Let $ s\in(0, 1), $ $ 1 < p < \frac{N}{s} $ and $ \Omega\subset{\mathbb R}^N $ be an open bounded set. In this work we study the existence of solutions to problems ($ E_\pm $) $ Lu\pm g(u) = \mu $ and $ u = 0 $ a.e. in $ {\mathbb R}^N\setminus \Omega, $ where $ g\in C({\mathbb R}) $ is a nondecreasing function, $ \mu $ is a bounded Radon measure on $ \Omega $ and $ L $ is an integro-differential operator with order of differentiability $ s\in(0, 1) $ and summability $ p\in(1, \frac{N}{s}). $ More precisely, $ L $ is a fractional $ p $-Laplace type operator. We establish sufficient conditions for the solvability of problems ($ E_\pm $). In the particular case $ g(t) = |t|^{ \kappa-1}t; $ $ \kappa > p-1, $ these conditions are expressed in terms of Bessel capacities.
Citation: Konstantinos T. Gkikas. Nonlinear nonlocal equations involving subcritical or power nonlinearities and measure data[J]. Mathematics in Engineering, 2024, 6(1): 45-80. doi: 10.3934/mine.2024003
Let $ s\in(0, 1), $ $ 1 < p < \frac{N}{s} $ and $ \Omega\subset{\mathbb R}^N $ be an open bounded set. In this work we study the existence of solutions to problems ($ E_\pm $) $ Lu\pm g(u) = \mu $ and $ u = 0 $ a.e. in $ {\mathbb R}^N\setminus \Omega, $ where $ g\in C({\mathbb R}) $ is a nondecreasing function, $ \mu $ is a bounded Radon measure on $ \Omega $ and $ L $ is an integro-differential operator with order of differentiability $ s\in(0, 1) $ and summability $ p\in(1, \frac{N}{s}). $ More precisely, $ L $ is a fractional $ p $-Laplace type operator. We establish sufficient conditions for the solvability of problems ($ E_\pm $). In the particular case $ g(t) = |t|^{ \kappa-1}t; $ $ \kappa > p-1, $ these conditions are expressed in terms of Bessel capacities.
[1] | D. R. Adams, L. I. Hedberg, Function spaces and potential theory, Grundlehren der mathematischen Wissenschaften, Vol. 314, Springer, 1996. https://doi.org/10.1007/978-3-662-03282-4 |
[2] | B. Abdellaoui, A. Attar, R. Bentifour, On the fractional $p$-laplacian equations with weights and general datum, Adv. Nonlinear Anal., 8 (2019), 144–174. https://doi.org/10.1515/anona-2016-0072 doi: 10.1515/anona-2016-0072 |
[3] | P. Baras, M. Pierre, Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier, 34 (1984), 185–206. https://doi.org/10.5802/aif.956 doi: 10.5802/aif.956 |
[4] | M. F. Bidaut-Véron, Removable singularities and existence for a quasilinear equation with absorption or source term and measure data, Adv. Nonlinear Stud., 3 (2003), 25–63. https://doi.org/10.1515/ans-2003-0102 doi: 10.1515/ans-2003-0102 |
[5] | M. F. Bidaut-Véron, Q. H. Nguyen, L. Véron, Quasilinear Lane-Emden equations with absorption and measure data, J. Math. Pures Appl., 102 (2014), 315–337. https://doi.org/10.1016/j.matpur.2013.11.011 doi: 10.1016/j.matpur.2013.11.011 |
[6] | L. Boccardo, T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149–169. https://doi.org/10.1016/0022-1236(89)90005-0 doi: 10.1016/0022-1236(89)90005-0 |
[7] | H. Chen, P. Felmer, L. Véron, Elliptic equations involving general subcritical source nonlinearity and measures, arXiv, 2014. https://doi.org/10.48550/arXiv.1409.3067 |
[8] | H. Chen, A. Quaas, Classification of isolated singularities of nonnegative solutions to fractional semilinear elliptic equations and the existence results, J. Lond. Math. Soc., 97 (2018), 196–221. https://doi.org/10.1112/jlms.12104 doi: 10.1112/jlms.12104 |
[9] | H. Chen, L. Véron, Semilinear fractional elliptic equations involving measures, J. Difer. Equations, 257 (2014), 1457–1486. https://doi.org/10.1016/j.jde.2014.05.012 doi: 10.1016/j.jde.2014.05.012 |
[10] | G. Dal Maso, F. Murat, L. Orsina, A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 28 (1999), 741–808. |
[11] | A. Di Castro, T. Kuusi, G. Palatucci, Local behavior of fractional $p$-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279–1299. https://doi.org/10.1016/j.anihpc.2015.04.003 doi: 10.1016/j.anihpc.2015.04.003 |
