Research article

A new characterization of hyperbolic cylinder in anti-de Sitter space $ \mathbb{H}_1^{5}(-1) $

  • Received: 20 December 2021 Revised: 14 April 2022 Accepted: 23 April 2022 Published: 05 May 2022
  • MSC : 53C42, 53C50

  • By investigating complete Willmore maximal spacelike hypersurfaces with constant scalar curvature in anti-de Sitter space $ \mathbb{H}_{1}^{5}(-1) $, we give a new characterization of hyperbolic cylinder $ \mathbb{H}^{2}(-2)\times\mathbb{H}^{2}(-2) $ in $ \mathbb{H}_{1}^{5}(-1) $.

    Citation: Xuerong Qi, Chunxia Shi. A new characterization of hyperbolic cylinder in anti-de Sitter space $ \mathbb{H}_1^{5}(-1) $[J]. AIMS Mathematics, 2022, 7(7): 12802-12814. doi: 10.3934/math.2022708

    Related Papers:

  • By investigating complete Willmore maximal spacelike hypersurfaces with constant scalar curvature in anti-de Sitter space $ \mathbb{H}_{1}^{5}(-1) $, we give a new characterization of hyperbolic cylinder $ \mathbb{H}^{2}(-2)\times\mathbb{H}^{2}(-2) $ in $ \mathbb{H}_{1}^{5}(-1) $.



    加载中


    [1] E. Calabi, Examples of Bernstein problems for some nonlinear equations, Proc. Symp. Pure Math., 15 (1970), 223–230.
    [2] L. F. Cao, G. X. Wei, A new characterization of hyperbolic cylinder in anti-de Sitter space $\mathbb{H}^{n+1}_1(-1)$, J. Math. Anal. Appl., 329 (2007), 408–414. https://doi.org/10.1016/j.jmaa.2006.06.075 doi: 10.1016/j.jmaa.2006.06.075
    [3] R. M. B. Chaves, L. A. M. Sousa, B. C. Valério, New characterizations for hyperbolic cylinders in anti-de Sitter spaces, J. Math. Anal. Appl., 393 (2012), 166–176. https://doi.org/10.1016/j.jmaa.2012.03.043 doi: 10.1016/j.jmaa.2012.03.043
    [4] Q. M. Cheng, Complete maximal spacelike hypersurfaces of $\mathbb{H}^4_1(c)$, Manuscripta Math., 82 (1994), 149–160.
    [5] Q. M. Cheng, Hypersurfaces of a Lorentz space form, Arch. Math., 63 (1994), 271–281. https://doi.org/10.1007/BF01189830 doi: 10.1007/BF01189830
    [6] Q. M. Cheng, S. Ishikawa, Spacelike hypersurfaces with constant scalar curvature, Manuscripta Math., 95 (1998), 499–505. https://doi.org/10.1007/BF02678045 doi: 10.1007/BF02678045
    [7] Q. M. Cheng, Y. J. Suh, Maximal space-like hypersurfaces in $\mathbb{H}^4_1(-1)$ with zero Gauss-Kronecker curvature, J. Korean Math. Soc., 43 (2006), 147–157. https://doi.org/10.4134/JKMS.2006.43.1.147 doi: 10.4134/JKMS.2006.43.1.147
    [8] S. Y. Cheng, S. T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces, Ann. Math., 104 (1976), 407–419. https://doi.org/10.2307/1970963 doi: 10.2307/1970963
    [9] Q. T. Deng, H. L. Gu, Q. Y. Wei, Closed Willmore minimal hypersurfaces with constant scalar curvature in $\mathbb{S}^{5}(1)$ are isoparametric, Adv. Math., 314 (2017), 278–305. https://doi.org/10.1016/j.aim.2017.05.002 doi: 10.1016/j.aim.2017.05.002
    [10] T. Ishihara, Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature, Michigan Math. J., 35 (1988), 345–352.
    [11] T. Lusala, M. Scherfner, L. A. M. Sousa, Closed minimal Willmore hypersurfaces of $\mathbb{S}^{5}(1)$ with constant scalar curvature, Asian J. Math., 9 (2005), 65–78.
    [12] S. C. Shu, J. F. Chen, Willmore spacelike submanifolds in an indefinite space form $N_{q}^{n+p}(c)$, Publ. I. Math., 102 (2017), 175–193. https://doi.org/10.2298/PIM1716175S doi: 10.2298/PIM1716175S
    [13] B. C. Yin, S. J. Zhai, Classification of Möbius minimal and Möbius isotropic hypersurfaces in $\mathbb{S}^{5}$, AIMS Mathematics, 6 (2021), 8426–8452. https://doi.org/10.3934/math.2021489 doi: 10.3934/math.2021489
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1500) PDF downloads(61) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog