Research article Special Issues

Half-harmonic gradient flow: aspects of a non-local geometric PDE

  • Received: 16 December 2021 Revised: 13 October 2022 Accepted: 17 October 2022 Published: 07 November 2022
  • The goal of this paper is to discuss some of the results in the author's previous papers and expand upon the work there by proving two new results: a global weak existence result as well as a first bubbling analysis for the half-harmonic gradient flow in finite time. In addition, an alternative local existence proof to the one provided in [47] is presented based on a fixed-point argument. This preliminary bubbling analysis leads to two potential outcomes for the possibility of finite-time bubbling until a conjecture by Sire, Wei and Zheng, see [40], is settled: Either there always exists a global smooth solution to the half-harmonic gradient flow without concentration of energy in finite-time, which still allows for the formation of half-harmonic bubbles as $ t \to +\infty $, or finite-time bubbling may occur in a similar way as for the harmonic gradient flow due to energy concentration in finitely many points. In the first part of the introduction to this paper, we provide a survey of the theory of harmonic and fractional harmonic maps and the associated gradient flows. For clarity's sake, we restrict our attention to the case of spherical target manifolds $ S^{n-1} $, but our discussion extends to the general case after taking care of technicalities associated with arbitrary closed target manifolds $ N $ (cf. [48]).

    Citation: Jerome D. Wettstein. Half-harmonic gradient flow: aspects of a non-local geometric PDE[J]. Mathematics in Engineering, 2023, 5(3): 1-38. doi: 10.3934/mine.2023058

    Related Papers:

  • The goal of this paper is to discuss some of the results in the author's previous papers and expand upon the work there by proving two new results: a global weak existence result as well as a first bubbling analysis for the half-harmonic gradient flow in finite time. In addition, an alternative local existence proof to the one provided in [47] is presented based on a fixed-point argument. This preliminary bubbling analysis leads to two potential outcomes for the possibility of finite-time bubbling until a conjecture by Sire, Wei and Zheng, see [40], is settled: Either there always exists a global smooth solution to the half-harmonic gradient flow without concentration of energy in finite-time, which still allows for the formation of half-harmonic bubbles as $ t \to +\infty $, or finite-time bubbling may occur in a similar way as for the harmonic gradient flow due to energy concentration in finitely many points. In the first part of the introduction to this paper, we provide a survey of the theory of harmonic and fractional harmonic maps and the associated gradient flows. For clarity's sake, we restrict our attention to the case of spherical target manifolds $ S^{n-1} $, but our discussion extends to the general case after taking care of technicalities associated with arbitrary closed target manifolds $ N $ (cf. [48]).



    加载中


    [1] A. Audrito, On the existence and Hölder regularity of solutions to some nonlinear Cauchy-Neumann problems, arXiv: 2107.03308.
    [2] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245–1260. https://doi.org/10.1080/03605300600987306 doi: 10.1080/03605300600987306
    [3] K.-C. Chang, W. Y. Ding, R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differential Geom., 36 (1992), 507–515. https://doi.org/10.4310/jdg/1214448751 doi: 10.4310/jdg/1214448751
    [4] R. Coifman, P. Lions, Y. Meyer, S. Semmes, Compensated compactness and Hardy spaces, Journal de mathématiques pures et appliquées, 72 (1993), 247–286.
    [5] F. Da Lio, Compactness and bubbles analysis for half-harmonic maps into spheres, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 201–224. https://doi.org/10.1016/j.anihpc.2013.11.003 doi: 10.1016/j.anihpc.2013.11.003
    [6] F. Da Lio, Fractional harmonic maps into manifolds in odd dimensions $> 1$, Calc. Var., 48 (2013), 421–445. https://doi.org/10.1007/s00526-012-0556-6 doi: 10.1007/s00526-012-0556-6
    [7] F. Da Lio, P. Laurain, T. Rivière, A Pohozaev-type formula and quantization of horizontal half-harmonic maps, arXiv: 1607.05504.
    [8] F. Da Lio, Fractional harmonic maps, In: Recent developments in nonlocal theory, Warsaw, Poland: De Gruyter, 2018, 52–80. https://doi.org/10.1515/9783110571561-004
    [9] F. Da Lio, A. Pigati, Free boundary minimal surfaces: a nonlocal approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), XX (2020), 437–489. https://doi.org/10.2422/2036-2145.201801_008 doi: 10.2422/2036-2145.201801_008
    [10] F. Da Lio, T. Rivière, 3-Commutator estimates and the regularity of $1/2$-harmonic maps into spheres, Anal. PDE, 4 (2011), 149–190. https://doi.org/10.2140/apde.2011.4.149 doi: 10.2140/apde.2011.4.149
    [11] F. Da Lio, T. Rivière, Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps, Adv. Math., 277 (2011), 1300–1348. https://doi.org/10.1016/j.aim.2011.03.011 doi: 10.1016/j.aim.2011.03.011
    [12] F. Da Lio, A. Schikorra, n/p-Harmonic maps: regularity for the sphere case, Adv. Calc. Var., 7 (2014), 1–26. https://doi.org/10.1515/acv-2012-0107 doi: 10.1515/acv-2012-0107
    [13] F. Da Lio, A. Schikorra, On regularity theory for n/p-harmonic maps into manifolds, Nonlinear Anal., 165 (2017), 182–197. https://doi.org/10.1016/j.na.2017.10.001 doi: 10.1016/j.na.2017.10.001
    [14] J. Davila, M. Del Pino, J. Wei, Singularity formation for the two-dimensional harmonic map flow in $S^2$, Invent. Math., 219 (2020), 345–466. https://doi.org/10.1007/s00222-019-00908-y doi: 10.1007/s00222-019-00908-y
    [15] J. Eells, J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109–160.
    [16] A. Freire, Uniqueness for the harmonic map flow from surfaces into general targets, Commentarii Mathematici Helvetici, 70 (1995), 310–338. https://doi.org/10.1007/BF02566010 doi: 10.1007/BF02566010
    [17] L. Grafakos, Modern Fourier analysis, 2 Eds., New York: Springer, 2009. https://doi.org/10.1007/978-0-387-09434-2
    [18] M. Grüter, Regularity of weak H-surfaces, J. Reine Angew. Math., 1981 (1981), 1–15. https://doi.org/10.1515/crll.1981.329.1 doi: 10.1515/crll.1981.329.1
    [19] F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une varitée riemannienne, C. R. Acad. Sci. Paris Sr. I Math., 311 (1990), 591–596.
    [20] F. Hélein, Harmonic maps, conservation laws and moving frames, 2 Eds., Cambridge: Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511543036
    [21] A. Hyder, A. Segatti, Y. Sire, C. Wang, Partial regularity of the heat flow of half-harmonic maps and applications to harmonic maps with free boundary, Commun Part. Diff. Eq., 47 (2022), 1845–1882. https://doi.org/10.1080/03605302.2022.2091453 doi: 10.1080/03605302.2022.2091453
    [22] F. John, Partial differential equations, 3 Eds., New York: Springer, 1978. https://doi.org/10.1007/978-1-4684-0059-5
    [23] J. Jost, Geometry and physics, Heidelberg: Springer, 2009. https://doi.org/10.1007/978-3-642-00541-1
    [24] O. A. Ladyzhenskaya, Solutions "in the large" of the nonstationary boundary value problem for the Navier-Stokes system with two space variables, Commun. Pure Appl. Math., 7 (1959), 427–433. https://doi.org/10.1002/cpa.3160120303 doi: 10.1002/cpa.3160120303