[12] | A. Di Castro, T. Kuusi, G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014), 1807–1836. https://doi.org/10.1016/j.jfa.2014.05.023 doi: 10.1016/j.jfa.2014.05.023 |
[13] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[14] | R. Fefferman, Strong differentiation with respect to measures, Amer. J. Math., 103 (1981), 33–40. https://doi.org/10.2307/2374188 doi: 10.2307/2374188 |
[15] | K. T. Gkikas, Quasilinear elliptic equations involving measure valued absorption terms and measure data, JAMA, 2023. https://doi.org/10.1007/s11854-023-0321-0 doi: 10.1007/s11854-023-0321-0 |
[16] | K. Gkikas, P. T. Nguyen, Semilinear elliptic Schrödinger equations involving singular potentials and source terms, Nonlinear Anal., 238 (2024), 113403. https://doi.org/10.1016/j.na.2023.113403 doi: 10.1016/j.na.2023.113403 |
[17] | J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, Oxford Science Publications, 1993. |
[18] | A. Iannizzotto, S. Mosconi, M. Squassina, Global Hölder regularity for the fractional $p$-Laplacian, Rev. Mat. Iberoam., 32 (2016), 1353–1392. https://doi.org/10.4171/rmi/921 doi: 10.4171/rmi/921 |
[19] | T. Kilpeläinen, J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137–161. https://doi.org/10.1007/BF02392793 doi: 10.1007/BF02392793 |
[20] | T. Kilpeläinen, J. Malý, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 19 (1992), 591–613. |
[21] | M. Kim, K. A. Lee, S. C. Lee, The Wiener criterion for nonlocal Dirichlet problems, Commun. Math. Phys., 400 (2023), 1961–2003. https://doi.org/10.1007/s00220-023-04632-w doi: 10.1007/s00220-023-04632-w |
[22] | J. Korvenpää, T. Kuusi, E. Lindgren, Equivalence of solutions to fractional $p$-Laplace type equations, J. Math. Pures Appl., 132 (2019), 1–26. https://doi.org/10.1016/j.matpur.2017.10.004 doi: 10.1016/j.matpur.2017.10.004 |
[23] | J. Korvenpää, T. Kuusi, G. Palatucci, Fractional superharmonic functions and the Perron method for nonlinear integro-differential equations, Math. Ann., 369 (2017), 1443–1489. https://doi.org/10.1007/s00208-016-1495-x doi: 10.1007/s00208-016-1495-x |
[24] | J. Korvenpää, T. Kuusi, G. Palatucci, The obstacle problem for nonlinear integro-differential operators, Calc. Var. PDEs, 55 (2016), 63. https://doi.org/10.1007/s00526-016-0999-2 doi: 10.1007/s00526-016-0999-2 |
[25] | T. Kuusi, G. Mingione, Y. Sire, Regularity issues involving the fractional $p$-Laplacian, In: Recent developments in nonlocal theory, Berlin: De Gruyter, 2017,303–334. https://doi.org/10.1515/9783110571561-010 |
[26] | T. Kuusi, G. Mingione, Y. Sire, Nonlocal equations with measure data, Commun. Math. Phys., 337 (2015), 1317–1368. https://doi.org/10.1007/s00220-015-2356-2 doi: 10.1007/s00220-015-2356-2 |
[27] | E. Lindgren, P. Lindqvist, Perron's method and Wiener's theorem for a nonlocal equation, Potential Anal., 46 (2017), 705–737. https://doi.org/10.1007/s11118-016-9603-9 doi: 10.1007/s11118-016-9603-9 |
[28] | E. Lindgren, P. Lindqvist, Fractional eigenvalues, Calc. Var. PDEs, 49 (2014), 795–826. https://doi.org/10.1007/s00526-013-0600-1 doi: 10.1007/s00526-013-0600-1 |
[29] | G. Palatucci, The dirichlet problem for the $p$-fractional laplace equation, Nonlinear Anal., 177 (2018), 699–732. https://doi.org/10.1016/j.na.2018.05.004 doi: 10.1016/j.na.2018.05.004 |
[30] | N. C. Phuc, I. E. Verbitsky, Singular quasilinear and Hessian equations and inequalities, J. Funct. Anal., 256 (2009), 1875–1906. https://doi.org/10.1016/j.jfa.2009.01.012 doi: 10.1016/j.jfa.2009.01.012 |
[31] | N. C. Phuc, I. E. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type, Ann. Math., 168 (2008), 859–914. |
[32] | L. Véron, Local and global aspects of quasilinear degenerate elliptic equations, Quasilinear elliptic singular problems, World Scientific Publishing Co. Pte. Ltd., 2017. https://doi.org/10.1142/9850 |