Research article Special Issues

Existence of solutions to some quasilinear degenerate elliptic systems with right hand side in a Marcinkiewicz space

  • Received: 12 June 2022 Revised: 22 September 2022 Accepted: 29 September 2022 Published: 17 October 2022
  • We prove the existence of a solution to a quasilinear system of degenerate equations, when the datum is in a Marcinkiewicz space. The main assumption asks the off-diagonal coefficients to have support in the union of a geometric progression of squares.

    Citation: Patrizia Di Gironimo, Salvatore Leonardi, Francesco Leonetti, Marta Macrì, Pier Vincenzo Petricca. Existence of solutions to some quasilinear degenerate elliptic systems with right hand side in a Marcinkiewicz space[J]. Mathematics in Engineering, 2023, 5(3): 1-23. doi: 10.3934/mine.2023055

    Related Papers:

  • We prove the existence of a solution to a quasilinear system of degenerate equations, when the datum is in a Marcinkiewicz space. The main assumption asks the off-diagonal coefficients to have support in the union of a geometric progression of squares.



    加载中


    [1] S. Aouaoui, Solutions to quasilinear equations of $N$-biharmonic type with degenerate coercivity, Electronic Journal of Differential Equations, 2014 (2014), 228.
    [2] A. Alvino, L. Boccardo, V. Ferone, L. Orsina, G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity, Annali di Matematica, 182 (2003), 53–79. https://doi.org/10.1007/s10231-002-0056-y doi: 10.1007/s10231-002-0056-y
    [3] A. Alvino, V. Ferone, G. Trombetti, A priori estimates for a class of non uniformly elliptic equations, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 381–391.
    [4] H. Ayadi, F. Mokhtari, Nonlinear anisotropic elliptic equations with variable exponents and degenerate coercivity, Electronic Journal of Differential Equations, 2018 (2018), 45.
    [5] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var., 57 (2018), 62. https://doi.org/10.1007/s00526-018-1332-z doi: 10.1007/s00526-018-1332-z
    [6] L. Beck, G. Mingione, Lipschitz bounds and nonuniform ellipticity, Commun. Pure Appl. Math., 73 (2020), 944–1034, https://doi.org/10.1002/cpa.21880 doi: 10.1002/cpa.21880
    [7] L. Boccardo, Quasilinear elliptic equations with natural growth terms: the regularizing effect of the lower order terms, J. Nonlinear Convex Anal., 7 (2006), 355–365.
    [8] L. Boccardo, Marcinkiewicz estimates for solutions of some elliptic problems with nonregular data, Annali di Matematica, 188 (2009), 591–601. https://doi.org/10.1007/s10231-008-0090-5 doi: 10.1007/s10231-008-0090-5
    [9] L. Boccardo, H. Brézis, Some remarks on a class of elliptic equations with degenerate coercivity, Boll. Unione Mat. Ital., 6 (2003), 521–530.
    [10] L. Boccardo, G. Croce, Elliptic partial differential equations: Existence and regularity of distributional solutions, Berlin: De Gruyter, 2013. https://doi.org/10.1515/9783110315424
    [11] L. Boccardo, G. Croce, L. Orsina, Existence of solutions for some noncoercive elliptic problems involving derivatives of nonlinear terms, Differential Equations & Applications, 4 (2012), 3–9. https://doi.org/10.7153/dea-04-02 doi: 10.7153/dea-04-02
    [12] L. Boccardo, G. Croce, L. Orsina, Nonlinear degenerate elliptic problems with $W^{1, 1}_0(\Omega)$ solutions, Manuscripta Math., 137 (2012), 419–439. https://doi.org/10.1007/s00229-011-0473-6 doi: 10.1007/s00229-011-0473-6
    [13] L. Boccardo, G. Croce, C. Tanteri, An elliptic system with degenerate coercivity, Rend. Mat. Appl. (7), 36 (2015), 1–9.
    [14] L. Boccardo, A. Dall'Aglio, L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 51–81.
    [15] P. Cianci, G. R. Cirmi, S. D'Asero, S. Leonardi, Morrey estimates for solutions of singular quadratic nonlinear equations, Annali di Matematica, 196 (2017), 1739–1758. https://doi.org/10.1007/s10231-017-0636-5 doi: 10.1007/s10231-017-0636-5
    [16] G. R. Cirmi, S. D'Asero, S. Leonardi, Fourth-order nonlinear elliptic equations with lower order term and natural growth conditions, Nonlinear Anal. Theor., 108 (2014), 66–86. https://doi.org/10.1016/j.na.2014.05.014 doi: 10.1016/j.na.2014.05.014
    [17] G. R. Cirmi, S. D'Asero, S. Leonardi, Morrey estimates for a class of elliptic equations with drift term, Adv. Nonlinear Anal., 9 (2020), 1333–1350. https://doi.org/10.1515/anona-2020-0055 doi: 10.1515/anona-2020-0055
    [18] G. R. Cirmi, S. D'Asero, S. Leonardi, On the existence of weak solutions to a class of nonlinear elliptic systems with drift term, J. Math. Anal. Appl., 491 (2020), 124370. https://doi.org/10.1016/j.jmaa.2020.124370 doi: 10.1016/j.jmaa.2020.124370
    [19] G. R. Cirmi, S. D'Asero, S. Leonardi, Morrey estimates for a class of noncoercive elliptic systems with VMO-coefficients, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 32 (2021), 317–334. https://doi.org/10.4171/RLM/938 doi: 10.4171/RLM/938
    [20] G. R. Cirmi, S. D'Asero, S. Leonardi, M. M. Porzio, Local regularity results for solutions of linear elliptic equations with drift term, Adv. Calc. Var., 15 (2022), 19–32. https://doi.org/10.1515/acv-2019-0048 doi: 10.1515/acv-2019-0048
    [21] G. R. Cirmi, S. Leonardi, Regularity results for the gradient of solutions linear elliptic equations with $L^{1, \lambda}$ data, Annali di Matematica, 185 (2006), 537–553. http://doi.org/10.1007/s10231-005-0167-3 doi: 10.1007/s10231-005-0167-3
    [22] G. R. Cirmi, S. Leonardi, Regularity results for solutions of nonlinear elliptic equations with $L^{1, \lambda}$ data, Nonlinear Anal. Theor., 69 (2008), 230–244. https://doi.org/10.1016/j.na.2007.05.014 doi: 10.1016/j.na.2007.05.014
    [23] G. R. Cirmi, S. Leonardi, Higher differentiability for the solutions of nonlinear elliptic systems with lower-order terms and $L^{1, \theta}$-data, Annali di Matematica, 193 (2014), 115–131. https://doi.org/10.1007/s10231-012-0269-7 doi: 10.1007/s10231-012-0269-7
    [24] G. Croce, An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term, Discrete Contin. Dyn. Syst. S, 5 (2012), 507–530. https://doi.org/10.3934/dcdss.2012.5.507 doi: 10.3934/dcdss.2012.5.507
    [25] G. Croce, The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity, Rendiconti di Matematica, Serie Ⅶ, 27 (2007), 299–314.
    [26] G. Cupini, F. Giannetti, R. Giova, A. Passarelli di Napoli, Regularity results for vectorial minimizers of a class of degenerate convex integrals, J. Differ. Equations, 265 (2018), 4375–4416. https://doi.org/10.1016/j.jde.2018.06.010 doi: 10.1016/j.jde.2018.06.010
    [27] G. Cupini, P. Marcellini, E. Mascolo, Regularity of minimizers under limit growth conditions, Nonlinear Anal. Theor., 153 (2017), 294–310. https://doi.org/10.1016/j.na.2016.06.002 doi: 10.1016/j.na.2016.06.002
    [28] C. De Filippis, G. Mingione, Lipschitz bounds and nonautonomous integrals, Arch. Rational Mech. Anal., 242 (2021), 973–1057. https://doi.org/10.1007/s00205-021-01698-5 doi: 10.1007/s00205-021-01698-5
    [29] E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital. Ser. Ⅳ, 1 (1968), 135–137.
    [30] F. Della Pietra, G. Di Blasio, Comparison, existence and regularity results for a class of non-uniformly elliptic equations, Differential Equations & Applications, 2 (2010), 79–103. https://doi.org/10.7153/dea-02-07 doi: 10.7153/dea-02-07
    [31] P. Di Gironimo, F. Leonetti, M. Macrì, P. V. Petricca, Existence of bounded solutions for some quasilinear degenerate elliptic systems, Minimax Theory and its Applications, 6 (2021), 321–340.
    [32] P. Di Gironimo, F. Leonetti, M. Macrì, P. V. Petricca, Existence of solutions to some quasilinear degenerate elliptic systems when the datum has an intermediate degree of integrability, Complex Var. Elliptic Equ., in press. https://doi.org/10.1080/17476933.2022.2069753
    [33] G. Dolzmann, N. Hungerbuhler, S. Muller, Non-linear elliptic systems with measure-valued right hand side, Math. Z., 226 (1997), 545–574. https://doi.org/10.1007/PL00004354 doi: 10.1007/PL00004354
    [34] V. Ferone, N. Fusco, VMO solutions of the $N$-Laplacian with measure data, Comptes Rendus de l'Académie des Sciences Series I-Mathematics, 325 (1997), 365–370. https://doi.org/10.1016/S0764-4442(97)85618-2 doi: 10.1016/S0764-4442(97)85618-2
    [35] H. Gao, M. Huang, W. Ren, Regularity for entropy solutions to degenerate elliptic equations, J. Math. Anal. Appl., 491 (2020), 124251. https://doi.org/10.1016/j.jmaa.2020.124251 doi: 10.1016/j.jmaa.2020.124251
    [36] H. Gao, F. Leonetti, W. Ren, Regularity for anisotropic elliptic equations with degenerate coercivity, Nonlinear Anal., 187 (2019), 493–505. https://doi.org/10.1016/j.na.2019.06.017 doi: 10.1016/j.na.2019.06.017
    [37] D. Giachetti, M. M. Porzio, Existence results for some nonuniformly elliptic equations with irregular data, J. Math. Anal. Appl., 257 (2001), 100–130. https://doi.org/10.1006/jmaa.2000.7324 doi: 10.1006/jmaa.2000.7324
    [38] D. Giachetti, M. M. Porzio, Elliptic equations with degenerate coercivity: gradient regularity, Acta Math. Sinica, 19 (2003), 349–370. https://doi.org/10.1007/s10114-002-0235-1 doi: 10.1007/s10114-002-0235-1
    [39] W. Hao, S. Leonardi, J. Nečas, An example of irregular solution to a nonlinear Euler-Lagrange elliptic system with real analytic coefficients, Annali della Scuola Normale Superiore di Pisa (Ⅳ), 23 (1996), 57–67.
    [40] W. Hao, S. Leonardi, M. Steinhauer, Examples of discontinuous, divergence-free solutions to elliptic variational problems, Comment. Math. Univ. Carolin., 36 (1995), 511–517.
    [41] J. Kristensen, G. Mingione, The singular set of $\omega$-minima, Arch. Rational Mech. Anal., 177 (2005), 93–114. https://doi.org/10.1007/s00205-005-0361-x doi: 10.1007/s00205-005-0361-x
    [42] J. Kristensen, G. Mingione, The singular set of minima of integral functionals, Arch. Rational Mech. Anal., 180 (2006), 331–398. https://doi.org/10.1007/s00205-005-0402-5 doi: 10.1007/s00205-005-0402-5
    [43] J. Kristensen, G. Mingione, Boundary regularity in variational problems, Arch. Rational Mech. Anal., 198 (2010), 369–455. https://doi.org/10.1007/s00205-010-0294-x doi: 10.1007/s00205-010-0294-x
    [44] T. Kuusi, G. Mingione, Universal potential estimates, J. Funct. Anal., 262 (2012), 4205–4269. https://doi.org/10.1016/j.jfa.2012.02.018 doi: 10.1016/j.jfa.2012.02.018
    [45] T. Kuusi, G. Mingione, Linear potentials in nonlinear potential theory, Arch. Rational Mech. Anal., 207 (2013), 215–246. https://doi.org/10.1007/s00205-012-0562-z doi: 10.1007/s00205-012-0562-z
    [46] T. Kuusi, G. Mingione, Guide to nonlinear potential estimates, Bull. Math. Sci., 4 (2014), 1–82. https://doi.org/10.1007/s13373-013-0048-9 doi: 10.1007/s13373-013-0048-9
    [47] T. Kuusi, G. Mingione, The Wolff gradient bound for degenerate parabolic equations, J. Eur. Math. Soc., 16 (2014), 835–892. https://doi.org/10.4171/JEMS/449 doi: 10.4171/JEMS/449
    [48] T. Kuusi, G. Mingione, Vectorial nonlinear potential theory, J. Eur. Math. Soc., 20 (2018), 929–1004. https://doi.org/10.4171/JEMS/780 doi: 10.4171/JEMS/780
    [49] S. Leonardi, On constants of some regularity theorems. De Giorgi's type counterexample, Math. Nachr., 192 (1998), 191–204. https://doi.org/10.1002/mana.19981920111 doi: 10.1002/mana.19981920111
    [50] S. Leonardi, Gradient estimates below duality exponent for a class of linear elliptic systems, Nonlinear Differ. Equ. Appl., 18 (2011), 237–254. http://doi.org/10.1007/s00030-010-0093-y doi: 10.1007/s00030-010-0093-y
    [51] S. Leonardi, Morrey estimates for some classes of elliptic equations with a lower order term, Nonlinear Anal., 177 (2018), 611–627. https://doi.org/10.1016/j.na.2018.05.010 doi: 10.1016/j.na.2018.05.010
    [52] S. Leonardi, F. Leonetti, C. Pignotti, E. Rocha, V. Staicu, Maximum principles for some quasilinear elliptic systems, Nonlinear Anal., 194 (2020), 111377. https://doi.org/10.1016/j.na.2018.11.004 doi: 10.1016/j.na.2018.11.004
    [53] S. Leonardi, F. Leonetti, C. Pignotti, E. Rocha, V. Staicu, Local boundedness for weak solutions to some quasilinear elliptic systems, Minimax Theory and its Applications, 6 (2021), 365–378.
    [54] S. Leonardi, F. Leonetti, E. Rocha, V. Staicu, Butterfly support for off diagonal coefficients and boundedness of solutions to quasilinear elliptic systems, Adv. Nonlinear Anal., 11 (2022), 672–683. https://doi.org/10.1515/anona-2021-0205 doi: 10.1515/anona-2021-0205
    [55] F. Leonetti, P. V. Petricca, Existence of bounded solutions to some nonlinear degenerate elliptic systems, Discrete Contin. Dyn. Syst. B, 11 (2009), 191–203. https://doi.org/10.3934/dcdsb.2009.11.191 doi: 10.3934/dcdsb.2009.11.191
    [56] F. Leonetti, E. Rocha, V. Staicu, Quasilinear elliptic systems with measure data, Nonlinear Anal. Theor., 154 (2017), 210–224. https://doi.org/10.1016/j.na.2016.04.002 doi: 10.1016/j.na.2016.04.002
    [57] F. Leonetti, E. Rocha, V. Staicu, Smallness and cancellation in some elliptic systems with measure data, J. Math. Anal. Appl., 465 (2018), 885–902. https://doi.org/10.1016/j.jmaa.2018.05.047 doi: 10.1016/j.jmaa.2018.05.047
    [58] F. Leonetti, R. Schianchi, A remark on some degenerate elliptic problems, Ann. Univ. Ferrara, 44 (1998), 123–128. https://doi.org/10.1007/BF02828019 doi: 10.1007/BF02828019
    [59] J. Leray, J. L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bulletin de la Société Mathématique de France, 93 (1965), 97–107. https://doi.org/10.24033/bsmf.1617 doi: 10.24033/bsmf.1617
    [60] V. G. Maz'ja, Examples of nonregular solutions of quasilinear elliptic equations with analytic coefficients, Funct. Anal. Appl., 2 (1968), 230–234. https://doi.org/10.1007/BF01076124 doi: 10.1007/BF01076124
    [61] G. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations, Appl. Math., 51 (2006), 355–426. https://doi.org/10.1007/s10778-006-0110-3 doi: 10.1007/s10778-006-0110-3
    [62] G. Mingione, The Calder$\acute{o}$n-Zygmund theory for elliptic problems with measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 6 (2007), 195–261. https://doi.org/10.2422/2036-2145.2007.2.01 doi: 10.2422/2036-2145.2007.2.01
    [63] G. Mingione, Gradient estimates below the duality exponent, Math. Ann., 346 (2010), 571–627. https://doi.org/10.1007/s00208-009-0411-z doi: 10.1007/s00208-009-0411-z
    [64] G. Mingione, Gradient potential estimates, J. Eur. Math. Soc., 13 (2011), 459–486. https://doi.org/10.4171/JEMS/258 doi: 10.4171/JEMS/258
    [65] G. Mingione, G. Palatucci, Developments and perspectives in nonlinear potential theory, Nonlinear Anal., 194 (2020), 111452. https://doi.org/10.1016/j.na.2019.02.006 doi: 10.1016/j.na.2019.02.006
    [66] J. Nečas, J. Stará, Principio di massimo per i sistemi ellittici quasi-lineari non diagonali, Boll. Un. Mat. Ital. Ser. Ⅳ, 6 (1972), 1–10.
    [67] A. Porretta, Uniqueness and homogenization for a class of non coercive operators in divergence form, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 915–936.
    [68] E. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, 1971.
    [69] C. Trombetti, Existence and regularity for a class of non-uniformly elliptic equations in two dimensions, Differential Integral Equations, 13 (2000), 687–706.
    [70] Z. Q. Yan, Everywhere regularity for solutions to quasilinear elliptic systems of triangular form, In: Partial differential equations, Berlin: Springer, 1988,255–261. https://doi.org/10.1007/BFb0082938
    [71] S. Zhou, A note on nonlinear elliptic systems involving measures, Electronic Journal of Differential Equations, 2000 (2000), 08.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1333) PDF downloads(174) Cited by(1)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog