Citation: Panayotis G. Kevrekidis. Instabilities via negative Krein signature in a weakly non-Hamiltonian DNLS model[J]. Mathematics in Engineering, 2019, 1(2): 378-390. doi: 10.3934/mine.2019.2.378
[1] | Kevrekidis PG (2009) The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computation and Physical Perspectives, Heidelberg: Springer-Verlag. |
[2] | Christodoulides DN, Lederer F, Silberberg Y, Christodoulides DN (2003) Discretizing light behavior in linear and nonlinear waveguide lattices. Nature 424: 817–823. doi: 10.1038/nature01936 |
[3] | Sukhorukov AA, Kivshar YS, Eisenberg HS, et al. (2003) Spatial optical solitons in waveguide arrays. IEEE J Quantum Elect 39: 31–50. doi: 10.1109/JQE.2002.806184 |
[4] | Lederer F, Stegeman GI, Christodoulides DN, et al. (2008) Discrete solitons in optics. Phys Rep 463: 1–126. doi: 10.1016/j.physrep.2008.04.004 |
[5] | Morsch O, Oberthaler M (2006) Dynamics of Bose-Einstein condensates in optical lattices. Rev Mod Phys 78: 179–215. doi: 10.1103/RevModPhys.78.179 |
[6] | Eisenberg HS, Silberberg Y, Morandotti R, et al. (1998) Discrete spatial optical solitons in waveguide arrays. Phys Rev Lett 81: 3383–3386. doi: 10.1103/PhysRevLett.81.3383 |
[7] | Eisenberg HS, Silberberg Y, Morandotti R, et al. (2000) Diffraction management. Phys Rev Lett 85: 1863–1866. doi: 10.1103/PhysRevLett.85.1863 |
[8] | Morandotti R, Peschel U, Aitchison JS, et al. (1999) Dynamics of discrete solitons in optical waveguide arrays. Phys Rev Lett 83: 2726–2729. doi: 10.1103/PhysRevLett.83.2726 |
[9] | Morandotti R, Eisenberg HS, Silberberg Y, et al. (2001) Self-focusing and defocusing in waveguide arrays. Phys Rev Lett 86: 3296–3299. doi: 10.1103/PhysRevLett.86.3296 |
[10] | Neshev DN, Alexander TJ, Ostrovskaya EA, et al. (2004) Observation of discrete vortex solitons in optical induced photonic lattices. Phys Rev Lett 92: 123903. doi: 10.1103/PhysRevLett.92.123903 |
[11] | Fleischer JW, Bartal G, Cohen O, et al. (2004) Observation of vortex-ring "discrete" solitons in 2D photonic lattices. Phys Rev Lett 92: 123904. doi: 10.1103/PhysRevLett.92.123904 |
[12] | Iwanow R, May-Arrioja DA, Christodoulides DN, et al. (2005) Discrete Talbot effect in waveguide arrays. Phys Rev Lett 95: 053902. doi: 10.1103/PhysRevLett.95.053902 |
[13] | Rüter CE, Makris KG, El-Ganainy R, et al. (2010) Observation of parity-time symmetry in optics. Nat Phys 6: 192–195. doi: 10.1038/nphys1515 |
[14] | Pitaevskii LP, Stringari S (2003) Bose-Einstein Condensation, Oxford: Oxford University Press. |
[15] | Kevrekidis PG, Frantzeskakis DJ, Carretero-González R (2015) The Defocusing Nonlinear Schrödinger Equation, Philadelphia: SIAM. |
[16] | Proukakis N, Gardiner S, Davis M, et al. (2013) Quantum gases: Finite Temperature and Nonequilibrium Dynamics, London: Imperial College Press. |
[17] | Carr LD (2010) Understanding Quantum Phase Transitions, Boca Raton: CRC Press Taylor & Francis Group. |
[18] | Pitaevskii LP (1959) Phenomenological theory of superfluidity near the λ point. Sov Phys JETP 35: 282–287. |
[19] | Jackson B, Proukakis NP (2008) Finite temperature models of Bose-Einstein condensation. J Phys B: At Mol Opt Phys 41: 203002. |
[20] | Cockburn SP, Nistazakis HE, Horikis TP, et al. (2010) Matter wave dark solitons: Stochastic versus analytical results. Phys Rev Lett 104: 174101. doi: 10.1103/PhysRevLett.104.174101 |
[21] | Cockburn SP, Proukakis NP (2009) The stochastic Gross-Pitaevskii and some applications. Laser Phys 19: 558–570. doi: 10.1134/S1054660X09040057 |
[22] | Kevrekidis PG, Frantzeskakis DJ (2011) Multiple dark solitons in Bose-Einstein condensates at finite temperatures. Discrete Contin Dyn Sys 4: 1199–1212. |
[23] | Achilleos V, Yan D, Kevrekidis PG, et al. (2012) Dark-bright solitons in Bose-Einstein condensates at finite temperatures. New J Phys 14: 055006. doi: 10.1088/1367-2630/14/5/055006 |
[24] | Yan D, Carretero-González R, Frantzeskakis DJ, et al. (2014) Exploring vortex dynamics in the presence of dissipation: analytical and numerical results. Phys Rev A 89: 043613. doi: 10.1103/PhysRevA.89.043613 |
[25] | Moon G, Kwon WJ, Lee H, et al. (2015) Thermal friction on quantum vortices in a Bose-Einstein condensate. Phys Rev A 92: 051601. doi: 10.1103/PhysRevA.92.051601 |
[26] | Kevrekidis PG, Susanto H, Chen Z (2006) Higher-order-mode soliton structures in two- dimensional lattices with defocusing nonlinearity. Phys Rev E 74: 066606. doi: 10.1103/PhysRevE.74.066606 |
[27] | Pelinovsky DE, Kevrekidis PG, Frantzeskakis DJ (2005) Stability of discrete solitons in nonlinear Schrödinger lattices. Phys D 212: 1–19. doi: 10.1016/j.physd.2005.07.021 |
[28] | Kapitula T, Kevrekidis PG, Sandstede B (2004) Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems. Phys D 195: 263–282. doi: 10.1016/j.physd.2004.03.018 |
[29] | Aranson IS, Kramer L (2002) The world of the complex Ginzburg-Landau equation. Rev Mod Phys 74: 99–143. doi: 10.1103/RevModPhys.74.99 |
[30] | Efremidis NK, Christodoulides DN (2003) Discrete Ginzburg-Landau solitons. Phys Rev E 67: 026606. doi: 10.1103/PhysRevE.67.026606 |
[31] | Efremidis NK, Christodoulides DN, Hizanidis K (2007) Two-dimensional discrete Ginzburg- Landau solitons. Phys Rev A 76: 043839. doi: 10.1103/PhysRevA.76.043839 |
[32] | Karachalios NI, Nistazakis HE, Yannacopoulos AN (2007)Asymptotic behavior of solutions of complex discrete evolution equations: the discrete Ginzburg-Landau equation. Discrete Contin Dyn Sys-Ser A 19: 711–736. |
[33] | Kiselev Al S, Kiselev An S, Rozanov NN (2008) Dissipative discrete spatial optical solitons in a system of coupled optical fibers with the Kerr and resonance nonlinearities. Opt Spectrosc 105: 547–556. doi: 10.1134/S0030400X08100093 |
[34] | MacKay RS, Aubry S (1994) Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity 7: 1623–1643. doi: 10.1088/0951-7715/7/6/006 |
[35] | Darmanyan S, Kobyakov A, Lederer F, et al. (1998) Stability of strongly localized excitations in discrete media with cubic nonlinearity. J Exp Theor Phys 86: 682–686. doi: 10.1134/1.558526 |
[36] | Achilleos V, Bishop AR, Diamantidis S, et al. (2016) Dynamical playground of a higher-order cubic Ginzburg-Landau equation: From orbital connections and limit cycles to invariant tori and the onset of chaos. Phys Rev E 94: 012210. doi: 10.1103/PhysRevE.94.012210 |