Research article Special Issues

Universal potential estimates for $ 1 < p\leq 2-\frac{1}{n} $

  • Received: 26 August 2022 Revised: 13 October 2022 Accepted: 14 October 2022 Published: 26 October 2022
  • We extend the so-called universal potential estimates of Kuusi-Mingione type (J. Funct. Anal. 262: 4205–4269, 2012) to the singular case $ 1 < p\leq 2-1/n $ for the quasilinear equation with measure data

    $ \begin{equation*} -\operatorname{div}(A(x,\nabla u)) = \mu \end{equation*} $

    in a bounded open subset $ \Omega $ of $ \mathbb{R}^n $, $ n\geq 2 $, with a finite signed measure $ \mu $ in $ \Omega $. The operator $ \operatorname{div}(A(x, \nabla u)) $ is modeled after the $ p $-Laplacian $ \Delta_p u: = {\rm div}\, (|\nabla u|^{p-2}\nabla u) $, where the nonlinearity $ A(x, \xi) $ ($ x, \xi \in \mathbb{R}^n $) is assumed to satisfy natural growth and monotonicity conditions of order $ p $, as well as certain additional regularity conditions in the $ x $-variable.

    Citation: Quoc-Hung Nguyen, Nguyen Cong Phuc. Universal potential estimates for $ 1 < p\leq 2-\frac{1}{n} $[J]. Mathematics in Engineering, 2023, 5(3): 1-24. doi: 10.3934/mine.2023057

    Related Papers:

  • We extend the so-called universal potential estimates of Kuusi-Mingione type (J. Funct. Anal. 262: 4205–4269, 2012) to the singular case $ 1 < p\leq 2-1/n $ for the quasilinear equation with measure data

    $ \begin{equation*} -\operatorname{div}(A(x,\nabla u)) = \mu \end{equation*} $

    in a bounded open subset $ \Omega $ of $ \mathbb{R}^n $, $ n\geq 2 $, with a finite signed measure $ \mu $ in $ \Omega $. The operator $ \operatorname{div}(A(x, \nabla u)) $ is modeled after the $ p $-Laplacian $ \Delta_p u: = {\rm div}\, (|\nabla u|^{p-2}\nabla u) $, where the nonlinearity $ A(x, \xi) $ ($ x, \xi \in \mathbb{R}^n $) is assumed to satisfy natural growth and monotonicity conditions of order $ p $, as well as certain additional regularity conditions in the $ x $-variable.



    加载中


    [1] R. A. DeVore, R. C. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc., 47 (1984), 293. http://doi.org/10.1090/memo/0293 doi: 10.1090/memo/0293
    [2] E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. Theor., 7 (1983), 827–850. https://doi.org/10.1016/0362-546X(83)90061-5 doi: 10.1016/0362-546X(83)90061-5
    [3] H. Dong, H. Zhu, Gradient estimates for singular $p$-Laplace type equations with measure data, Calc. Var., 61 (2021), 86. https://doi.org/10.1007/s00526-022-02189-5 doi: 10.1007/s00526-022-02189-5
    [4] F. Duzaar, G. Mingione, Gradient estimates via linear and nonlinear potentials, J. Funct. Anal., 259 (2010), 2961–2998. https://doi.org/10.1016/j.jfa.2010.08.006 doi: 10.1016/j.jfa.2010.08.006
    [5] F. Duzaar, G. Mingione, Gradient estimates via non-linear potentials, Amer. J. Math., 133 (2011), 1093–1149.
    [6] E. Giusti, Direct methods in the calculus of variations, River Edge, NJ: World Scientic Publishing Co., Inc., 2003. https://doi.org/10.1142/5002
    [7] T. Kilpeläinen, J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137–161. https://doi.org/10.1007/BF02392793 doi: 10.1007/BF02392793
    [8] T. Kuusi, G. Mingione, Universal potential estimates, J. Funct. Anal., 262 (2012), 4205–4269. https://doi.org/10.1016/j.jfa.2012.02.018 doi: 10.1016/j.jfa.2012.02.018
    [9] T. Kuusi, G. Mingione, Linear potentials in nonlinear potential theory, Arch. Rational Mech. Anal., 207 (2013), 215–246. https://doi.org/10.1007/s00205-012-0562-z doi: 10.1007/s00205-012-0562-z
    [10] P. Lindqvist, Notes on the p-Laplace equation, Univ. Jyväskylä, 2006.
    [11] J. J. Manfredi, Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations, Ph.D. Thesis of University of Washington, St. Louis, 1986.
    [12] G. Mingione, Gradient potential estimates, J. Eur. Math. Soc., 13 (2011), 459–486. http://doi.org/10.4171/JEMS/258 doi: 10.4171/JEMS/258
    [13] Q.-H. Nguyen, N. C. Phuc, Good-$\lambda$ and Muckenhoupt-Wheeden type bounds in quasilinear measure datum problems, with applications, Math. Ann., 374 (2019), 67–98. https://doi.org/10.1007/s00208-018-1744-2 doi: 10.1007/s00208-018-1744-2
    [14] Q.-H. Nguyen, N. C. Phuc, Pointwise gradient estimates for a class of singular quasilinear equation with measure data, J. Funct. Anal., 278 (2020), 108391. https://doi.org/10.1016/j.jfa.2019.108391 doi: 10.1016/j.jfa.2019.108391
    [15] Q.-H. Nguyen, N. C. Phuc, A comparison estimate for singular p-Laplace equations and its consequences, submitted for publication.
    [16] N. S. Trudinger, X.-J. Wang, On the weak continuity of elliptic operators and applications to potential theory, Amer. J. Math., 124 (2002), 369–410.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1209) PDF downloads(154) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog