When a cloud manufacturing environment extends to multi-user agent, multi-service agent and multi-regional spaces, the process of manufacturing services faces increased disturbances. When a task exception occurs because of disturbance, it is necessary to quickly reschedule the service task. We propose a multi-agent simulation modeling approach to simulate and evaluate the service process and task rescheduling strategy of cloud manufacturing, with which impact parameters can be achieved through careful study under different system disturbances. First, the simulation evaluation index is designed. In addition to the quality of service index of cloud manufacturing, the adaptive ability of task rescheduling strategy in response to a system disturbance is considered, and the flexibility of cloud manufacturing service index is proposed. Second, considering the substitution of resources, the internal and external transfer strategies of service providers are proposed. Finally, a simulation model of the cloud manufacturing service process of a complex electronic product is constructed by multi-agent simulation, and simulation experiments under multiple dynamic environments are designed to evaluate different task rescheduling strategies. The experimental results indicate that the external transfer strategy of the service provider in this case has higher quality of service and flexibility of service. Sensitivity analysis indicates that the matching rate of substitute resources for internal transfer strategy of service providers and the logistics distance of external transfer strategy of service providers are both sensitive parameters, which have significant impacts on the evaluation indexes.
Citation: Xiaodong Zhang, Dawei Ren. Modeling and simulation of task rescheduling strategy with resource substitution in cloud manufacturing[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 3120-3145. doi: 10.3934/mbe.2023147
When a cloud manufacturing environment extends to multi-user agent, multi-service agent and multi-regional spaces, the process of manufacturing services faces increased disturbances. When a task exception occurs because of disturbance, it is necessary to quickly reschedule the service task. We propose a multi-agent simulation modeling approach to simulate and evaluate the service process and task rescheduling strategy of cloud manufacturing, with which impact parameters can be achieved through careful study under different system disturbances. First, the simulation evaluation index is designed. In addition to the quality of service index of cloud manufacturing, the adaptive ability of task rescheduling strategy in response to a system disturbance is considered, and the flexibility of cloud manufacturing service index is proposed. Second, considering the substitution of resources, the internal and external transfer strategies of service providers are proposed. Finally, a simulation model of the cloud manufacturing service process of a complex electronic product is constructed by multi-agent simulation, and simulation experiments under multiple dynamic environments are designed to evaluate different task rescheduling strategies. The experimental results indicate that the external transfer strategy of the service provider in this case has higher quality of service and flexibility of service. Sensitivity analysis indicates that the matching rate of substitute resources for internal transfer strategy of service providers and the logistics distance of external transfer strategy of service providers are both sensitive parameters, which have significant impacts on the evaluation indexes.
[1] | B. H. Li, L. Zhang, S. L. Wang, F. Tao, J. W. Cao, X. D. Jang, et al., Cloud manufacturing: A new service-oriented networked manufacturing model, Comput. Integr. Manuf. Syst., 16 (2010), 1–7. |
[2] | B. H. Li, L. Zhang, L. Ren, X. D. Cai, F. Tao, Y. L. Luo, et al., Further discussion on cloud manufacturing, Comput. Integr. Manuf. Syst., 17 (2011), 449–457. |
[3] | Y. K. Wang, S. L. Wang, S. Gao, X. X. Guo, B. Yang, Adaptive multi-objective service composition reconfiguration approach considering dynamic practical constraints in cloud manufacturing, Knowl-Based Syst., 234 (2021), 107607. https://doi.org/10.1016/j.knosys.2021.107607 doi: 10.1016/j.knosys.2021.107607 |
[4] | Y. K. Wang, S. L. Wang, L. Kang, S. B. Wang, An effective dynamic service composition reconfiguration approach when service exceptions occur in real-life cloud manufacturing, Robot Comput. Integr. Manuf., 71 (2021), 102143. https://doi.org/10.1016/j.rcim.2021.102143 doi: 10.1016/j.rcim.2021.102143 |
[5] | Y. Wang, Z. W. Dai, W. Y. Zhang, S. Zhang, Y. B. Xu, Q. Chen, Urgent task-aware cloud manufacturing service composition using two-stage biogeography-based optimisation, Int. J. Comput. Integ. M, 31 (2018), 1034–1047. https://doi.org/10.1080/0951192X.2018.1493230 doi: 10.1080/0951192X.2018.1493230 |
[6] | Y. K. Liu, H. G. Liang, Y. Y. Xiao, H. F. Zhang, J. X. Zhang, L. Zhang, et al., Logistics-involved service composition in a dynamic cloud manufacturing environment: A DDPG-based approach, Robot Comput. Integr. Manuf., 76 (2022), 102323. https://doi.org/10.1016/j.rcim.2022.102323 doi: 10.1016/j.rcim.2022.102323 |
[7] | D. W. Ren, X. D. Zhang, Research on flexibility of production system based on hybrid modeling and simulation, Math. Biosci. Eng., 18 (2021), 933–949. https://doi.org/10.3934/mbe.2021049 doi: 10.3934/mbe.2021049 |
[8] | L. Zhang, L. F. Zhou, L. Ren, Y. J. Laili, Modeling and simulation in intelligent manufacturing, Comput. Ind., 112 (2019), 103123. https://doi.org/10.1016/j.compind.2019.08.004 doi: 10.1016/j.compind.2019.08.004 |
[9] | X. D. Zhang, S. Y. Guo, J. Chen, D. F. Zhao, T. Yu, Simulation on human cooperation in production systems based on organization learning, J. Industr. Eng. Eng. Manag., 27 (2013), 103–109. http://doi.org/10.3969/j.issn.1004-6062.2013.03.014 doi: 10.3969/j.issn.1004-6062.2013.03.014 |
[10] | Y. Yadgarova, V. Taratukhin, An interoperable cloud environment of manufacturing control system, Springer International Publishing, 6 (2016), 3–12. http://doi.org/10.1007/978-3-319-30957-6_1 doi: 10.1007/978-3-319-30957-6_1 |
[11] | Y. K. Liu, X. Xu, L. Zhang, L. Wang, R. Y. Zhong, Workload-based multi-task scheduling in cloud manufacturing, Robot Comput. Integr. Manuf., 45 (2016), 3–20. https://doi.org/10.1016/j.rcim.2016.09.008 doi: 10.1016/j.rcim.2016.09.008 |
[12] | Y. K. Liu, L. H. Wang, X. V. Wang, X. Xu, L. Zhang, Scheduling in cloud manufacturing: State-of-the-art and research challenges, Int. J. Prod. Res., 57 (2019), 4854–4879. http://doi.org/10.1080/00207543.2018.1449978 doi: 10.1080/00207543.2018.1449978 |
[13] | B. V. Nouri, R. T. Moghaddam, M. Rohaninejad, A multi-objective scheduling model for a cloud manufacturing system with pricing, equity, and order rejection, IFAC-PapersOnLine, 52 (2019), 2177–2182. https://doi.org/10.1016/j.ifacol.2019.11.528 doi: 10.1016/j.ifacol.2019.11.528 |
