In this paper, we obtain some new inequalities for different type of functions that are connected with the Caputo fractional derivative. We extend and generalize some important inequalities to this interesting calculus including Hermite-Hadamard inequality.
Citation: Deniz Uçar. Inequalities for different type of functions via Caputo fractional derivative[J]. AIMS Mathematics, 2022, 7(7): 12815-12826. doi: 10.3934/math.2022709
[1] | Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306 |
[2] | Lanxin Chen, Junxian Zhang, Muhammad Shoaib Saleem, Imran Ahmed, Shumaila Waheed, Lishuang Pan . Fractional integral inequalities for $ h $-convex functions via Caputo-Fabrizio operator. AIMS Mathematics, 2021, 6(6): 6377-6389. doi: 10.3934/math.2021374 |
[3] | Imran Abbas Baloch, Thabet Abdeljawad, Sidra Bibi, Aiman Mukheimer, Ghulam Farid, Absar Ul Haq . Some new Caputo fractional derivative inequalities for exponentially $ (\theta, h-m) $–convex functions. AIMS Mathematics, 2022, 7(2): 3006-3026. doi: 10.3934/math.2022166 |
[4] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[5] | Tao Yan, Ghulam Farid, Sidra Bibi, Kamsing Nonlaopon . On Caputo fractional derivative inequalities by using strongly $ (\alpha, h-m) $-convexity. AIMS Mathematics, 2022, 7(6): 10165-10179. doi: 10.3934/math.2022565 |
[6] | Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen . Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications. AIMS Mathematics, 2022, 7(3): 3418-3439. doi: 10.3934/math.2022190 |
[7] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[8] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[9] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[10] | Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for $ m $-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115 |
In this paper, we obtain some new inequalities for different type of functions that are connected with the Caputo fractional derivative. We extend and generalize some important inequalities to this interesting calculus including Hermite-Hadamard inequality.
Inequalities develop tools for analyzing the problems in pure and applied mathematics. Thus, inequalities have become the centre of interest for many branches of science. A large number of extensions, various generalizations have been investigated in the theory of mathematical inequalities. We refer the reader to the references [1,2,3,4,5,6,7]. Fractional calculus is the generalization of derivatives and integrals of arbitrary non-integer order. In the last few years, some new definitions of fractional operators have been introduced to provide the best method for fractional calculus. Such type of studies promotes future researches to obtain new ideas to unify the fractional derivatives and fractional inequalities. For a review of this topic we direct the reader to the monographes [8,9].
In [10], Samraiz et al. developed a new class of trapezium-type inequalities up to twice differentiable h-convex mappings for fractional integrals of Riemann-type. Ali et al. established a new version of generalized fractional Hadamard and Fejér-Hadamard type integral inequalities in [11]. Rahman et al. investigated some novel inequalities for a class of differentiable functions related to Chebyshev's functionals in [12]. In [13], Mohammed et al. considered some Hermite-Hadamard-Fejér fractional integral inequalities and related results for the weighted fractional operators.
Some authors extended fractional inequalities using time scale calculus. For instance, Mohammed et al. introduced new time scales on Z and investigated the discrete inequality of Hermite-Hadamard type for discrete convex functions in [14]. A variety of various types of some classical inequalities have been established utilizing the fractional derivative and integral operators and their extensions are found in [15,16,17,18].
In [19], authors established several inequalities connected with the Riemann-Liouville fractional integrals. Our aim in this paper is to extend and establish some new inequalities using Caputo fractional derivative for different classes of convex functions and mappings. Now we give the definitions of different classes of functions and Caputo fractional derivative to obtain our main results.
Definition 1.1. A function f:[a,b]→R is said to be convex if the inequality
f(λx+(1−λ)y)≤λf(x)+(1−λ)f(y) |
holds for all x,y∈[a,b] and λ∈[0,1]. If the inequality holds in the reverse direction, the function f is called concave.
Definition 1.2. A function f:I⊆R→Ris said to belong to the class of Q(I), if it is nonnegative and for all x,y∈Iand λ∈(0,1)satisfies the following inequality:
f(λx+(1−λ)y)≤f(x)λ+f(y)(1−λ). | (1.1) |
Definition 1.3. A function f:I⊆R→R is P function or that f belongs to the class of P(I), if it is nonnegative and for all x,y∈Iand λ∈[0,1] satisfies the following inequality:
f(λx+(1−λ)y)≤f(x)+f(y). | (1.2) |
The power mean Mr(x,y;λ) of order r of positive numbers x,y is defined by
Mr(x,y;λ)={(λxr+(1−λ)yr)1r,r≠0,xλy1−λ,r=0. |
In [1], Pearce et al. generalized this inequality to r-convex positive function f which is defined on an interval [a,b], for all x,y∈ [a,b] and λ∈[0,1],
f(λx+(1−λ)y)≤Mr(f(x),f(y);λ). |
Definition 1.4. Let h:J⊆R→R be a positive function. We say that f:I⊆R→Ris h-convex or that f belongs to the class of SX(h,I). If f is nonnegative and for allx,y∈Iand λ∈(0,1), we have
f(λx+(1−λ)y)≤h(λ)f(x)+h(1−λ)f(y). | (1.3) |
If the above inequality is reversed, then f is said to be h-concave, i.e. f∈SV(h,I).
Definition 1.5. f:I→R is a convex function on the interval I of real numbers and u,v∈I with u<v, the inequality
f(u+v2)≤1v−u∫vuf(x)dx≤f(u)+f(v)2 |
is known as the Hermite-Hadamard inequality.
Definition 1.6. Suppose that α>0,t>a,α,a,t∈R. The fractional operator
CDαf(t):={1Γ(n−α)t∫af(n)(τ)(t−τ)α−n+1dτ,n−1<α<n∈N,dndtnf(t), α=n∈N, |
is called the Caputo fractional derivative or Caputo fractional differential operator of order α. This operator is introduced by the Italian mathematician Caputo in 1967.
Definition 1.7. Let α>0 and α∉{1,2,3,...}, n= [α]+1, f∈Cn[a,b] be a continuous n order differentiable function. Right-sided and left-sided Caputo fractional derivatives are defined as follows:
(CDαa+f)(x)=1Γ(n−α)x∫af(n)(τ)(x−τ)α−n+1dτ, x>a, |
and
(CDαb−f)(x)=(−1)nΓ(n−α)b∫xf(n)(τ)(τ−x)α−n+1dτ, x<b. |
Definition 1.8. Let p≥1,0<b∫afp(x)dx<∞ and 0<b∫agp(x)dx<∞. Then Minkowski integral inequality is given as follow:
(b∫a(f(x)+g(x))pdx)1p≤(b∫afp(x)dx)1p+(b∫agp(x)dx)1p. |
Lemma 1.1. Let f:[a,b]→R be a differentiable mapping on (a,b) with a<b. If f(n+1)∈L[a,b],then the following fractional equalityholds:
f(n)(a)+f(n)(b)2−Γ(n−α+1)2(b−a)n−α[CDαa+f(b)+(−1)nCDαb−f(a)]=b−a21∫0[(1−t)n−α−tn−α]f(n+1)(ta+(1−t)b)dt. |
In this section, we establish some new inequalities for different type of functions using Caputo derivatives.
