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Abstract: Let s ∈ (0, 1), 1 < p < N
s and Ω ⊂ RN be an open bounded set. In this work we study the

existence of solutions to problems (E±) Lu ± g(u) = µ and u = 0 a.e. in RN \ Ω, where g ∈ C(R) is a
nondecreasing function, µ is a bounded Radon measure on Ω and L is an integro-differential operator
with order of differentiability s ∈ (0, 1) and summability p ∈ (1, N

s ). More precisely, L is a fractional
p-Laplace type operator. We establish sufficient conditions for the solvability of problems (E±). In the
particular case g(t) = |t|κ−1t; κ > p − 1, these conditions are expressed in terms of Bessel capacities.
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1. Introduction

Let Ω ⊂ RN be an open bounded domain, s ∈ (0, 1) and 1 < p < N
s . In this article we are concerned

with the existence of very weak solutions to the quasilinear nonlocal problemsLu ± g(u) = µ, in Ω,

u = 0, in RN \Ω,
(P±)

where µ is a bounded Radon measure on Ω and g ∈ C(R) is a nondecreasing function such that g(0) = 0.
Here, the nonlocal operator L is defined by

Lu(x) := P.V.
∫
RN
|u(x) − u(y)|p−2(u(x) − u(y))K(x, y)dy, ∀x ∈ Ω,

where the symbol P.V. stands for the principle value integral and K : RN ×RN → R is a measurable and
symmetric (i.e., K(x, y) = K(y, x)) function. Note that if K(x, y) ≡ |x − y|−N−sp then L coincides with
the standard fractional p-Laplace operator (−∆)s

p.
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Throughout this work, we assume that there exists a positive constant ΛK ≥ 1 such that the following
ellipticity condition holds

Λ−1
K |x − y|−N−sp ≤ K(x, y) ≤ ΛK |x − y|−N−sp, ∀(x, y) ∈ RN × RN and x , y.

In addition, we denote byMb(Ω) the space of Radon measures on RN such that µ(RN \Ω) = 0, as well
as byM+

b (Ω) its positive cone.
Let

CN,s := 22sπ−
N
2 s

Γ( N+2s
2 )

Γ(1 − s)
> 0.

For p = 2 and K(x, y) = CN,s|x − y|−N−2s, operator L reduces to the well-known fractional Laplace
operator (−∆)s and the problem P+ becomes(−∆)su + g(u) = µ, in Ω

u = 0, in RN \Ω.
(1.1)

When g satisfies the subcritical integral condition∫ ∞

1
(g(s) − g(−s))s−

N
N−2s−1ds < ∞,

Chen and Véron [9] showed that problem (1.1) admits a unique very weak solution for any µ ∈ Mb(Ω).
In addition they showed that problem (1.1) with g(u) = |u|κ−1u (κ > 1) possesses a very weak solution if
and only if µ is absolutely continuous with respect to Bessel capacity CL2s,κ′ , i.e., µ vanishes on compact
set E of Ω satisfying Cap2s,κ′(E) = 0 (see (3.21) for the definition of the Bessel capacities). Their
approach is based on the properties of the Green Kernel associated with fractional Laplace operator
(−∆)s in Ω.

In the local theory and more precisely when Lu = −∆pu = −div(|∇u|p−2∇u), related problems have
been studied in [4–6, 15, 30–32]. In particular, in the power case, i.e.,−∆pu + |u|κ−1u = µ, in Ω,

u = 0, on ∂Ω,
(1.2)

Bidaut-Véron, Nguyen and Véron [5] established that if µ ∈ Mb(Ω) is absolutely continuous with
respect to the Bessel capacity Capp, κ

κ−p+1
, then there exists a renormalized solution to problem (1.2) with

κ > p − 1. A main ingredient in the proof of this result is the pointwise estimates for p-superharmonic
functions in Ω. These pointwise estimates are expressed in terms of the truncated Wolff potentials
WR