[14] | J. S. Ruiz, J. Mula, R. Poler, Smart manufacturing scheduling: A literature review, J. Manuf. Syst., 61 (2021), 265–287. https://doi.org/10.1016/j.jmsy.2021.09.011 doi: 10.1016/j.jmsy.2021.09.011 |
[15] | M. H. Yuan, Z. Zhou, X. X. Cai, C. Sun, W. B. Gu, Service composition model and method in cloud manufacturing, Robot Comput. Integr. Manuf., 61 (2020), 101840. https://doi.org/10.1016/j.rcim.2019.101840 doi: 10.1016/j.rcim.2019.101840 |
[16] | J. J. Zhou, X. F. Yao, Multi-population parallel self-adaptive differential artificial bee colony algorithm with application in large-scale service composition for cloud manufacturing, Appl. Soft Comput., 56 (2017), 379–397. https://doi.org/10.1016/j.asoc.2017.03.017 doi: 10.1016/j.asoc.2017.03.017 |
[17] | T. R. Wang, P. Z. Zhang, J. Liu, M. M. Zhang, Many-objective cloud manufacturing service selection and scheduling with an evolutionary algorithm based on adaptive environment selection strategy, Appl. Soft Comput., 112 (2021), 107737. https://doi.org/10.1016/j.asoc.2021.107737 doi: 10.1016/j.asoc.2021.107737 |
[18] | H. Khojasteh, J. Misic, Task admission control policy in cloud server pools based on task arrival dynamics, Wirel. Commun. Mob. Com., 16 (2016), 1363–1376. https://doi.org/10.1002/wcm.2689 doi: 10.1002/wcm.2689 |
[19] | Y. K. Liu, L. H. Wang, Y. Q. Wang, X. V. Wang, L. Zhang, Multi-agent-based scheduling in cloud manufacturing with dynamic task arrivals, Procedia CIRP, 72 (2018), 953–960. https://doi.org/10.1016/j.procir.2018.03.138. doi: 10.1016/j.procir.2018.03.138 |
[20] | S. Zhang, Y. B. Xu, W. Y. Zhang, Multitask-oriented manufacturing service composition in an uncertain environment using a hyper-heuristic algorithm, J. Manuf. Syst., 60 (2021), 138–151. https://doi.org/10.1016/j.jmsy.2021.05.012 doi: 10.1016/j.jmsy.2021.05.012 |
[21] | Y. J. Laili, S. S. Lin, D. Y. Tang, Multi-phase integrated scheduling of hybrid tasks in cloud manufacturing environment, Robot Comput. Integr. Manuf., 61 (2020), 101850. https://doi.org/10.1016/j.rcim.2019.101850 doi: 10.1016/j.rcim.2019.101850 |
[22] | C. Yang, T. Peng, S. L. Lan, W. M. Shen, L. H. Wang, Towards IoT-enabled dynamic service optimal selection in multiple manufacturing clouds, J. Manuf. Syst., 56 (2020), 213–226. https://doi.org/10.1016/j.jmsy.2020.06.004 doi: 10.1016/j.jmsy.2020.06.004 |
[23] | N. Xie, W. A. Tan, X. R. Zheng, L. Zhao, L. Huang, Y. Sun, An efficient two-phase approach for reliable collaboration-aware service composition in cloud manufacturing, J. Ind. Inf. Integr., 23 (2021), 100211. https://doi.org/10.1016/j.jii.2021.100211 doi: 10.1016/j.jii.2021.100211 |
[24] | Y. X. Li, X. F. Yao, M. Liu, Cloud manufacturing service composition optimization based on reliability and credibility analysis, Comput. Integr. Manuf. Syst., 27 (2021), 1780–1798. https://doi.org/10.1155/2019/7194258. doi: 10.1155/2019/7194258 |
[25] | Y. F. Yang, B. Yang, S. L. Wang, T. G. Jin, S. Lin, An enhanced multi-objective grey wolf optimizer for service composition in cloud manufacturing, Appl. Soft Comput., 2 (2019), 106003. https://doi.org/10.1016/j.asoc.2019.106003 doi: 10.1016/j.asoc.2019.106003 |
[26] | Y. F. Yang, B. Yang, S. L. Wang, W. Liu, T. G. Jin, An improved grey wolf optimizer algorithm for energy-aware service composition in cloud manufacturing, Int. J. Adv. Manuf. Tech., 105 (2019), 3079–3091. |
