 . 10−7 256 1.8 . 10−3

23 1.9 . 10−15 24 3.1 . 10−13

Example 6.5. Consider the following TFHE:
∂0.5y(x, t)
∂ t0.5 =

∂2y(x, t)
∂ x2 + z(x, t), 0 < x < 1, 0 < t ≤ 1,

y(x, 0) − y(x, 1) = −ex2
(1 − er f (x)) + (e (1 − er f (1)) − 1)x + 1, 0 < x < 1,

y(0, t) = y(1, t) = 0, 0 < t ≤ 1,

(6.8)

where the function z(x, t) is chosen such that the exact solution is

y(x, t) = E 1
2 ,1

(
−x
√

t
)

+ x
(
−E 1

2 ,1

(
−
√

t
))

+ x − 1, (6.9)

where the functions

er f (x) =
2
√
π

∫ x

0
e−t2 dt, and Eα,β(x) =

∞∑
k=0

xk

Γ(kα + β)
, (6.10)

are the Gaussian error function and the generalized Mitta-Leffler function, respectively.
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Table 12. Maximum absolute error EN for Example 6.5.

A B Method N = 2 N = 4 N = 6 N = 10 N = 15 N = 20
1 1 USCTM 2.2 . 10−2 1.8 . 10−3 3.4 . 10−4 3.2 . 10−5 4.4 . 10−6 4.0. 10−8

USCCM 3.1 . 10−2 2.3 . 10−3 4.2 . 10−4 1.5 . 10−5 2.7 . 10−6 4.9. 10−7

1 2 USCTM 1.5 . 10−2 1.7 . 10−3 3.5 . 10−4 2.4 . 10−5 4.1 . 10−6 1.2. 10−8

USCCM 3.3 . 10−2 2.1 . 10−3 3.3 . 10−4 2.8 . 10−5 4.2 . 10−6 5.5. 10−8

0.8 1.8 USCTM 1.4 . 10−2 2.1 . 10−3 5.0 . 10−4 2.2 . 10−5 3.1 . 10−7 2.9. 10−8

USCCM 2.2 . 10−2 2.5 . 10−3 1.7 . 10−4 1.5 . 10−5 1.3 . 10−7 1.9. 10−8

0.5 0.6 USCTM 2.2 . 10−2 3.5 . 10−3 5.5 . 10−4 4.2 . 10−5 2.2 . 10−6 3.7. 10−8

USCCM 1.2 . 10−2 1.3 . 10−3 1.7 . 10−4 2.0 . 10−5 5.8 . 10−7 2.5. 10−7

1.5 1.5 USCTM 3.2 . 10−2 4.6 . 10−3 2.5 . 10−4 1.2 . 10−5 2.7 . 10−7 4.5. 10−8

USCCM 3.2 . 10−2 1.1 . 10−3 1.4 . 10−4 1.3 . 10−5 5.1 . 10−7 2.6. 10−7

Remark 6.2. The results of Table 1 show that the first and second kinds of Chebyshev approximations
are not always the best, along with other approximations for the UCPs. This, of course, clarifies the
importance of our generalization to the CPs in this paper.

(a) Exact solution of Example 6.2 for α = 0.5. (b) y19(x, t) with A = 0.6 and B = 0.8 using USCTM.

Figure 1. Figures of exact and approximate solutions for Example 6.2.
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(a) E20(x, t) using USCTM (A = 0.6 and B =

0.8).
(b) E20(x, t) using USCCM (A = 0.6 and B =

0.8).

Figure 2. Obtained Errors for Example 6.2 at α = 0.5.

(a) Absolute errors at t = 0.5 (b) Graph of Log10EN against N.

Figure 3. Errors results using USCTM and USCCM (A = 0.6 and B = 0.8) for Example 6.2.

(a) Exact solution.
(b) y12(x, t) using USCTM with A =

0.7, B = 1.5.

Figure 4. Figures of exact and approximate solutions for Example 6.3 at α = 0.95.
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(a) E12(x, t) using USCTM (A = 0.7, B =

1.5) at α = 0.95.
(b) E13(x, t) using USCCM (A = 0.5, B =

0.6) at α = 0.1.

Figure 5. Obtained errors for Example 6.3 using USCTM and USCCM.

y3(x, 0.1)

y12(x, 0.1)

y(x, 0.1)

x

0.0005

0.0010

0.0015

0.0020

0.0025
y(x, 0.1)

(a) Using USCTM (A = 0.7, B = 1.5) at
α = 0.95.

y4(x, 0.6)

y13(x, 0.6)

y(x, 0.6)

x

0.02

0.04

0.06

0.08

y(x, 0.6)

(b) Using USCCM (A = 0.5, B = 0.6) at
α = 0.1.

Figure 6. The behavior of exact solution and approximate solution for Example 6.3 using
USCTM and USCCM.

(a) E23(x, t) using USCTM (A = 1.4, B =

1.6) at α = 0.45.
(b) E22(x, t) using USCCM (A = 0.4, B =

0.6) at α = 0.95.

Figure 7. Obtained errors for Example 6.4 using USCTM and USCCM.
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(a) E20(x, 0.3) and E22(x, 0.3) using USCTM
(A = 0.4, B = 0.6) at α = 0.5.
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(b) E20(x, 0.3) and E22(x, 0.3) using USCCM
(A = 1.4, B = 1.6) at α = 0.9.

Figure 8. Obtained errors for Example 6.4 using USCTM and USCCM.

(a) E20(x, t) using USCTM (A = 0.8, B = 1.8). (b) E20(x, t) using USCCM (A = 0.8, B = 1.8).

Figure 9. Obtained errors for Example 6.5 using USCTM and USCCM.
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(a) E15(x, 0.2) and E20(x, 0.2) using USCTM
(A = 0.8, B = 1.8).

N=20
N=15

0.0 0.2 0.4 0.6 0.8 1.0
0

5.0×10-9

1.0×10-8

1.5×10-8

x

Ab
so
lu
te
Er
ro
r

(b) E15(x, 0.2) and E20(x, 0.2) using USCCM
(A = 0.8, B = 1.8).

Figure 10. Obtained errors for Example 6.5 using USCTM and USCCM.
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7. Conclusions

In order to solve TFHE in non-local conditions, this work developed spectral tau and collocation
methods. To choose appropriate sets of basis functions, UCPs, and their shifted polynomials were
employed. An approximate solution can be obtained by solving the given system of algebraic equations
using an appropriate solver. We emphasize the benefit of using the properties of second-kind CPs,
which help us calculate some of the computational formulas. In Section 6, we illustrated the accuracy
and usefulness of our methods by comparing them to other methodologies in the literature. To the
best of our knowledge, this is the first time that this type of polynomial has been utilized in numerical
analysis. It is shown that the first- and second-kinds are not always the best among other Chebyshev
approximations. In addition, in future work, we aim to employ these polynomials to treat other types
of differential equations.

Use of AI tools declaration

The authors declare that they have not used artificial intelligence tools in the creation of this article.

Acknowledgment

This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant No. (UJ-23-
DR-202). Therefore, the authors thank the University of Jeddah for its technical and financial support.

Conflict of interest

The authors declare that they have no competing interests.

References

1. Y. H. Youssri, W. M. Abd-Elhameed, H. M. Ahmed, New fractional derivative expression of the
shifted third-kind Chebyshev polynomials: Application to a type of nonlinear fractional pantograph
differential equations, J. Funct. Space., 2022 (2022). https://doi.org/10.1155/2022/3966135

2. H. M. Ahmed, Numerical solutions for singular Lane-Emden equations using shifted
Chebyshev polynomials of the first kind, Contemp. Math., 4 (2023), 132–149.
https://doi.org/10.37256/cm.4120232254

3. E. H Doha, W. M Abd-Elhameed, M. A. Bassuony, On the coefficients of differentiated expansions
and derivatives of Chebyshev polynomials of the third and fourth kinds, Acta Math. Sci., 35 (2015),
326–338. https://doi.org/10.1016/s0252-9602(15)60004-2

4. W. M Abd-Elhameed, H. M. Ahmed, Tau and Galerkin operational matrices of derivatives for
treating singular and Emden-Fowler third-order-type equations, Internat. J. Modern Phys. C, 33
(2022), 2250061. https://doi.org/10.1142/s0129183122500619

5. A. T. Dincel, S. N. T. Polat, Fourth kind Chebyshev wavelet method for the solution of multi-
term variable order fractional differential equations, Eng. Comput., 39 (2022), 1274–1287.
https://doi.org/10.1108/ec-04-2021-0211

AIMS Mathematics Volume 9, Issue 1, 2137–2166.

http://dx.doi.org/https://doi.org/10.1155/2022/3966135
http://dx.doi.org/https://doi.org/10.37256/cm.4120232254
http://dx.doi.org/https://doi.org/10.1016/s0252-9602(15)60004-2
http://dx.doi.org/https://doi.org/10.1142/s0129183122500619
http://dx.doi.org/https://doi.org/10.1108/ec-04-2021-0211


2164

6. R. Magin, Fractional calculus in bioengineering, part 1. Crit. Rev. Biomed. Eng., 32 (2004), 1–104.
https://doi.org/10.1615/critrevbiomedeng.v32.10

7. V. E. Tarasov, Fractional dynamics: Applications of fractional calculus to dynamics of particles,
fields and media, Springer Science & Business Media, 2011.

