Citation: Federico Bernini, Simone Secchi. Existence of solutions for a perturbed problem with logarithmic potential in $\mathbb{R}^2$[J]. Mathematics in Engineering, 2020, 2(3): 438-458. doi: 10.3934/mine.2020020
[1] | Ambrosetti A, Badiale M (1998) Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann Inst H Poincaré Anal Non Linéaire 15: 233-252. |
[2] | Ambrosetti A, Badiale M (1998) Variational perturbative methods and bifurcation of bound states from the essential spectrum. Proc Roy Soc Edinburgh Sect A 128: 1131-1161. doi: 10.1017/S0308210500027268 |
[3] | Ambrosetti A, Badiale M, Cingolani S (1997) Semiclassical states of nonlinear Schrödinger equations. Arch Ration Mech Anal 140: 285-300. doi: 10.1007/s002050050067 |
[4] | Ambrosetti A, Malchiodi A (2006) Perturbation methods and semilinear elliptic problems on $\mathbb{R}^n$, Basel: Birkhäuser Verlag. |
[5] | Bernini F, Mugnai D (2020) On a logarithmic Hartree equation. Adv Nonlinear Anal 9: 850-865. |
[6] | Bonheure D, Cingolani S, Van Schaftingen J (2017) The logarithmic Choquard equation: Sharp asymptotics and nondegeneracy of the groundstate. J Funct Anal 272: 5255-5281. doi: 10.1016/j.jfa.2017.02.026 |
[7] | Choquard P, Stubbe J, Vuffray M (2008). Stationary solutions of the Schrödinger-Newton model-an ODE approach. Differ Integral Equ 21: 665-679. |
[8] | Cingolani S, Weth T (2016) On the planar Schrödinger-Poisson system. Ann Inst H Poincaré Anal Non Linéaire 33: 169-197. |
[9] | Harrison R, Moroz I, Tod KP (2003) A numerical study of the Schrödinger-Newton equations. Nonlinearity 16: 101-122. doi: 10.1088/0951-7715/16/1/307 |
[10] | Lenzmann E (2009) Uniqueness of ground states for pseudorelativistic Hartree equations. Anal PDE 2: 1-27. doi: 10.2140/apde.2009.2.1 |
[11] | Lieb EH (1977) Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud in Appl Math 57: 93-105. doi: 10.1002/sapm197757293 |
[12] | Lieb EH, Loss M (2001) Analysis, 2 Eds., Vol 14 of Graduate Studies in Mathematics, Providence: American Mathematical Society. |
[13] | Secchi S (2010) A note on Schrödinger-Newton systems with decaying electric potential. Nonlinear Anal 72: 3842-3856. doi: 10.1016/j.na.2010.01.021 |
[14] | Stubbe J (2008) Bound states of two-dimensional Schrödinger-Newton equations. arXiv:0807.4059. |