[27] | D. Jones, C. Snider, A. Nassehi, J. Yon, B. Hicks, Characterising the digital twin: A systematic literature review, Cirp J. Manuf. Sci. Tec., 29 (2020) 36–52. https://doi.org/10.1016/j.cirpj.2020.02.002 doi: 10.1016/j.cirpj.2020.02.002 |
[28] | V. Vijayan, R. Harikrishnakumar, K. Krishnan, H. Cheraghi, S. Motavalli, Simulation-based decision framework for hybrid layout production systems under disruptions, Proced. Manuf., 51 (2020), 1062–1068. https://doi.org/10.1016/j.promfg.2020.10.149 doi: 10.1016/j.promfg.2020.10.149 |
[29] | F. Psarommatis, A. Gharaei, D. Kiritsis, Identification of the critical reaction times for re-scheduling flexible job shops for different types of unexpected events, Proced. CIRP, 93 (2020), 903–908. https://doi.org/10.1016/j.procir.2020.03.038 doi: 10.1016/j.procir.2020.03.038 |
[30] | J. P. Champati, B. Liang, Delay and cost optimization in computational offloading systems with unknown task processing times, IEEE T Cloud Comput., 9 (2021), 1422–1438. https://doi.org/10.1109/TCC.2019.2924634 doi: 10.1109/TCC.2019.2924634 |
[31] | J. L. Risco-Martín, K. Henares, S. Mittal, L. F. Almendras, K. Olcoz, A unified cloud-enabled discrete event parallel and distributed simulation architecture, Simul. Model Pract. Th., 118 (2022), 102539. https://doi.org/10.1016/j.simpat.2022.102539 doi: 10.1016/j.simpat.2022.102539 |
[32] | C. Zhao, L. Zhang, Y. K. Liu, Z. Q. Zhang, G. J. Yang, B. H. Li, Agent-based simulation platform for cloud manufacturing, Int. J. Model Simul. Sc., 8 (2017), 1742001. https://doi.org/10.1142/S1793962317420016 doi: 10.1142/S1793962317420016 |
[33] | L. F. Zhou, L. Zhang, L. Ren, Simulation of production modes for cloud manufacturing enterprises, in International Conference on Universal Village, 2018, pp: 1–5. https://doi.org/10.1109/UV.2018.8642129 |
[34] | C. Zhao, X. Luo, L. Zhang, Modeling of service agents for simulation in cloud manufacturing, Robot Comput. Integr. Manuf., 64 (2020), 101910. https://doi.org/10.1016/j.rcim.2019.101910 doi: 10.1016/j.rcim.2019.101910 |
[35] | C. Zhao, L. Wang, X. Zhang, Service agent networks in cloud manufacturing: Modeling and evaluation based on set-pair analysis, Robot Comput. Integr. Manuf., 65 (2020), 101970. https://doi.org/10.1016/j.rcim.2020.101970 doi: 10.1016/j.rcim.2020.101970 |
[36] | Z. X. Zeng, Y. P. Yan, Multidimensional measure of cloud service composition flexibility, Value Eng., 37 (2018), 281–283. |
[37] | J. Yao, B. Xing, J. H. Wen, Survey on cloud manufacturing service composition, Comput. Sci., 48 (2021), 245–255. https://doi.org/10.11896/jsjkx.200800173 doi: 10.11896/jsjkx.200800173 |
[38] | M. K. Lim, W. Q. Xiong, Y. K. Wang, A three-tier programming model for service composition and optimal selection in cloud manufacturing, Comput. Ind. Eng., 167 (2022), 108006. https://doi.org/10.1016/j.cie.2022.108006 doi: 10.1016/j.cie.2022.108006 |
[39] | Y. Liu, L. Zhang, Y. K. Liu, Y. J. Laili, W. C. Zhang, Model maturity-based model service composition in cloud environments, Simul. Model. Pract. Th., 113 (2021), 102389. https://doi.org/10.1016/j.simpat.2021.102389 doi: 10.1016/j.simpat.2021.102389 |
[40] | M. Eisa, M. Younas, K. Basu, I. Awan, Modeling and simulation of QoS-aware service selection in cloud computing, Simul. Model. Pract. Th., 103 (2020), 102108. https://doi.org/10.1016/j.simpat.2020.102108 doi: 10.1016/j.simpat.2020.102108 |