Theorem 2.1. Let f:[a,b]→R be a differentiable mappingon (a,b). If |f(n+1)| belongs to the class of Q(I), a,b∈I with0≤a<b. Then we have the following inequality:
|f(n)(a)+f(n)(b)2−Γ(n−α+1)2(b−a)n−α[CDαa+f(b)+(−1)n CDb−f(a)]|≤(b−a){[f(n+1)(a)+f(n+1)(b)][β(0,n−α+1)+1n−α]}. |
Proof. By using the Lemma 1 and the Definition 1.2, we have
|f(n)(a)+f(n)(b)2−Γ(n−α+1)2(b−a)n−α[CDαa+f(b)+(−1)n CDb−f(a)]|=|b−a21∫0[(1−t)n−α−tn−α]f(n+1)(ta+(1−t)b)dt|≤b−a21∫0|(1−t)n−α−tn−α|[|f(n+1)(a)t|+|f(n+1)(b)1−t|]dt≤b−a2{1∫0|(1−t)n−α t−1 f(n+1)(a)|dt+1∫0|tn−α−1 f(n+1)(a)|dt+1∫0|(1−t)n−α−1f(n+1)(b)|dt+1∫0|tn−α(1−t)−1f(n+1)(b)|dt}=(b−a){[f(n+1)(a)+f(n+1)(b)][1∫0|(1−t)n−α t−1 |dt+1n−α]}=(b−a){[f(n+1)(a)+f(n+1)(b)][β(0,n−α+1)+1n−α]}. |
This ends the proof.
Theorem 2.2. Let f:[a,b]→R be a differentiable mappingon (a,b) with a<b. If the function |f(n+1)| belongs to the class of P(I), then fthe following inequality holds:
|f(n)(a)+f(n)(b)2−Γ(n−α+1)2(b−a)n−α[CDαa+f(b)+(−1)n CDb−f(a)]|≤(b−a)n−α[f(n+1)(a)+f(n+1)(b)]. |
Proof. As in the proof of the Theorem 2.1, using the definition of P(I), we have
|f(n)(a)+f(n)(b)2−Γ(n−α+1)2(b−a)n−α[CDαa+f(b)+(−1)n CDb−f(a)]|≤b−a21∫0|(1−t)n−α−tn−α||f(n+1)(ta+(1−t)b)|dt≤b−a21∫0|(1−t)n−α−tn−α||f(n+1)(a)+f(n+1)(b)|dt≤b−a2{f(n+1)(a)1∫0|(1−t)n−α|dt+f(n+1)(b)1∫0|(1−t)n−α|dt+f(n+1)(a)1∫0|tn−α|dt+f(n+1)(b)1∫0|tn−α|dt}=b−an−α+1[f(n+1)(a)+f(n+1)(b)]. |
Theorem 2.3. Let f:[a,b]→R be a differentiable mappingon (a,b). If |f(n+1)| is a r-convex positive function, then we have the following inequality:
|f(n)(a)+f(n)(b)2−Γ(n−α+1)2(b−a)n−α[CDαa+f(b)+(−1)n CDb−f(a)]|≤b−a2{[f(n+1)(a)]r[β(r+1r,n−α+1)+1n−α+1r+1]r+[f(n+1)(b)]r[1n−α+1r+1+β(n−α+1,r+1r)]r}1/r. |
Proof. Using the definition of r-convex function and the Minkowski integral inequality, we write
|f(n)(a)+f(n)(b)2−Γ(n−α+1)2(b−a)n−α[CDαa+f(b)+(−1)n CDb−f(a)]|≤b−a21∫0|(1−t)n−α−tn−α||f(n+1)(ta+(1−t)b)|dt≤b−a21∫0|(1−t)n−α−tn−α||t[f(n+1)(a)]r+(1−t)(f(n+1)(b))r|1/rdt≤b−a2{[1∫0|(1−t)n−α−tn−α||t1/rf(n+1)(a)|dt]r+[1∫0|(1−t)n−α−tn−α||(1−t)1/rf(n+1)(b)|dt]r}1/r≤b−a2{[f(n+1)(a)1∫0|(1−t)n−αt1/r|dt+f(n+1)(a)1∫0|tn−α+1/r|dt]r+[f(n+1)(b)1∫0|(1−t)n−α+1/r|dt+ f(n+1)(b)1∫0|tn−α(1−t)1/r|dt]r}1/r≤b−a2{[f(n+1)(a)]r[β(r+1r,n−α+1)+1n−α+1r+1]r+[f(n+1)(b)]r[1n−α+1r+1+β(n−α+1,r+1r)]r}1/r. |
Theorem 2.4. Let f:[a,b]→R be a differentiable mappingon (a,b). If the function |f(n+1)| belongs to the class of SX(h,I), then we have the following inequality:
|f(n)(a)+f(n)(b)2−Γ(n−α+1)2(b−a)n−α[CDαa+f(b)+(−1)n CDb−f(a)]|≤(b−a) [f(n+1)(a)+f(n+1)(b)]1∫0(1−t)n−αh(t)dt. |
Proof. From Lemma 1.1, we have
|f(n)(a)+f(n)(b)2−Γ(n−α+1)2(b−a)n−α[CDαa+f(b)+(−1)n CDb−f(a)]|≤b−a21∫0|(1−t)n−α−tn−α||f(n+1)(ta+(1−t)b)|dt≤b−a2{1∫0|(1−t)n−α−tn−α||h(t)f(n+1)(a)+h(1−t)f(n+1)(b)|dt}≤b−a2{1∫0|(1−t)n−α−tn−α||h(t)f(n+1)(a)|dt+1∫0|(1−t)n−α−tn−α||h(1−t)f(n+1)(b)|dt}≤b−a2{1∫0|(1−t)n−αh(t)f(n+1)(a)|dt+1∫0|tn−αh(t)f(n+1)(a)|dt+1∫0|(1−t)n−αh(1−t)f(n+1)(b)|dt+1∫0|tn−αh(1−t)f(n+1)(b)|dt}=(b−a) [f(n+1)(a)+f(n+1)(b)]1∫0(1−t)n−αh(t)dt. |
Theorem 2.5. Let f be a function belongs to the class Q(I), a,b∈I with 0≤a<b and f∈L1[a,b]. Then we have
f(a+b2)≤2Γ(n−α+1)(b−a)n−α[CDαα+f(b)+(−1)nCDαb−f(a)], | (2.1) |
for α>0.
Proof. Since f∈ Q(I), using Definition 1.2, we have
f(x+y2)≤2(f(x)+f(y)), |
for all x,y∈I and λ=12. Substituting x=ta+(1−t)b, y=(1−t)a+tb, we obtain
f(a+b2)≤2(f(ta+(1−t)b)+f((1−t)a+tb)). | (2.2) |
Then multiplying both sides of (2.2) by tn−α−1 and integrating the inequality with respect to t over [0,1], we obtain
f(a+b2)1∫0tn−α−1dt≤21∫0tn−α−1[f(ta+(1−t)b)+f((1−t)a+tb)]dt,1n−αf(a+b2)≤2b∫a(b−xb−a)n−α−1f(x)dxb−a+2b∫a(y−ab−a)n−α−1f(y)dyb−a,f(a+b2)≤2(n−α)(b−a)n−αb∫af(x)[(x−a)n−α−1+(b−x)n−α−1]dx,f(a+b2)≤2Γ(n−α+1)(b−a)n−α[CDαα+f(b)+(−1)n CDαb−f(a)]. |
This completes the proof.
Theorem 2.6. Let f be a function belongs to the class P(I), a,b∈Iwith0≤a<band f∈L1[a,b]. Then we have
f(a+b2)≤Γ(n−α+1)(b−a)n−α[CDαα+f(b)+(−1)nCDαb−f(a)]≤2(f(a)+f(b)), | (2.3) |
for α>0.
Proof. Using Definition 1.3 and substituting with x=ta+(1−t)b,y=(1−t)a+tb and λ=12, we have
f(a+b2)≤f(ta+(1−t)b)+f((1−t)a+tb), | (2.4) |
for all t∈[0,1].