    [25] K. Mazowiecka, A. Schikorra, Fractional div-curl quantities and applications to nonlocal geometric equation, J. Funct. Anal., 275 (2018), 1–44. https://doi.org/10.1016/j.jfa.2018.03.016 doi: 10.1016/j.jfa.2018.03.016
    [26] V. Millot, Y. Sire, On a fractional Ginzburg-Landau equation and $1/2$-harmonic maps into spheres, Arch. Rational Mech. Anal., 215 (2015), 125–210. https://doi.org/10.1007/s00205-014-0776-3 doi: 10.1007/s00205-014-0776-3
    [27] C. Morrey, The problem of plateau on a Riemannian manifold, Ann. Math., 49 (1948), 807–851.
    [28] E. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques, 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [29] M. Prats, Measuring Triebel-Lizorkin fractional smoothness on domains in terms of first-order differences, J. London Math. Soc., 100 (2019), 692–716. https://doi.org/10.1112/jlms.12225 doi: 10.1112/jlms.12225
    [30] M. Prats, E. Saksman, A $T(1)$ theorem for fractional Sobolev spaces on domains, J. Geom. Anal., 27 (2017), 2490–2538. https://doi.org/10.1007/s12220-017-9770-y doi: 10.1007/s12220-017-9770-y
    [31] T. Rivière, Le flot des applications faiblement harmoniques en dimension deux, PhD thesis, 1993.
    [32] T. Rivière, Conservation laws for conformally invariant variational problems, Invent. Math., 168 (2007), 1–22. https://doi.org/10.1007/s00222-006-0023-0 doi: 10.1007/s00222-006-0023-0
    [33] T. Rivière, Conformally invariant variational problems, arXiv: 1206.2116.
    [34] J. Sacks, K. Uhlenbeck, The existence of minimal immersions of $2$-spheres, Ann. Math., 113 (1981), 1–24. https://doi.org/10.2307/1971131 doi: 10.2307/1971131
    [35] A. Schikorra, Regularity of n/2-harmonic maps into the sphere, J. Differ. Equations, 252 (2012), 1862–1911. https://doi.org/10.1016/j.jde.2011.08.021 doi: 10.1016/j.jde.2011.08.021
    [36] A. Schikorra, Y. Sire, C. Wang, Weak solutions of geometric flows associated to integro-differential harmonic maps, Manuscripta Math., 153 (2017), 389–402. https://doi.org/10.1007/s00229-016-0899-y doi: 10.1007/s00229-016-0899-y
    [37] R. Schoen, S. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Commentarii Mathematici Helvetici, 51 (1976), 333–341. https://doi.org/10.1007/BF02568161 doi: 10.1007/BF02568161
    [38] H. Schmeisser, H. Triebel, Topics in Fourier analysis and function spaces, Chichester: J. Wiley, 1987.
    [39] J. Shatah, Weak solutions and development of singularities of the $SU(2)$ $\sigma$-model, Commun Pure Appl. Math., 41 (1988), 459–469. https://doi.org/10.1002/cpa.3160410405 doi: 10.1002/cpa.3160410405
    [40] Y. Sire, J. Wei, Y. Zheng, Infinite time blow-up for half-harmonic map flow from $ \mathbb{R}$ into $S^1$, arXiv: 1711.05387.
    [41] M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Commentarii Mathematici Helvetici, 60 (1985), 558–581. https://doi.org/10.1007/BF02567432 doi: 10.1007/BF02567432
    [42] M. Struwe, On the evolution of harmonic maps in higher dimension, J. Differential Geom., 28 (1988), 485–502. https://doi.org/10.4310/jdg/1214442475 doi: 10.4310/jdg/1214442475
    [43] M. Struwe, Plateau flow or the heat flow for half-harmonic maps, arXiv: 2202.02083.
    [44] P. Topping, Reverse bubbling and nonuniqueness in the harmonic map flow, Int. Math. Res. Notices, 10 (2002), 505–520. https://doi.org/10.1155/S1073792802105083 doi: 10.1155/S1073792802105083
    [45] K. Uhlenbeck, Connections with $L^p$ bounds on curvature, Commun. Math. Phys., 83 (1982), 31–42. https://doi.org/10.1007/BF01947069 doi: 10.1007/BF01947069
    [46] H. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl., 26 (1969), 318–344. https://doi.org/10.1016/0022-247X(69)90156-5 doi: 10.1016/0022-247X(69)90156-5
    [47] J. Wettstein, Uniqueness and regularity of the fractional harmonic gradient flow in $S^{n-1}$, Nonlinear Anal., 214 (2022), 112592. https://doi.org/10.1016/j.na.2021.112592 doi: 10.1016/j.na.2021.112592
    [48] J. Wettstein, Existence, uniqueness and regularity of the fractional harmonic gradient flow in general target manifolds, arXiv: 2109.11458.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1217) PDF downloads(125) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog