Research article

Inequalities for different type of functions via Caputo fractional derivative

  • Received: 09 December 2021 Revised: 07 April 2022 Accepted: 25 April 2022 Published: 05 May 2022
  • MSC : 26A33, 26D15

  • In this paper, we obtain some new inequalities for different type of functions that are connected with the Caputo fractional derivative. We extend and generalize some important inequalities to this interesting calculus including Hermite-Hadamard inequality.

    Citation: Deniz Uçar. Inequalities for different type of functions via Caputo fractional derivative[J]. AIMS Mathematics, 2022, 7(7): 12815-12826. doi: 10.3934/math.2022709

    Related Papers:

  • In this paper, we obtain some new inequalities for different type of functions that are connected with the Caputo fractional derivative. We extend and generalize some important inequalities to this interesting calculus including Hermite-Hadamard inequality.



    加载中


    [1] C. E. M. Pearce, J. Pečarić, V. Šimić, Stolarsky means and Hadamard's inequality, J. Math. Anal. Appl., 220 (1998), 99–109. https://doi.org/10.1006/jmaa.1997.5822 doi: 10.1006/jmaa.1997.5822
    [2] M. Bombardelli, S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl., 58 (2009), 1869–1877. https://doi.org/10.1016/j.camwa.2009.07.073 doi: 10.1016/j.camwa.2009.07.073
    [3] M. Z. Sarikaya, E. Set, M. E. Özdemir, On some new inequalities of Hadamard type involving h-convex functions, Acta Math. Univ. Comenianae, 79 (2010), 265–272.
    [4] N. P. G. Ngoc, N. V. Vinh, P. T. T. Hien, Integral inequalities of Hadamard type for r-convex functions, Int. Math. Forum, 4 (2009), 1723–1728.
    [5] P. M. Gill, C. E. M. Pearce, J. Pečarić, Hadamard's inequality for r-convex functions, J. Math. Anal. Appl., 215 (1997), 461–470. https://doi.org/10.1006/jmaa.1997.5645 doi: 10.1006/jmaa.1997.5645
    [6] S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones, 34 (2015), 323–341. https://doi.org/10.4067/S0716-09172015000400002 doi: 10.4067/S0716-09172015000400002
    [7] S. S. Dragomir, J. Pečarić, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341.
    [8] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [9] B. Ross, Fractional calculus and its applications, Berlin, Heidelberg: Springer-Verlag, 1975.
    [10] M. Samraiz, F. Nawaz, B. Abdalla, T. Abdeljawad, G. Rahman, Estimates of trapezium-type inequalities for h-convex functions with applications to quadrature formulae, AIMS Math., 6 (2021), 7625–7648. https://doi.org/10.3934/math.2021443 doi: 10.3934/math.2021443
    [11] R. S. Ali, A. Mukheimer, T. Abdeljawad, S. Mubeen, S. Ali, G. Rahman, et al., Some new harmonically convex function type generalized fractional integral inequalities, Fractal Fract., 5 (2021), 1–12. https://doi.org/10.3390/fractalfract5020054 doi: 10.3390/fractalfract5020054
    [12] G. Rahman, A. Hussain, A. Ali, K. S. Nisar, R. N. Mohamed, More general weighted-type fractional integral inequalities via Chebyshev functionals, Fractal Fract., 5 (2021), 1–14. https://doi.org/10.3390/fractalfract5040232 doi: 10.3390/fractalfract5040232
    [13] P. O. Mohammed, T. Abdeljawad, A. Kashuri, Fractional Hermite-Hadamard-Fejer inequalities for a convex function with respect to an increasing function involving a positive weighted symmetric function, Symmetry, 12 (2020), 1–17. https://doi.org/10.3390/sym12091503 doi: 10.3390/sym12091503
    [14] P. O. Mohammed, T. Abdeljawad, M. A. Alqudah, F. Jarad, New discrete inequalities of Hermite-Hadamard type for convex functions, Adv. Differ. Equ., 2021 (2021), 1–10. https://doi.org/10.1186/s13662-021-03290-3 doi: 10.1186/s13662-021-03290-3
    [15] F. X. Chen, Extensions of the Hermite-Hadamard inequality for convex functions via fractional integrals, J. Math. Inequal., 10 (2016), 75–81. https://doi.org/10.7153/jmi-10-07 doi: 10.7153/jmi-10-07
    [16] G. Farid, A. Javed, S. Naqvi, Hadamard and Fejér-Hadamard inequalities and related results via Caputo fractional derivatives, Bull. Math. Anal. Appl., 9 (2017), 16–30.
    [17] T. Abdeljawad, M. A. Ali, P. O. Mohammed, A. Kashuri, On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals, AIMS Math., 6 (2021), 712–725. https://doi.org/10.3934/math.2021043 doi: 10.3934/math.2021043
    [18] T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral inequalities of Hermite-Hadamard type with applications, J. Funct. Space., 2020 (2020), 1–14. https://doi.org/10.1155/2020/4352357 doi: 10.1155/2020/4352357
    [19] Ç. Yildiz, M. E. Ozdemir, H. K. Onelan, Fractional integral inequalities for different functions, New Trends Math. Sci., 3 (2015), 110–117.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1482) PDF downloads(68) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog