Research article Special Issues

Spacelike translating solitons of the mean curvature flow in Lorentzian product spaces with density

  • Received: 12 May 2022 Revised: 24 July 2022 Accepted: 26 September 2022 Published: 12 October 2022
  • By applying suitable Liouville-type results, an appropriate parabolicity criterion, and a version of the Omori-Yau's maximum principle for the drift Laplacian, we infer the uniqueness and nonexistence of complete spacelike translating solitons of the mean curvature flow in a Lorentzian product space $ \mathbb R_1\times\mathbb P^n_f $ endowed with a weight function $ f $ and whose Riemannian base $ \mathbb P^n $ is supposed to be complete and with nonnegative Bakry-Émery-Ricci tensor. When the ambient space is either $ \mathbb R_1\times\mathbb G^n $, where $ \mathbb G^n $ stands for the so-called $ n $-dimensional Gaussian space (which is the Euclidean space $ \mathbb R^n $ endowed with the Gaussian probability measure) or $ \mathbb R_1\times\mathbb H_f^n $, where $ \mathbb H^n $ denotes the standard $ n $-dimensional hyperbolic space and $ f $ is the square of the distance function to a fixed point of $ \mathbb H^n $, we derive some interesting consequences of our uniqueness and nonexistence results. In particular, we obtain nonexistence results concerning entire spacelike translating graphs constructed over $ \mathbb P^n $.

    Citation: Márcio Batista, Giovanni Molica Bisci, Henrique de Lima. Spacelike translating solitons of the mean curvature flow in Lorentzian product spaces with density[J]. Mathematics in Engineering, 2023, 5(3): 1-18. doi: 10.3934/mine.2023054

    Related Papers:

  • By applying suitable Liouville-type results, an appropriate parabolicity criterion, and a version of the Omori-Yau's maximum principle for the drift Laplacian, we infer the uniqueness and nonexistence of complete spacelike translating solitons of the mean curvature flow in a Lorentzian product space $ \mathbb R_1\times\mathbb P^n_f $ endowed with a weight function $ f $ and whose Riemannian base $ \mathbb P^n $ is supposed to be complete and with nonnegative Bakry-Émery-Ricci tensor. When the ambient space is either $ \mathbb R_1\times\mathbb G^n $, where $ \mathbb G^n $ stands for the so-called $ n $-dimensional Gaussian space (which is the Euclidean space $ \mathbb R^n $ endowed with the Gaussian probability measure) or $ \mathbb R_1\times\mathbb H_f^n $, where $ \mathbb H^n $ denotes the standard $ n $-dimensional hyperbolic space and $ f $ is the square of the distance function to a fixed point of $ \mathbb H^n $, we derive some interesting consequences of our uniqueness and nonexistence results. In particular, we obtain nonexistence results concerning entire spacelike translating graphs constructed over $ \mathbb P^n $.



    加载中


    [1] M. A. S. Aarons, Mean curvature flow with a forcing term in Minkowski space, Calc. Var., 25 (2005), 205–246. http://doi.org/10.1007/S00526-005-0351-8 doi: 10.1007/S00526-005-0351-8
    [2] A. L. Albujer, New examples of entire maximal graphs in $\mathbb H^2\times\mathbb R_1$, Differ. Geom. Appl., 26 (2008), 456–462. https://doi.org/10.1016/j.difgeo.2007.11.035 doi: 10.1016/j.difgeo.2007.11.035
    [3] A. L. Albujer, L. J. Alías, Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces, J. Geom. Phys., 59 (2009), 620–631. https://doi.org/10.1016/j.geomphys.2009.01.008 doi: 10.1016/j.geomphys.2009.01.008
    [4] A. L. Albujer, H. F. de Lima, A. M. Oliveira, M. A. L. Velásquez, $\phi$-Parabolicity and the uniqueness of spacelike hypersurfaces immersed in a spatially weighted GRW spacetime, Mediterr. J. Math., 15 (2018), 84. https://doi.org/10.1007/s00009-018-1134-8 doi: 10.1007/s00009-018-1134-8
    [5] L. J. Alías, A. G. Colares, Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson-Walker spacetimes, Math. Proc. Cambridge, 143 (2007), 703–729. http://doi.org/10.1017/S0305004107000576 doi: 10.1017/S0305004107000576
    [6] L. J. Alías, P. Mastrolia, M. Rigoli, Maximum principles and geometric applications, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-24337-5
    [7] H. V. Q. An, D. V. Cuong, N. T. M. Duyen, D. T. Hieu, T. L. Nam, On entire $f$-maximal graphs in the Lorentzian product $\mathbb G^n\times\mathbb R_1$, J. Geom. Phys., 114 (2017), 587–592. http://doi.org/10.1016/j.geomphys.2016.12.023 doi: 10.1016/j.geomphys.2016.12.023
    [8] C. P. Aquino, H. I. Baltazar, H. F. de Lima, A new Calabi-Bernstein type result in spatially closed generalized Robertson-Walker spacetimes, Milan J. Math., 85 (2017), 235–245. https://doi.org/10.1007/s00032-017-0271-z doi: 10.1007/s00032-017-0271-z
    [9] M. Batista, H. F. de Lima, Spacelike translating solitons in Lorentzian product spaces: Nonexistence, Calabi-Bernstein type results and examples, Commun. Contemp. Math., 24 (2022), 2150034. http://doi.org/10.1142/S0219199721500346 doi: 10.1142/S0219199721500346
    [10] D. Bakry, M. Émery, Diffusions hypercontractives, In: Séminaire de Probabilités XIX 1983/84, Berlin: Springer, 1985,177–206. https://doi.org/10.1007/BFb0075847
    [11] S. Bernstein, Sur les surfaces d'efinies au moyen de leur courboure moyenne ou totale, Annales scientifiques de l'École Normale Supérieure, Serie 3, 27 (1910), 233–256. https://doi.org/10.24033/asens.621 doi: 10.24033/asens.621
    [12] A. Caminha, The geometry of closed conformal vector fields on Riemannian spaces, Bull. Braz. Math. Soc., 42 (2011), 277–300. https://doi.org/10.1007/s00574-011-0015-6 doi: 10.1007/s00574-011-0015-6
    [13] J. S. Case, Singularity theorems and the Lorentzian splitting theorem for the Bakry-Émery-Ricci tensor, J. Geom. Phys., 60 (2010), 477–490. https://doi.org/10.1016/j.geomphys.2009.11.001 doi: 10.1016/j.geomphys.2009.11.001
    [14] Q. Chen, H. Qiu, Rigidity of self-shrinkers and translating solitons of mean curvature flows, Adv. Math., 294 (2016), 517–531. https://doi.org/10.1016/j.aim.2016.03.004 doi: 10.1016/j.aim.2016.03.004
    [15] H. F. de Lima, E. A. Lima Jr, Generalized maximum principles and the unicity of complete spacelike hypersurfaces immersed in a Lorentzian product space, Beitr. Algebra Geom., 55 (2013), 59–75. http://doi.org/10.1007/s13366-013-0137-7 doi: 10.1007/s13366-013-0137-7
    [16] H. F. de Lima, A. M. Oliveira, M. S. Santos, Rigidity of complete spacelike hypersurfaces with constant weighted mean curvature, Beitr. Algebra Geom., 57 (2016), 623–635. http://doi.org/10.1007/s13366-015-0253-7 doi: 10.1007/s13366-015-0253-7
    [17] J. H. S. de Lira, F. Martín, Translating solitons in Riemannian products, J. Differ. Equations, 266 (2019), 7780–7812. https://doi.org/10.1016/j.jde.2018.12.015 doi: 10.1016/j.jde.2018.12.015
    [18] K. Ecker, On mean curvature flow of spacelike hypersurfaces in asymptotically flat spacetime, J. Aust. Math. Soc., 55 (1993), 41–59. https://doi.org/10.1017/S1446788700031918 doi: 10.1017/S1446788700031918
    [19] K. Ecker, Interior estimates and longtime solutions for mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space, J. Differ. Geom., 46 (1997), 481–498. http://doi.org/10.4310/jdg/1214459975 doi: 10.4310/jdg/1214459975
    [20] K. Ecker, Mean curvature flow of spacelike hypersurfaces near null initial data, Commun. Anal. Geom., 11 (2003), 181–205. https://doi.org/10.4310/CAG.2003.v11.n2.a1 doi: 10.4310/CAG.2003.v11.n2.a1
    [21] K. Ecker, G. Huisken, Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes, Commun. Math. Phys., 135 (1991), 595–613. http://doi.org/https://doi.org/10.1007/BF02104123 doi: 10.1007/BF02104123
    [22] G. J. Galloway, E. Woolgar, Cosmological singularities in Bakry-Émery spacetimes, J. Geom. Phys., 86 (2014), 359–369. https://doi.org/10.1016/j.geomphys.2014.08.016 doi: 10.1016/j.geomphys.2014.08.016
    [23] S. Gao, G. Li, C. Wu, Translating spacelike graphs by mean curvature flow with prescribed contact angle, Arch. Math., 103 (2014), 499–508. https://doi.org/10.1007/s00013-014-0699-0 doi: 10.1007/s00013-014-0699-0
    [24] M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal., 13 (2003), 178–215. http://doi.org/10.1007/s000390300004 doi: 10.1007/s000390300004
    [25] D. T. Hieu, T. L. Nam, Bernstein type theorem for entire weighted minimal graphs in $\mathbb G^n\times\mathbb R$, J. Geom. Phys., 81 (2014), 87–91. http://doi.org/10.1016/j.geomphys.2014.03.011 doi: 10.1016/j.geomphys.2014.03.011
    [26] E. Hopf, Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Akad. Wiss. Berlin: S.-B. Preuss, 1927: 147–152.
    [27] G. Huisken, S. T. Yau, Definition of center of mass for isolated physical system and unique foliations by stable spheres with constant curvature, Invent. Math., 124 (1996), 281–311. http://doi.org/10.1007/s002220050054 doi: 10.1007/s002220050054
    [28] D. Impera, M. Rimoldi, Stability properties and topology at infinity of $f$-minimal hypersurfaces, Geom. Dedicata, 178 (2015), 21–47. http://doi.org/10.1007/s10711-014-9999-6 doi: 10.1007/s10711-014-9999-6
    [29] H. Jian, Translating solitons of mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space, J. Differ. Equations, 220 (2006), 147–162. https://doi.org/10.1016/j.jde.2005.08.005 doi: 10.1016/j.jde.2005.08.005
    [30] H. Ju, J. Lu, H. Jian, Translating solutions to mean curvature flow with a forcing term in Minkowski space, Commun. Pure Appl. Anal., 9 (2010), 963–973. https://doi.org/10.3934/cpaa.2010.9.963 doi: 10.3934/cpaa.2010.9.963
    [31] B. Lambert, A note on the oblique derivative problem for graphical mean curvature flow in Minkowski space, Abh. Math. Semin. Univ. Hambg., 82 (2012), 115–120. https://doi.org/10.1007/s12188-012-0066-7 doi: 10.1007/s12188-012-0066-7
    [32] B. Lambert, The perpendicular Neumann problem for mean curvature flow with a timelike cone boundary condition, Trans. Amer. Math. Soc., 366 (2014), 3373–3388. https://www.jstor.org/stable/23813865
    [33] B. Lambert, J. D. Lotay, Spacelike mean curvature flow, J. Geom. Anal., 31 (2021), 1291–1359. https://doi.org/10.1007/s12220-019-00266-4 doi: 10.1007/s12220-019-00266-4
    [34] G. Li, I. Salavessa, Mean curvature flow of spacelike graphs, Math. Z., 269 (2011), 697–719. https://doi.org/10.1007/s00209-010-0768-4 doi: 10.1007/s00209-010-0768-4
    [35] A. Lichnerowicz, Variétés Riemanniennes à tenseur C non négatif, C. R. Acad. Sci. Paris Sér. A, 271 (1970), 650–653.
    [36] A. Lichnerowicz, Variétés Kählériennes à première classe de Chern non negative et variétés Riemanniennes à courbure de Ricci généralisée non negative, J. Differ. Geom., 6 (1971), 47–94. https://doi.org/10.4310/jdg/1214428089 doi: 10.4310/jdg/1214428089
    [37] F. Morgan, Manifolds with density, Notices of the American Mathematical Society, 52 (2005), 853–858.
    [38] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan, 19 (1967), 205–214. https://doi.org/10.2969/jmsj/01920205 doi: 10.2969/jmsj/01920205
    [39] B. O'Neill, Semi-Riemannian geometry with applications to relativity, London: Academic Press, 1983.
    [40] S. Pigola, M. Rigoli, A. G. Setti, Vanishing theorems on Riemannian manifolds, and geometric applications, J. Funct. Anal., 229 (2005), 424–461. https://doi.org/10.1016/j.jfa.2005.05.007 doi: 10.1016/j.jfa.2005.05.007
    [41] P. Pucci, J. Serrin, The strong maximum principle revisited, J. Differ. Equations, 196 (2004), 1–66. https://doi.org/10.1016/j.jde.2003.05.001 doi: 10.1016/j.jde.2003.05.001
    [42] G. Wei, W. Willie, Comparison geometry for the Bakry-Émery Ricci tensor, J. Differ. Geom., 83 (2009), 377–405. https://doi.org/10.4310/jdg/1261495336 doi: 10.4310/jdg/1261495336
    [43] E. Woolgar, Scalar-tensor gravitation and the Bakry-Émery-Ricci tensor, Class. Quantum Grav., 30 (2013), 085007. https://doi.org/10.1088/0264-9381/30/8/085007 doi: 10.1088/0264-9381/30/8/085007
    [44] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Commun. Pure Appl. Math., 28 (1975), 201–228. https://doi.org/10.1002/cpa.3160280203 doi: 10.1002/cpa.3160280203
    [45] S. T. Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659–670. https://doi.org/10.1512/iumj.1976.25.25051 doi: 10.1512/iumj.1976.25.25051
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1278) PDF downloads(190) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog