The paper concerns the analysis of global minimizers of a Dirichlet-type energy functional in the class of $ \mathbb{S}^2 $-valued maps defined in cylindrical surfaces. The model naturally arises as a curved thin-film limit in the theories of nematic liquid crystals and micromagnetics. We show that minimal configurations are $ z $-invariant and that energy minimizers in the class of weakly axially symmetric competitors are, in fact, axially symmetric. Our main result is a family of sharp Poincaré-type inequality on the circular cylinder, which allows for establishing a nearly complete picture of the energy landscape. The presence of symmetry-breaking phenomena is highlighted and discussed. Finally, we provide a complete characterization of in-plane minimizers, which typically appear in numerical simulations for reasons we explain.
Citation: Giovanni Di Fratta, Alberto Fiorenza, Valeriy Slastikov. On symmetry of energy minimizing harmonic-type maps on cylindrical surfaces[J]. Mathematics in Engineering, 2023, 5(3): 1-38. doi: 10.3934/mine.2023056
The paper concerns the analysis of global minimizers of a Dirichlet-type energy functional in the class of $ \mathbb{S}^2 $-valued maps defined in cylindrical surfaces. The model naturally arises as a curved thin-film limit in the theories of nematic liquid crystals and micromagnetics. We show that minimal configurations are $ z $-invariant and that energy minimizers in the class of weakly axially symmetric competitors are, in fact, axially symmetric. Our main result is a family of sharp Poincaré-type inequality on the circular cylinder, which allows for establishing a nearly complete picture of the energy landscape. The presence of symmetry-breaking phenomena is highlighted and discussed. Finally, we provide a complete characterization of in-plane minimizers, which typically appear in numerical simulations for reasons we explain.
[1] | M. S. Agranovich, Sobolev spaces, their generalizations and elliptic problems in smooth and Lipschitz domains, Cham: Springer, 2015. http://doi.org/10.1007/978-3-319-14648-5 |
[2] | F. Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case, SIAM J. Numer. Anal., 34 (1997), 1708–1726. http://doi.org/10.1137/S0036142994264249 doi: 10.1137/S0036142994264249 |
[3] | F. Alouges, A new finite element scheme for Landau-Lifchitz equations, Discrete Cont. Dyn. Syst. S, 1 (2008), 187–196. http://doi.org/10.3934/dcdss.2008.1.187 doi: 10.3934/dcdss.2008.1.187 |
[4] | F. Alouges, G. Di Fratta, B. Merlet, Liouville type results for local minimizers of the micromagnetic energy, Calc. Var., 53 (2015), 525–560. http://doi.org/10.1007/s00526-014-0757-2 doi: 10.1007/s00526-014-0757-2 |
[5] | F. Alouges, A. Soyeur, On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness, Nonlinear Anal. Theor., 18 (1992), 1071–1084. http://doi.org/10.1016/0362-546X(92)90196-L doi: 10.1016/0362-546X(92)90196-L |
[6] | H. Amann, Ordinary differential equations: an introduction to nonlinear analysis, Walter de Gruyter, 2011. http://doi.org/10.1515/9783110853698 |
[7] | J.-F. Babadjian, G. Di Fratta, I. Fonseca, G. A. Francfort, M. Lewicka, C. B. Muratov, The mathematics of thin structures, Quart. Appl. Math., in press. http://doi.org/10.1090/qam/1628 |
[8] | W. F. Brown, The fundamental theorem of the theory of fine ferromagnetic particles, Ann. New York Acad. Sci., 147 (1969), 463–488. http://doi.org/10.1111/j.1749-6632.1969.tb41269.x doi: 10.1111/j.1749-6632.1969.tb41269.x |
[9] | G. Carbou, Thin layers in micromagnetism, Math. Mod. Meth. Appl. Sci., 11 (2002), 1529–1546. http://doi.org/10.1142/S0218202501001458 doi: 10.1142/S0218202501001458 |
[10] | E. Davoli, G. Di Fratta, Homogenization of chiral magnetic materials: A mathematical evidence of Dzyaloshinskii's predictions on helical structures, J. Nonlinear Sci., 30 (2020), 1229–1262. http://doi.org/10.1007/s00332-019-09606-8 doi: 10.1007/s00332-019-09606-8 |
[11] | E. Davoli, G. Di Fratta, D. Praetorius, M. Ruggeri, Micromagnetics of thin films in the presence of Dzyaloshinskii–Moriya interaction, Math. Mod. Meth. Appl. Sci., 32 (2022), 911–939. http://doi.org/10.1142/S0218202522500208 doi: 10.1142/S0218202522500208 |
[12] | G. Di Fratta, J. M. Robbins, V. Slastikov, A. D. Zarnescu, Half-integer point defects in the $Q$-tensor theory of nematic liquid crystals, J. Nonlinear Sci., 26 (2015), 121–140. http://doi.org/10.1007/s00332-015-9271-8 doi: 10.1007/s00332-015-9271-8 |
[13] | G. Di Fratta, C. Serpico, M. d'Aquino, A generalization of the fundamental theorem of Brown for fine ferromagnetic particles, Physica B, 407 (2012), 1368–1371. http://doi.org/10.1016/j.physb.2011.10.010 doi: 10.1016/j.physb.2011.10.010 |
[14] | G. Di Fratta, Micromagnetics of curved thin films, Z. Angew. Math. Phys., 71 (2020), 111. http://doi.org/10.1007/s00033-020-01336-2 doi: 10.1007/s00033-020-01336-2 |
[15] | G. Di Fratta, M. Innerberger, D. Praetorius, Weak-strong uniqueness for the Landau–Lifshitz–Gilbert equation in micromagnetics, Nonlinear Anal. Real, 55 (2020), 103122. http://doi.org/10.1016/j.nonrwa.2020.103122 doi: 10.1016/j.nonrwa.2020.103122 |
[16] | G. Di Fratta, M. Innerberger, D. Praetorius, V. Slastikov, An energy minimization scheme for the analysis of magnetic skyrmions on planar thin films, unpublished work. |
[17] | G. Di Fratta, C. B. Muratov, F. N. Rybakov, V. V. Slastikov, Variational principles of micromagnetics revisited, SIAM J. Math. Anal., 52 (2020), 3580–3599. http://doi.org/10.1137/19M1261365 doi: 10.1137/19M1261365 |
[18] | G. Di Fratta, C.-M. Pfeiler, D. Praetorius, M. Ruggeri, B. Stiftner, Linear second-order IMEX-type integrator for the (eddy current) Landau–Lifshitz–Gilbert equation, IMA J. Numer. Anal., 40 (2019), 2802–2838. http://doi.org/10.1093/imanum/drz046 doi: 10.1093/imanum/drz046 |
[19] | G. Di Fratta, V. Slastikov, A. Zarnescu, On a sharp Poincaré-type inequality on the 2-sphere and its application in micromagnetics, SIAM J. Math. Anal., 51 (2019), 3373–3387. http://doi.org/10.1137/19M1238757 doi: 10.1137/19M1238757 |
[20] | G. Di Fratta, A. Monteil, V. Slastikov, Symmetry properties of minimizers of a perturbed Dirichlet energy with a boundary penalization, SIAM J. Math. Anal., 54 (2022), 3636–3653. http://doi.org/10.1137/21M143011X doi: 10.1137/21M143011X |
[21] | A. Fiorenza, M. R. Formica, T. Roskovec, F. Soudský, Detailed proof of classical Gagliardo-Nirenberg interpolation inequality with historical remarks, Z. Anal. Anwend., 40 (2021), 217–236. http://doi.org/10.4171/ZAA/1681 doi: 10.4171/ZAA/1681 |
[22] | Y. Gaididei, V. P. Kravchuk, D. D. Sheka, Curvature effects in thin magnetic shells, Phys. Rev. Lett., 112 (2014), 257203. http://doi.org/10.1103/PhysRevLett.112.257203 doi: 10.1103/PhysRevLett.112.257203 |
[23] | G. Gioia, R. D. James, Micromagnetics of very thin films, Proc. R. Soc. Lond. A, 453 (1997), 213–223. http://doi.org/10.1098/rspa.1997.0013 doi: 10.1098/rspa.1997.0013 |
[24] | S.-H. Hu, S.-Y. Chen, D.-M. Liu, C.-S. Hsiao, Core/single-crystal-shell nanospheres for controlled drug release via a magnetically triggered rupturing mechanism, Adv. Mater., 20 (2008), 2690–2695. http://doi.org/10.1002/adma.200800193 doi: 10.1002/adma.200800193 |
[25] | R. Ignat, R. L. Jerrard, Renormalized energy between vortices in some Ginzburg–Landau models on 2-dimensional Riemannian manifolds, Arch. Rational Mech. Anal., 239 (2021), 1577–1666. http://doi.org/10.1007/s00205-020-01598-0 doi: 10.1007/s00205-020-01598-0 |
[26] | R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, Stability of the melting hedgehog in the Landau–de Gennes theory of nematic liquid crystals, Arch. Rational Mech. Anal., 215 (2015), 633–673. http://doi.org/10.1007/s00205-014-0791-4 doi: 10.1007/s00205-014-0791-4 |
[27] | R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, Instability of point defects in a two-dimensional nematic liquid crystal model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1131–1152. http://doi.org/10.1016/j.anihpc.2015.03.007 doi: 10.1016/j.anihpc.2015.03.007 |
[28] | R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, Stability of point defects of degree $\pm \frac{1}{2}$ in a two-dimensional nematic liquid crystal model, Calc. Var., 55 (2016), 119. http://doi.org/10.1007/s00526-016-1051-2 doi: 10.1007/s00526-016-1051-2 |
[29] | R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, On the uniqueness of minimisers of Ginzburg-Landau functionals, Annales Scientifiques de l'École Normale Supérieure. Quatriéme Série, 53 (2020), 589–613. http://doi.org/10.24033/asens.2429 doi: 10.24033/asens.2429 |
[30] | V. P. Kravchuk, D. D. Sheka, R. Streubel, D. Makarov, O. G. Schmidt, Y. Gaididei, Out-of-surface vortices in spherical shells, Phys. Rev. B, 85 (2012), 144433. http://doi.org/10.1103/PhysRevB.85.144433 doi: 10.1103/PhysRevB.85.144433 |
[31] | C. Melcher, Z. N. Sakellaris, Curvature-stabilized skyrmions with angular momentum, Lett. Math. Phys., 109 (2019), 2291–2304. http://doi.org/10.1007/s11005-019-01188-6 doi: 10.1007/s11005-019-01188-6 |
[32] | D. S. Miller, X. Wang, N. L. Abbott, Design of functional materials based on liquid crystalline droplets, Chem. Mater., 26 (2013), 496–506. http://doi.org/10.1021/cm4025028 doi: 10.1021/cm4025028 |
[33] | J. Milnor, Topology from the differentiable viewpoint, Princeton University Press, 1997. |
[34] | R. Moser, Partial regularity for harmonic maps and related problems, Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., 2005. |
[35] | C. B. Muratov, V. V. Slastikov, Domain structure of ultrathin ferromagnetic elements in the presence of Dzyaloshinskii-Moriya interaction, Proc. R. Soc. A, 473 (2017), 20160666. http://doi.org/10.1098/rspa.2016.0666 doi: 10.1098/rspa.2016.0666 |
[36] | G. Napoli, L. Vergori, Extrinsic curvature effects on nematic shells, Phys. Rev. Lett., 108 (2012), 207803. http://doi.org/10.1103/PhysRevLett.108.207803 doi: 10.1103/PhysRevLett.108.207803 |
[37] | O. G. Schmidt, K. Eberl, Thin solid films roll up into nanotubes, Nature, 410 (2001), 168. http://doi.org/10.1038/35065525 doi: 10.1038/35065525 |
[38] | R. Schoen, K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom., 18 (1983), 253–268. http://doi.org/10.4310/jdg/1214437663 doi: 10.4310/jdg/1214437663 |
[39] | F. Serra, Curvature and defects in nematic liquid crystals, Liq. Cryst., 43 (2016), 1920–1936. http://doi.org/10.1080/02678292.2016.1209698 doi: 10.1080/02678292.2016.1209698 |
[40] | D. D. Sheka, D. Makarov, H. Fangohr, O. M. Volkov, H. Fuchs, J. van den Brink, et al., Topologically stable magnetization states on a spherical shell: Curvature-stabilized skyrmions, Phys. Rev. B, 94 (2016), 144402. http://doi.org/10.1103/PhysRevB.94.144402 doi: 10.1103/PhysRevB.94.144402 |
[41] | V. Slastikov, Micromagnetics of thin shells, Math. Mod. Meth. Appl. Sci., 15 (2005), 1469–1487. http://doi.org/10.1142/S021820250500087X doi: 10.1142/S021820250500087X |
[42] | V. V. Slastikov, C. Sonnenberg, Reduced models for ferromagnetic nanowires, IMA J. Appl. Math., 77 (2012), 220–235. http://doi.org/10.1093/imamat/hxr019 doi: 10.1093/imamat/hxr019 |
[43] | M. I. Sloika, D. D. Sheka, V. P. Kravchuk, O. V. Pylypovskyi, Y. Gaididei, Geometry induced phase transitions in magnetic spherical shell, J. Magn. Magn. Mater., 443 (2017), 404–412. http://doi.org/10.1016/j.jmmm.2017.07.036 doi: 10.1016/j.jmmm.2017.07.036 |
[44] | R. Streubel, P. Fischer, F. Kronast, V. P. Kravchuk, D. D. Sheka, Y. Gaididei, et al., Magnetism in curved geometries, J. Phys. D: Appl. Phys., 49 (2016), 363001. http://doi.org/10.1088/0022-3727/49/36/363001 doi: 10.1088/0022-3727/49/36/363001 |