As in the proof of Theorem 2.5, multiplying both sides of inequality (2.4) by tn−α−1 and integrating the inequality with respect to t over [0,1], we have
f(a+b2)1∫0tn−α−1dt≤1∫0tn−α−1[f(ta+(1−t)b)+f((1−t)a+tb)]dt,1n−αf(a+b2)≤1(b−a)n−αb∫af(x)[(x−a)n−α−1+(b−x)n−α−1]dx, |
f(a+b2)≤n−α(b−a)n−αb∫af(x)[(x−a)n−α−1+(b−x)n−α−1]dx,f(a+b2)≤Γ(n−α+1)(b−a)n−α[CDαα+f(b)+(−1)n CDαb−f(a)], |
which completes the first part of the proof of inequality (2.3).
Since f∈P(I), we have
f(ta+(1−t)b)≤f(a)+f(b) |
and
f((1−t)a+tb)≤f(a)+f(b). |
Using above inequalities, we obtain
f(ta+(1−t)b)+f((1−t)a+tb)≤2[f(a)+f(b)]. | (2.5) |
If we multiply both sides of inequality (2.5) by tn−α−1 and integrate with respect to t from 0 to 1, we get
1∫0tn−α−1[f(ta+(1−t)b)+f((1−t)a+tb)]dt≤2[f(a)+f(b)]1∫0tn−α−1dt,n−α(b−a)n−αb∫af(x)[(x−a)n−α−1+(b−x)n−α−1]dx≤2[f(a)+f(b)],Γ(n−α+1)(b−a)n−α[CDαα+f(b)+(−1)n CDαb−f(a)]≤2[f(a)+f(b)], |
and thus the second part of the proof of inequality (2.3) is proved.
Theorem 2.7. Let f:[a,b]→(0,∞) be r-convexfunction on[a,b] with a<band 0<r≤1. Then thefollowing inequality for fractional derivative holds:
Γ(n−α+1)(b−a)n−α[CDαα+f(b)+(−1)nCDαb−f(a)]≤[(1n−α+1r)r[f(a)]r+(β(n−α,r+1r))r[f(b)]r]1r+[(β(n−α,r+1r))r[f(a)]r+(1n−α+1r)r[f(b)]r]1r, |
where β is the beta function.
Proof. Since f is r-convex and r>0, we have
f(ta+(1−t)b)≤(t[f(a)]r+(1−t)[f(b)]r)1r |
and
f((1−t)a+tb)≤((1−t)[f(a)]r+t[f(b)]r)1r, |
for all t∈[0,1]. By using these inequalities, we have
f(ta+(1−t)b)+f((1−t)a+tb)≤(t[f(a)]r+(1−t)[f(b)]r)1r+((1−t)[f(a)]r+t[f(b)]r)1r. |
If we multiply both sides of above inequality by tn−α−1and integrate with respect to t from 0 to 1, we obtain
1∫0tn−α−1[f(ta+(1−t)b)+f((1−t)a+tb)]dt≤1∫0tn−α−1(t[f(a)]r+(1−t)[f(b)]r)1rdt+1∫0tn−α−1((1−t)[f(a)]r+t[f(b)]r)1rdt. |
We know that
1∫0tn−α−1[f(ta+(1−t)b)+f((1−t)a+tb)]dt=Γ(n−α)(b−a)n−α[CDαα+f(b)+(−1)n CDαb−f(a)]. |
By using the Minkowski inequality, we have
1∫0tn−α−1(t[f(a)]r+(1−t)[f(b)]r)1r≤[(1∫0tn−α+1r−1f(a)dt)r+(1∫0tn−α−1(1−t)1rf(b)dt)r]1r=[(1n−α+1r)r[f(a)]r+(β(n−α,r+1r))r[f(b)]r]1r, |
and similarly we obtain
1∫0tn−α−1((1−t)[f(a)]r+t[f(b)]r)1r≤[(1∫0tn−α−1(1−t)1rf(a)dt)r+(1∫0tn−α+1r−1f(b)dt)r]1r=[(β(n−α,r+1r))r[f(a)]r+(1n−α+1r)r[f(b)]r]1r. |
Thus, we have
Γ(n−α+1)(b−a)n−α[CDαα+f(b)+(−1)n CDαb−f(a)]≤[(1n−α+1r)r[f(a)]r+(β(n−α,r+1r))r[f(b)]r]1r+[(β(n−α,r+1r))r[f(a)]r+(1n−α+1r)r[f(b)]r]1r. |
This completes the proof.
