Citation: Helen Christodoulidi, Christos Efthymiopoulos. Stages of dynamics in the Fermi-Pasta-Ulam system as probed by the first Toda integral[J]. Mathematics in Engineering, 2019, 1(2): 359-377. doi: 10.3934/mine.2019.2.359
[1] | Bambusi D, Ponno A (2006) On metastability in FPU. Commun Math Phys 264: 539–561. doi: 10.1007/s00220-005-1488-1 |
[2] | Berman GP, Izrailev FM (2005) The Fermi-Pasta-Ulam problem: 50 years of progress. Chaos 15: 015104. doi: 10.1063/1.1855036 |
[3] | Benettin G, Livi R, Ponno A (2009) The Fermi-Pasta-Ulam problem: Scaling laws vs. initial conditions. J Stat Phys 135: 873–893. |
[4] | Benettin G, Ponno A (2011) Time-scales to equipartition in the Fermi-Pasta-Ulam problem: Finite-size effects and thermodynamic limit. J Stat Phys 144: 793–812. doi: 10.1007/s10955-011-0277-9 |
[5] | Benettin G, Christodoulidi H, Ponno A (2013) The Fermi-Pasta-Ulam problem and its underlying integrable dynamics. J Stat Phys 152: 195–212. doi: 10.1007/s10955-013-0760-6 |
[6] | Benettin G, Pasquali S, Ponno A (2018) The Fermi-Pasta-Ulam problem and its underlying integrable dynamics. J Stat Phys 171: 521–542. doi: 10.1007/s10955-018-2017-x |
[7] | Carati A, Galgani L, Giorgilli A, et al. (2007) Fermi-Pasta-Ulam phenomenon for generic initial data. Phys Rev E 76: 022104. |
[8] | Carati A, Galgani L (1999) On the specific heat of Fermi-Pasta-Ulam Systems and their glassy behavior. J Stat Phys 94: 859–869. doi: 10.1023/A:1004531032623 |
[9] | Carati A, Maiocchi A, Galgani L, et al. (2015) The Fermi-Pasta-Ulam system as a model for glasses. Math Phys Anal Geom 18: 31. doi: 10.1007/s11040-015-9201-x |
[10] | Carati A, Ponno A (2018) Chopping time of the FPU $\alpha$-model. J Stat Phys 170: 883–894. doi: 10.1007/s10955-018-1962-8 |
[11] | Casetti L, Cerruti-Sola M, Pettini M, et al. (1997) The Fermi-Pasta-Ulam problem revisited: Stochasticity thresholds in nonlinear Hamiltonian systems. Phys Rev E 55: 6566–6574. doi: 10.1103/PhysRevE.55.6566 |
[12] | Christodoulidi H, Efthymiopoulos C, Bountis T (2010) Energy localization on q-tori, long-term stability, and the interpretation of Fermi-Pasta-Ulam recurrences. Phys Rev E 81: 016210/1–16. |
[13] | Christodoulidi H, Efthymiopoulos C (2013) Low-dimensional q-Tori in FPU lattices: Dynamics and localization properties. Phys D 261: 92–113. doi: 10.1016/j.physd.2013.07.007 |
[14] | Christodoulidi H (2017) Extensive packet excitations in FPU and Toda lattices. EPL 119: 40005. doi: 10.1209/0295-5075/119/40005 |
[15] | Chirikov BV (1960) Resonance processes in magnetic traps. Soviet J At Energy 6: 464–470. doi: 10.1007/BF01483352 |
[16] | Chirikov BV (1979) A universal instability of many-dimensional oscillator systems. Phys Rep 52: 263–379. doi: 10.1016/0370-1573(79)90023-1 |
[17] | Danieli C, Campbell DK, Flach S (2017) Intermittent many-body dynamics at equilibrium. Phys Rev E 95: 060202(R). |
[18] | Danieli C, Mithun T, Kati Y, et al. (2018) Dynamical glass in weakly non-integrable many-body systems. [arxiv:1811.10832]. |
[19] | Dauxois T (2008) Fermi, Pasta, Ulam, and a mysterious lady. Phys Today 61: 55–57. |
[20] | Ferguson WE Jr, Flaschka H, McLaughlin DW (1982) Nonlinear normal modes for the Toda Chain. J Comput Phys 45: 157–209. doi: 10.1016/0021-9991(82)90116-4 |
[21] | Fermi E, Pasta J, Ulam S (1995) Studies of non linear problems. Los Alamos report No LA-1940. |
[22] | Flach S, Ivanchenko MV, Kanakov OI (2005) q-Breathers and the Fermi-Pasta-Ulam problem. Phys Rev Lett 95: 064102. doi: 10.1103/PhysRevLett.95.064102 |
[23] | Flach S, IvanchenkoMV, Kanakov OI (2006) q-Breathers in Fermi-Pasta-Ulam chains: Existence, localization, and stability. Phys Rev E 73: 036618. doi: 10.1103/PhysRevE.73.036618 |
[24] | Flach S, Ponno A (2008) The Fermi-Pasta-Ulam problem Periodic orbits, normal forms and resonance overlap criteria. Phys D 237: 908–917. doi: 10.1016/j.physd.2007.11.017 |
[25] | Flaschka H (1974) The Toda lattice. II. Existence of integrals. Phys Rev B 9: 1924–1925. |
[26] | Goldfriend T, Kurchan T (2019) Equilibration of Quasi-Integrable Systems. Phys Rev E 99: 022146. doi: 10.1103/PhysRevE.99.022146 |
[27] | Izrailev FM, Chirikov BV (1966) Statistical properties of a nonlinear string. Dokl Akad Nauk SSSR 166: 57–59. |
[28] | Gallavotti G (2008) The Fermi-Pasta-Ulam Problem: A Status Report. Springer, Berlin- Heidelberg, vol. 728. |
[29] | Genta T, Giorgilli A, Paleari S, et al. (2012) Packets of resonant modes in the Fermi-Pasta-Ulam system. Phys Lett A 376: 2038–2044. doi: 10.1016/j.physleta.2012.05.006 |
[30] | Hénon M (1974) Integrals of the Toda lattice. Phys Rev B 9: 1921–1923. doi: 10.1103/PhysRevB.9.1921 |
[31] | Kantz H, Livi R, Ruffo S (1994) Equipartition thresholds in chains of anharmonic oscillators. J Stat Phys 76: 627–643. doi: 10.1007/BF02188678 |
[32] | Kantz H (1989) Vanishing stability thresholds in the thermodynamic limit of nonintegrable conservative systems. Phys D 39: 322–335. doi: 10.1016/0167-2789(89)90014-6 |
[33] | Kruskal MD, Zabusky NJ (1965) Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15: 240–243. |
[34] | Parisi G (1997) On the approach to equilibrium of a Hamiltonian chain of anharmonic oscillators. EPL 40: 357–362. doi: 10.1209/epl/i1997-00471-9 |
[35] | Penati T, Flach S (2007) Tail resonances of Fermi-Pasta-Ulam q-breathers and their impact on the pathway to equipartition. Chaos 17: 023102/1-16. |
[36] | Paleari S, Penati T (2005) Equipartition times in a Fermi-Pasta-Ulam system. Discrete Contin Dyn S 2005: 710–719. |
[37] | Ponno A, Bambusi D (2005) Korteweg-de Vries equation and energy sharing in Fermi-Pasta- Ulam. Chaos 15: 015107. doi: 10.1063/1.1832772 |
[38] | Ponno A, Christodoulidi H, Skokos Ch, et al. (2011) The two-stage dynamics in the Fermi-Pasta- Ulam problem: From regular to diffusive behavior. Chaos 21: 043127. doi: 10.1063/1.3658620 |
[39] | Livi R, Pettini M, Ruffo S, et al. (1985) Equipartition threshold in nonlinear large Hamiltonian systems The Fermi-Pasta-Ulam model. Phys Rev A 31: 1039–1045. |
[40] | Lvov YV, Onorato M (2018) Double scaling in the relaxation time in the $\beta $-Fermi-Pasta-Ulam- Tsingou model. Phys Rev Lett 120: 144301. doi: 10.1103/PhysRevLett.120.144301 |
[41] | Shepelyansky DL (1997) Low-energy chaos in the Fermi-Pasta-Ulam problem. Nonlinearity 10: 1331–1338. doi: 10.1088/0951-7715/10/5/017 |
[42] | Toda M (1970) Waves in Nonlinear Lattice. Prog Theor Phys Suppl 45: 174–200. doi: 10.1143/PTPS.45.174 |