8. F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to
mathematical models, World Scientific, 2022.

9. S. Das, I. Pan, Fractional order signal processing: Introductory concepts and applications,
Springer Science & Business Media, 2011.

10. S. Momani, Z. Odibat, Analytical solution of a time-fractional Navier-Stokes equation
by Adomian decomposition method, Appl. Math. Comput., 177 (2006), 488–494.
https://doi.org/10.1016/j.amc.2005.11.025

11. S. Abbasbandy, S. Kazem, M. S. Alhuthali, H. H. Alsulami, Application of the operational
matrix of fractional-order Legendre functions for solving the time-fractional convection-diffusion
equation, Appl. Math. Comput., 266 (2015), 31–40. https://doi.org/10.1016/j.amc.2015.05.003

12. H. Dehestani, Y. Ordokhani, M. Razzaghi, Application of the modified operational matrices in
multiterm variable-order time-fractional partial differential equations, Math. Method. Appl. Sci.,
42 (2019), 7296–7313. https://doi.org/10.1002/mma.5840

13. T. Akram, M. Abbas, M. B. Riaz, A. I. Ismail, N. M. Ali, An efficient numerical
technique for solving time fractional Burgers equation, Alex. Eng. J., 59 (2020), 2201–2220.
https://doi.org/10.1016/j.aej.2020.01.048

14. Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation,
J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001

15. F. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y. M. Chu, Numerical solution
of traveling waves in chemical kinetics: Time-fractional fishers equations, Fractals, 30 (2022),
2240051. https://doi.org/10.1142/s0218348x22400515

16. M. Shakeel, I. Hussain, H. Ahmad, I. Ahmad, P. Thounthong, Y. F. Zhang, Meshless technique
for the solution of time-fractional partial differential equations having real-world applications, J.
Funct. Space., 2020 (2020). https://doi.org/10.1155/2020/8898309

17. B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal.
Appl., 395 (2012), 684–693. https://doi.org/10.1016/j.jmaa.2012.05.066

18. K. S. Al-Ghafri, H. Rezazadeh, Solitons and other solutions of (3+ 1)-dimensional space-time
fractional modified KdV-Zakharov-Kuznetsov equation, Appl. Math. Nonlinear Sci., 4 (2019),
289–304. https://doi.org/10.2478/amns.2019.2.00026

19. Z. J. Fu, L. W. Yang, Q. Xi, C. S. Liu, A boundary collocation method for anomalous heat
conduction analysis in functionally graded materials, Comput. Math. Appl., 88 (2021), 91109.
https://doi.org/10.1016/j.camwa.2020.02.023

20. Q. Xi, Z. Fu, T. Rabczuk, D. Yin, A localized collocation scheme with fundamental solutions for
long-time anomalous heat conduction analysis in functionally graded materials, Int. J. Heat Mass
Transf., 180 (2021), 121778. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121778

AIMS Mathematics Volume 9, Issue 1, 2137–2166.

http://dx.doi.org/https://doi.org/10.1615/critrevbiomedeng.v32.10
http://dx.doi.org/https://doi.org/10.1016/j.amc.2005.11.025
http://dx.doi.org/https://doi.org/10.1016/j.amc.2015.05.003
http://dx.doi.org/https://doi.org/10.1002/mma.5840
http://dx.doi.org/https://doi.org/10.1016/j.aej.2020.01.048
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2007.02.001
http://dx.doi.org/https://doi.org/10.1142/s0218348x22400515
http://dx.doi.org/https://doi.org/10.1155/2020/8898309
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2012.05.066
http://dx.doi.org/https://doi.org/10.2478/amns.2019.2.00026
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2020.02.023
http://dx.doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2021.121778


2165

21. W. H. Luo, T. Z. Huang, G. C. Wu, X. M. Gu, Quadratic spline collocation method
for the time fractional subdiffusion equation, Appl. Math. Comput., 276 (2016), 252–265.
https://doi.org/10.1016/j.amc.2015.12.020

22. W. H. Luo, C. Li, T. Z. Huang, X. M. Gu, G. C. Wu, A high-order accurate numerical scheme
for the Caputo derivative with applications to fractional diffusion problems, Numer. Funct. Anal.
Optim., 39 (2018), 600–622. https://doi.org/10.1080/01630563.2017.1402346

23. W. H. Luo, X. M. Guo, L. Yang, J. Meng, A Lagrange-quadratic spline optimal collocation method
for the time tempered fractional diffusion equation, Math. Comput. Simulat., 182 (2021), 1–24.
https://doi.org/10.1016/j.matcom.2020.10.016
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