Theorem 2.8. Let f∈SX(h,I), a,b∈I with a<b and L1[a,b]. Then we have inequality for h-convex functions via fractional derivative:
1(n−α)h(12)f(a+b2)≤Γ(n−α)(b−a)n−α[CDαα+f(b)+(−1)nCDαb−f(a)]≤[f(a)+f(b)]1∫0tn−α−1[h(t)+h(1−t)]dt. | (2.6) |
Proof. According to inequality (1.3), if we replace x=ta+(1−t)b, y=(1−t)a+tb and n−α=12, we have
f(a+b2)≤h(12)[f(ta+(1−t)b)+f((1−t)a+tb)]. | (2.7) |
If we multiply both sides of inequality (2.7) by tn−α−1 and integrate with respect to t from 0 to 1, we get
f(a+b2)1∫0tn−α−1dt≤h(12)1∫0tn−α−1[f(ta+(1−t)b)+f((1−t)a+tb)]dt,1(n−α)h(12)f(a+b2)≤Γ(n−α)(b−a)n−α[CDαα+f(b)+(−1)n CDαb−f(a)], |
and the first part of the inequality (2.6) is proved.
Since f∈SX(h,I), we have
f(tx+(1−t)y)≤h(t)f(x)+h(1−t)f(y) |
and
f((1−t)x+ty)≤h(1−t)f(x)+h(t)f(y). |
Using these inequalities, we get
f(tx+(1−t)y)+f((1−t)x+ty)≤[h(t)+h(1−t)][f(x)+f(y)]. | (2.8) |
If we replace x=a and y=b in inequality (2.8), we find
f(ta+(1−t)b)+f((1−t)a+tb)≤[h(t)+h(1−t)][f(a)+f(b)]. | (2.9) |
Then multiplying both sides of the inequality (2.9) by tn−α−1 and integrating the inequality with respect to t over [0,1], we have
1∫0tn−α−1[f(ta+(1−t)b)+f((1−t)a+tb)]dt≤1∫0tn−α−1[h(t)+h(1−t)][f(a)+f(b)]dt |
and
Γ(n−α)(b−a)n−α[CDαα+f(b)+(−1)n CDαb−f(a)]≤[f(a)+f(b)]1∫0tn−α−1[h(t)+h(1−t)]dt, |
so that the second part of the inequality (2.6) is proved. Hence, the proof is complete.
Convex functions play an important role in the advancement of many inequalities. Most of the well-known inequalities are the consequences of convex functions. In this work, we have motivated by different type of convex functions which are integrable and we have obtained new results for Caputo fractional derivative. Fractional inequalities have gained considerable importance and popularity. Thus, this paper presents a new approach to new versions of different inequalities. We conclude that the results presented in this study would be a guide for further investigations concerning inequalities for various kinds of fractional calculus.
The author declares no conflict of interest.
[1] |
C. E. M. Pearce, J. Pečarić, V. Šimić, Stolarsky means and Hadamard's inequality, J. Math. Anal. Appl., 220 (1998), 99–109. https://doi.org/10.1006/jmaa.1997.5822 doi: 10.1006/jmaa.1997.5822
![]() |
[2] |
M. Bombardelli, S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl., 58 (2009), 1869–1877. https://doi.org/10.1016/j.camwa.2009.07.073 doi: 10.1016/j.camwa.2009.07.073
![]() |
[3] | M. Z. Sarikaya, E. Set, M. E. Özdemir, On some new inequalities of Hadamard type involving h-convex functions, Acta Math. Univ. Comenianae, 79 (2010), 265–272. |
[4] | N. P. G. Ngoc, N. V. Vinh, P. T. T. Hien, Integral inequalities of Hadamard type for r-convex functions, Int. Math. Forum, 4 (2009), 1723–1728. |
[5] |
P. M. Gill, C. E. M. Pearce, J. Pečarić, Hadamard's inequality for r-convex functions, J. Math. Anal. Appl., 215 (1997), 461–470. https://doi.org/10.1006/jmaa.1997.5645 doi: 10.1006/jmaa.1997.5645
![]() |
[6] |
S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones, 34 (2015), 323–341. https://doi.org/10.4067/S0716-09172015000400002 doi: 10.4067/S0716-09172015000400002
![]() |
[7] | S. S. Dragomir, J. Pečarić, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341. |
[8] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[9] | B. Ross, Fractional calculus and its applications, Berlin, Heidelberg: Springer-Verlag, 1975. |
[10] |
M. Samraiz, F. Nawaz, B. Abdalla, T. Abdeljawad, G. Rahman, Estimates of trapezium-type inequalities for h-convex functions with applications to quadrature formulae, AIMS Math., 6 (2021), 7625–7648. https://doi.org/10.3934/math.2021443 doi: 10.3934/math.2021443
![]() |
[11] |
R. S. Ali, A. Mukheimer, T. Abdeljawad, S. Mubeen, S. Ali, G. Rahman, et al., Some new harmonically convex function type generalized fractional integral inequalities, Fractal Fract., 5 (2021), 1–12. https://doi.org/10.3390/fractalfract5020054 doi: 10.3390/fractalfract5020054
![]() |
[12] |
G. Rahman, A. Hussain, A. Ali, K. S. Nisar, R. N. Mohamed, More general weighted-type fractional integral inequalities via Chebyshev functionals, Fractal Fract., 5 (2021), 1–14. https://doi.org/10.3390/fractalfract5040232 doi: 10.3390/fractalfract5040232
![]() |
[13] |
P. O. Mohammed, T. Abdeljawad, A. Kashuri, Fractional Hermite-Hadamard-Fejer inequalities for a convex function with respect to an increasing function involving a positive weighted symmetric function, Symmetry, 12 (2020), 1–17. https://doi.org/10.3390/sym12091503 doi: 10.3390/sym12091503
![]() |
[14] |
P. O. Mohammed, T. Abdeljawad, M. A. Alqudah, F. Jarad, New discrete inequalities of Hermite-Hadamard type for convex functions, Adv. Differ. Equ., 2021 (2021), 1–10. https://doi.org/10.1186/s13662-021-03290-3 doi: 10.1186/s13662-021-03290-3
![]() |
[15] |
F. X. Chen, Extensions of the Hermite-Hadamard inequality for convex functions via fractional integrals, J. Math. Inequal., 10 (2016), 75–81. https://doi.org/10.7153/jmi-10-07 doi: 10.7153/jmi-10-07
![]() |
[16] | G. Farid, A. Javed, S. Naqvi, Hadamard and Fejér-Hadamard inequalities and related results via Caputo fractional derivatives, Bull. Math. Anal. Appl., 9 (2017), 16–30. |
[17] |
T. Abdeljawad, M. A. Ali, P. O. Mohammed, A. Kashuri, On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals, AIMS Math., 6 (2021), 712–725. https://doi.org/10.3934/math.2021043 doi: 10.3934/math.2021043
![]() |
[18] |
T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral inequalities of Hermite-Hadamard type with applications, J. Funct. Space., 2020 (2020), 1–14. https://doi.org/10.1155/2020/4352357 doi: 10.1155/2020/4352357
![]() |
[19] | Ç. Yildiz, M. E. Ozdemir, H. K. Onelan, Fractional integral inequalities for different functions, New Trends Math. Sci., 3 (2015), 110–117. |