Research article Special Issues

The vanishing discount problem for monotone systems of Hamilton-Jacobi equations: a counterexample to the full convergence

  • Received: 03 March 2022 Revised: 14 December 2022 Accepted: 04 January 2023 Published: 16 January 2023
  • In recent years there has been intense interest in the vanishing discount problem for Hamilton-Jacobi equations. In the case of the scalar equation, B. Ziliotto has recently given an example of the Hamilton-Jacobi equation having non-convex Hamiltonian in the gradient variable, for which the full convergence of the solutions does not hold as the discount factor tends to zero. We give here an explicit example of nonlinear monotone systems of Hamilton-Jacobi equations having convex Hamiltonians in the gradient variable, for which the full convergence of the solutions fails as the discount factor goes to zero.

    Citation: Hitoshi Ishii. The vanishing discount problem for monotone systems of Hamilton-Jacobi equations: a counterexample to the full convergence[J]. Mathematics in Engineering, 2023, 5(4): 1-10. doi: 10.3934/mine.2023072

    Related Papers:

  • In recent years there has been intense interest in the vanishing discount problem for Hamilton-Jacobi equations. In the case of the scalar equation, B. Ziliotto has recently given an example of the Hamilton-Jacobi equation having non-convex Hamiltonian in the gradient variable, for which the full convergence of the solutions does not hold as the discount factor tends to zero. We give here an explicit example of nonlinear monotone systems of Hamilton-Jacobi equations having convex Hamiltonians in the gradient variable, for which the full convergence of the solutions fails as the discount factor goes to zero.



    加载中


    [1] Q. Chen, W. Cheng, H. Ishii, K. Zhao, Vanishing contact structure problem and convergence of the viscosity solutions, Commun. Part. Diff. Eq., 44 (2019), 801–836. http://doi.org/10.1080/03605302.2019.1608561 doi: 10.1080/03605302.2019.1608561
    [2] M. G. Crandall, H. Ishii, P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1–67. http://doi.org/10.1090/S0273-0979-1992-00266-5 doi: 10.1090/S0273-0979-1992-00266-5
    [3] A. Davini, A. Fathi, R. Iturriaga, M. Zavidovique, Convergence of the solutions of the discounted Hamilton-Jacobi equation: convergence of the discounted solutions, Invent. Math., 206 (2016), 29–55. http://doi.org/10.1007/s00222-016-0648-6 doi: 10.1007/s00222-016-0648-6
    [4] A. Davini, M. Zavidovique, Convergence of the solutions of discounted Hamilton-Jacobi systems, Adv. Calc. Var., 14 (2021), 193–206. http://doi.org/10.1515/acv-2018-0037 doi: 10.1515/acv-2018-0037
    [5] H. Ishii, An example in the vanishing discount problem for monotone systems of Hamilton-Jacobi equations, arXiv: 2006.02769.
    [6] H. Ishii, L. Jin, The vanishing discount problem for monotone systems of Hamilton-Jacobi equations: part 2–-nonlinear coupling, Calc. Var., 59 (2020), 140. http://doi.org/10.1007/s00526-020-01768-8 doi: 10.1007/s00526-020-01768-8
    [7] H. Ishii, S. Koike, Viscosity solutions for monotone systems of second-order elliptic PDEs, Commun. Part. Diff. Eq., 16 (1991), 1095–1128. http://doi.org/10.1080/03605309108820791 doi: 10.1080/03605309108820791
    [8] H. Ishii, H. Mitake, H. V. Tran, The vanishing discount problem and viscosity Mather measures. Part 1: The problem on a torus, J. Math. Pure. Appl., 108 (2017), 125–149. http://doi.org/10.1016/j.matpur.2016.10.013 doi: 10.1016/j.matpur.2016.10.013
    [9] H. Ishii, H. Mitake, H. V. Tran, The vanishing discount problem and viscosity Mather measures. Part 2: Boundary value problems, J. Math. Pure. Appl., 108 (2017), 261–305. http://doi.org/10.1016/j.matpur.2016.11.002 doi: 10.1016/j.matpur.2016.11.002
    [10] H. Ishii, A. Siconolfi, The vanishing discount problem for Hamilton-Jacobi equations in the Euclidean space, Commun. Part. Diff. Eq., 45 (2020), 525–560. http://doi.org/10.1080/03605302.2019.1710845 doi: 10.1080/03605302.2019.1710845
    [11] B. Ziliotto, Convergence of the solutions of the discounted Hamilton-Jacobi equation: a counterexample, J. Math. Pure. Appl., 128 (2019), 330–338. http://doi.org/10.1016/j.matpur.2019.04.005 doi: 10.1016/j.matpur.2019.04.005
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1254) PDF downloads(159) Cited by(2)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog