In this paper, we use the maximum principle and moving frame technique to prove the global gradient estimates for the higher-order curvature equations with prescribed contact angle problems.
Citation: Bin Deng, Xinan Ma. Gradient estimates for the solutions of higher order curvature equations with prescribed contact angle[J]. Mathematics in Engineering, 2023, 5(6): 1-13. doi: 10.3934/mine.2023093
In this paper, we use the maximum principle and moving frame technique to prove the global gradient estimates for the higher-order curvature equations with prescribed contact angle problems.
[1] | E. Bombieri, E. De Giorgi, M. Miranda, Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche, Arch. Rational Mech. Anal., 32 (1969), 255–267. https://doi.org/10.1007/BF00281503 doi: 10.1007/BF00281503 |
[2] | R. Finn, On equations of minimal surface type, Ann. Math., 60 (1954), 397–416. https://doi.org/10.2307/1969841 doi: 10.2307/1969841 |
[3] | D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Berlin: Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0 |
[4] | Q. Jin, A. B. Li, Y. Y. Li, Estimates and existence results for a fully nonlinear Yamabe problem on manifolds with boundary, Calc. Var., 28 (2007), 509–543. https://doi.org/10.1007/s00526-006-0057-6 doi: 10.1007/s00526-006-0057-6 |
[5] | N. J. Korevaar, An easy proof of the interior gradient bound for solutions to the prescribed mean curvature equation, In: Nonlinear functional analysis and its applications, Part 2, American Mathematical Society, 1986, 81–89. |
[6] | N. J. Korevaar, A priori interior gradient bounds for solutions to elliptic Weingarten equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 405–421. https://doi.org/10.1016/S0294-1449(16)30357-2 doi: 10.1016/S0294-1449(16)30357-2 |
[7] | G. M. Lieberman, Gradient estimates for capillary-type problems via the maximum principle, a second look, Commun. Part. Diff. Eq., 45 (2020), 1306–1318. https://doi.org/10.1080/03605302.2020.1774893 doi: 10.1080/03605302.2020.1774893 |
[8] | G. M. Lieberman, Hölder estimates for first and second derivatives, In: Oblique derivative problems for elliptic equations, Singapore: World Scientific Publishing, 2013,117–170. https://doi.org/10.1142/9789814452335_0004 |
[9] | G. M. Lieberman, Global and local gradient bounds, In: Second order parabolic differential equations, Singapore: World Scientific Publishing, 1996,259–299. https://doi.org/10.1142/9789812819796_0011 |
[10] | O. A. Ladyzhenskaya, N. Ural'tseva, Local estimates for gradients of non-uniformly elliptic and parabolic equations, Commun. Pure Appl. Math., 23 (1970), 677–703. https://doi.org/10.1002/cpa.3160230409 doi: 10.1002/cpa.3160230409 |
[11] | X. Ma, J. Xu, Gradient estimates of mean curvature equations with Neumann boundary value problems, Adv. Math., 290 (2016), 1010–1039. https://doi.org/10.1016/j.aim.2015.10.031 doi: 10.1016/j.aim.2015.10.031 |
[12] | X. Ma, P. Wang, Boundary gradient estimate of the solution to mean curvature equations with Neumann boundary or prescribed contact angle boundary, (Chinese), Scientia Sinica Mathematica, 48 (2018), 213–226. https://doi.org/10.1360/N012017-00071 doi: 10.1360/N012017-00071 |
[13] | L. Simon, Interior gradient bounds for non-uniformly elliptic equations, Indiana Univ. Math. J., 25 (1976), 821–855. |
[14] | J. Spruck, On the existence of a capillary surface with prescribed contact angle, Commun. Pure Appl. Math., 28 (1975), 189–200. https://doi.org/10.1002/cpa.3160280202 doi: 10.1002/cpa.3160280202 |
[15] | L. Simon, J. Spruck, Existence and regularity of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal., 61 (1976), 19–34. https://doi.org/10.1007/BF00251860 doi: 10.1007/BF00251860 |
[16] | W. Sheng, N. Trudinger, X. Wang, Prescribed Weingarten curvature equations, In: ANU research publications, Somerville: Int. Press, 2012,359–386. |
[17] | N. Trudinger, Gradient estimates and mean curvature, Math. Z., 131 (1973), 165–175. https://doi.org/10.1007/BF01187224 doi: 10.1007/BF01187224 |
[18] | N. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rational Mech. Anal., 111 (1990), 153–179. https://doi.org/10.1007/BF00375406 doi: 10.1007/BF00375406 |
[19] | X. Wang, Interior gradient estimates for mean curvature equations, Math. Z., 228 (1998), 73–81. https://doi.org/10.1007/PL00004604 doi: 10.1007/PL00004604 |