1,p[µ] (see, e.g., [17, 19, 20, 31]). We recall here that the truncated Wolff potential is given by

WR
α,p[µ](x) :=

∫ R

0

(
|µ|(Br(x))

rN−αp

) 1
p−1 dr

r
, (1.3)

for any R > 0 and α ∈ (0,N) such that p ∈ (1, N
α

). Conversely, Bidaut-Véron [4] showed that if
problem (1.2) with κ > p − 1 admits a renormalized solution, then µ is absolutely continuous with
respect to the Bessel capacity Capp, κ

κ−p+1 +ε, for any ε > 0.
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Phuc and Verbitsky [31] showed that if τ ∈ M+
b (Ω) has compact support in Ω, then the problem−∆pu − |u|κ = ρτ, in Ω,

u = 0, on ∂Ω,
(1.4)

admits a nonnegative renormalized solution for some ρ > 0, if and only if, there exists a positive
constant C such that

τ(K) ≤ CCapp, κ
κ−p+1

(K), (1.5)

for any compact K ⊂ Ω. Moreover, they showed that (1.5) is equivalent to

W2diam (Ω)
1,p [(W2diam (Ω)

1,p [τ])κ] ≤ CW2diam (Ω)
1,p [τ], a.e. in Ω,

for some positive constant C > 0.
Recently, a great attention has been drawn to the study of the fractional p-Laplacian or more general

nonlocal operators (see for example [2, 11, 12, 18, 21–29] ). More precisely, Kuusi, Mingione and
Sire [26] dealt with the problem LΦu = µ, in Ω,

u = g, in RN \Ω,
(1.6)

where g ∈ W s,p(RN), LΦ is a nonlocal operator defined by

< LΦu, ζ >:=
∫
RN

∫
RN

Φ(u(x) − u(y))(ζ(x) − ζ(y))K(x, y)dydx, ∀ζ ∈ C∞0 (Ω).

Here Φ : R→ R is a continuous function such that Φ(0) = 0 and

Λ−1
Φ |t|

p ≤ Φ(t)t ≤ ΛΦ|t|p.

When 2 − s
N < p, they show the existence of a very weak solution to (1.6), which they called SOLA

(Solutions obtained as limits of approximations). They also showed local pointwise estimates for
SOLA to (1.6) in terms of the truncated Wolff Potential WR

s,p[µ]. In the particular case Φ(t) = |t|p−2t and
g = 0, the existence of very weak solutions was established in [2] for any 1 < p < N

s .

The objective of this work is to determine the subcritical integral conditions on g, which ensure the
existence of very weak solutions to problems (P±). In addition, in the power case, i.e., g(u) = |u|κ−1u;
κ > p − 1, we aim to find sufficient conditions, expressed in terms of Bessel capacities like above, for
the solvability of (P±).

Let us mention here that our work is inspired by the article [5] for problem (P+) and by the
articles [30, 31] for problem (P−) with g(u) = |u|κ−1u; κ > p − 1. However, due to the presence
of the nonlocal operator, new essential difficulties arise which complicate drastically the study of
problems (P±).

In order to state our main results, we need to introduce the notion of the very weak solutions.
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Definition 1.1. Let s ∈ (0, 1), 1 < p < N
s , g̃ ∈ C(R), Ω ⊂ RN be an open bounded domain and

µ ∈ M(Ω). We will say that u : RN → R is a very weak solution to the problemLu + g̃(u) = µ, in Ω,

u = 0, in RN \Ω,
(1.7)

if g̃(u) ∈ L1
loc(Ω) and if the following conditions are valid:

(i) u = 0 a.e. in RN \Ω and u ∈ Wh,q(RN) for any 0 < h < s and for any 0 < q < N(p−1)
N−s .

(ii) Tk(u) := max(−k,min(u, k)) ∈ W s,p
0 (Ω) for any k > 0.

(iii) ∫
RN

∫
RN
|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y))K(x, y)dxdy +

∫
Ω

g̃(u)φdx =

∫
Ω

φdµ

for any φ ∈ C∞0 (Ω).

We note here that if 2− s
N < p < N

s , then the very weak solution u belongs to the fractional Sobolev
space Wh,q(RN) for any q ∈ (1, N(p−1)

N−s ). If p ≤ 2 − s
N , the space Wh,q(RN) in the above definition is no

longer a fractional Sobolev space, however it is defined in the same way (see (2.1)).
In Section 2, we discuss the existence and main properties of the very weak solutions of

problem (1.7) with g̃ ≡ 0. Particularly, in the spirit of [26], we show the existence of a SOLA
u satisfying statements (i)–(iii) of the above definition (see Proposition 2.8). The approximation
sequence consists of solutions of (1.7) with g̃ ≡ 0 and smooth data. In addition, we prove that these
solutions satisfy a priori estimates (2.8) and (2.11). As a result, we establish that the very weak solution
satisfies (2.11) and ∥∥∥|u|p−1

∥∥∥∗
L

N
N−sp
w (RN )

≤ C(N, p, s,ΛK)
∫

Ω

|µ|dx, (1.8)

where ‖·‖∗
L

N
N−sp
w (RN )

has been defined in (2.4) and is related to the Marcinkiewicz spaces. Finally, when

µ ∈ M+
b (Ω), we construct this solution (see Propositions 2.9 and 2.10) such that u ≥ 0 and

C−1(N, p, s,ΛK)W
d(x)

8
s,p [µ](x) ≤ u(x) ≤ C(N, p, s,ΛK)W2diam (Ω)

s,p [µ](x), a.e. in Ω,

where d(x) = dist (x, ∂Ω). The lower estimate in the above display can be obtained as a consequence
of [26, estimate (1.25)]. The upper estimate in the above display is an application of [21, Theorem 5.3]
and (1.8).

Using the above properties of the very weak solutions and the fact that if u, g satisfies (1.8) and (1.9)
respectively then g(u) ∈ L1(Ω), we obtain the following result.

Theorem 1.2. Let s ∈ (0, 1), 1 < p < N
s , µ ∈ Mb(Ω). We assume that g ∈ C(R) is a nondecreasing

function satisfying g(0) = 0 and ∫ ∞

1
(g(s) − g(−s))s−

N(p−1)
N−sp −1ds < ∞. (1.9)
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Then there exist a very weak solution u to problem (P+) satisfying (1.8) and

−C(N, p, s,ΛK)W2diam (Ω)
s,p [µ−] ≤ u ≤ C(N, p, s,ΛK)W2diam (Ω)

s,p [µ+], a.e. in Ω. (1.10)

In addition, for any q ∈ (0, N(p−1)
N−s ) and h ∈ (0, s), there exists a positive constant c =

c(N, p, s,ΛK , q, h, |Ω|) such that(∫
Ω

|g(u)|dx
) 1

p−1

+

(∫
RN

∫
RN

|u(x) − u(y)|q

|x − y|N+hq dxdy
) 1

q

≤ c(|µ|(Ω))
1

p−1 . (1.11)

We note here that the integral conditions (1.9) and (1) coincide for p = 2. In addition, in the
corresponding local case, the integral condition (1.9) with s = 1 ensures the existence of the associated
renormalized solutions (see [32, Theorem 5.1.2 and (5.1.40)]).

Let us consider problem (P+) with a power absorption, i.e.,Lu + |u|κ−1u = µ, in Ω,

u = 0, in RN \Ω.
(1.12)

We first notice that the function g(t) = |t|κ−1t with k > 0 satisfies (1.9) if and only if 0 < κ < N(p−1)
N−sp ,

hence problem (1.12) admits a very weak solution in this case. In the supercritical case κ ≥ N(p−1)
N−sp , the

sufficient condition for the solvability of problem (1.12) is expressed in terms of the Bessel capacity
Capsp, κ

κ−p+1
as follows.

Theorem 1.3. Let s ∈ (0, 1), 1 < p < N
s , κ > p − 1 and µ ∈ Mb(Ω). In addition we assume that µ

is absolutely continuous with respect to the Bessel capacity Capsp, κ
κ−p+1

. Then there exists a very weak
solution u to problem (1.12) such that

−CW2diam (Ω)
s,p [µ−] ≤ u ≤ CW2diam (Ω)

s,p [µ+], a.e. in Ω. (1.13)

In addition, for any q ∈ (0, N(p−1)
N−s ) and h ∈ (0, s), there exists a positive constant c =

c(N, p, s,ΛK , q, h, |Ω|) such that(∫
Ω

|u|κdx
) 1

p−1

+

(∫
RN

∫
RN

|u(x) − u(y)|q

|x − y|N+hq dxdy
) 1

q

≤ c(|µ|(Ω))
1

p−1 . (1.14)

In view of the discussion on the existence of solutions to problem (1.4), we expect that the existence
phenomenon occurs for (P−) only for measures µ ∈ Mb(Ω) with small enough total mass. Indeed, using
the Schauder fixed point theorem and sharp weak Lebesgue estimates, we prove the following existence
result for any µ ∈ Mb(Ω) with small enough total mass.

Theorem 1.4. Let s ∈ (0, 1), 1 < p < N
s and τ ∈ Mb(Ω) be such that |τ|(Ω) ≤ 1. Assume that g ∈ C(R)

is a nondecreasing function satisfying (1.9) and

|g(s)| ≤ a|s|d for some a > 0, d > 1 and for any |s| ≤ 1. (1.15)
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Then there exists a positive constant ρ0 depending on N, |Ω|,Λg,ΛK , a, s, p, d, |Ω| such that for every
ρ ∈ (0, ρ0) the following problem Lv = g(v) + ρτ, in Ω,

v = 0, in RN \Ω,
(1.16)

admits a very weak solution v satisfying

‖|v|p−1‖∗

L
N

N−sp
w (RN )

≤ t0. (1.17)

Here, t0 > 0 depends on N, |Ω|,Λg,ΛK , a, s, p, d, ρ0. In addition, for any q ∈ (0, N(p−1)
N−s ) and h ∈ (0, s),

there exists a positive constant c depending only on N, p, s,Λg,ΛK , q, h, |Ω|, a, d, ρ0 and t0, such that(∫
RN

∫
RN

|v(x) − v(y)|q

|x − y|N+hq dxdy
) 1

q

≤ c(1 + ρ|τ|(Ω))
1

p−1 . (1.18)

In the linear case, i.e., p = 2, problem (P−) with L = (−∆)s was thoroughly studied in [7]. More
precisely, the authors in [7] showed that the same existence result occurs provided g satisfies (1)
and (1.15).

Problem (P−) with g(t) = |t|κ−1t and µ ∈ M+
b (Ω) becomesLv = |v|κ−1v + ρτ, in Ω,

v = 0, in RN \Ω.
(1.19)

When p = 2, problem (P−) with L = (−∆)s and τ = δ0 was studied in [8]. Here δ0 denotes the dirac
measure concentrated at a point x0 ∈ Ω. In particular, the authors in [8] established that if κ ≥ N

N−2s
and u is a nonnegative solution of (1.19) then ρ = 0. Concerning problem (1.19), conditions (1.9)
and (1.15) are satisfied if κ belongs to the subcritical range, that is when p− 1 < κ < N(p−1)

N−sp . In general,
a sufficient condition for the solvability of (1.19) is the following.

Proposition 1.5. Let s ∈ (0, 1), 1 < p < N
s , κ > p − 1 and τ ∈ M+

b (Ω) be such that

W2diam (Ω)
s,p [(W2diam (Ω)

s,p [τ])κ] ≤ MW2diam (Ω)
s,p [τ], a.e. in Ω, (1.20)

for some positive constant M. Then problem (1.19) admits a nonnegative very weak solution u for some
ρ > 0. Furthermore, there holds

M−1W
d(x)

8
s,p [µ](x) ≤ u(x) ≤ MW2diam (Ω)

s,p [ρτ](x), for a.e. x ∈ Ω, (1.21)

where dµ = uκdx + ρdτ and the positive constant M depends only on C,N, p, q,ΛK .

Finally, inspired from Phuc and Verbitsky’s ideas in [30, 31], we establish the following existence
result in the whole range κ > p − 1.

Theorem 1.6. Let s ∈ (0, 1), 1 < p < N
s , κ > p − 1 and τ ∈ M+

b (Ω) with compact support in Ω. Then
the following statements are equivalent.
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(i) Problem (1.19) admits a nonnegative very weak solution uρ for some ρ > 0 such that

C−1
1 W

d(x)
8

s,p [µ](x) ≤ uρ(x) ≤ C1W2diam (Ω)
s,p [ρτ](x), for a.e. x ∈ Ω, (1.22)

where dµ = uκdx + ρdτ and for some constant C1 > 0.
(ii) There exists a positive constant C2 such that

τ(E) ≤ C2Capsp, κ
κ−p+1

(E) (1.23)

for any Borel set E ⊂ RN .

(iii) There exists a positive constant C3 such that∫
B
(W2diam (Ω)

s,p [τbB])κdx ≤ C3τ(B) (1.24)

for any ball B ⊂ RN , where dτbB = χBdτ.
(iv) There exists a positive constant C4 such that

W2diam (Ω)
s,p [(W2diam (Ω)

s,p [τ])κ] ≤ C4W2diam (Ω)
s,p [τ], a.e. in Ω.

We note here that if p − 1 < q < N(p−1)
N−sp then spq

q−p+1 > N, this implies that Capsp, q
q−p+1

({x}) > 0 for any
x ∈ RN (see [1, Section 2.6]). Hence, the statement (ii) in the above theorem is always satisfied in the
subcritical range.

Section 2 is devoted to the study of the very weak solutions to problem (1.7) with g̃ ≡ 0. In
Section 3, we discuss problem (P+) as well as Theorems 1.2 and 1.3 are proved in Subsections 3.2
and 3.3 respectively. In section 4, we deal with problem (P−). More precisely, we prove Theorem 1.4
in Subsection 4.1 and demonstrate Proposition 1.5 and Theorem 1.6 in Subsection 4.2.

2. Very weak solutions

We start with the definition of the fractional spaces, which will be used frequently in this work. For
any s ∈ (0, 1) and q > 0, we denote by W s,q(RN) the fractional space

W s,q(RN) :=
{∫
RN

∫
RN

|u(x) − u(y)|q

|x − y|N+sq dxdy +

∫
RN
|u|qdx < ∞

}
, (2.1)

endowed with the quasinorm

‖u‖W s,q(RN ) :=
(∫
RN

∫
RN

|u(x) − u(y)|q

|x − y|N+sq dxdy
) 1

q

+

(∫
RN
|u|qdx

) 1
q

.

When q ≥ 1, W s,q(RN) is a Banach space and is called fractional Sobolev space. Finally, for any p > 1,
we denote by W s,p

0 (Ω) the closure of C∞0 (Ω) in the norm ‖·‖W s,p(RN ) and by (W s,p
0 (Ω))∗ its dual space.
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2.1. Weak solutions and a priori estimates

In this subsection, we introduce the notion of the weak solution of the following problemLu = µ, in Ω,

u = 0, in RN \Ω,
(2.2)

where µ ∈ (W s,p
0 (Ω))∗. In addition, when µ ∈ Lp′(Ω), we establish a priori estimates, which will be used

in the construction of the very weak solutions of the above problem with measure data.

Definition 2.1. Let s ∈ (0, 1), p > 1, and µ ∈ (W s,p
0 (Ω))∗. We will say that u ∈ W s,p

0 (Ω) is a weak
solution of (2.2), if it satisfies∫

RN

∫
RN
|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y))K(x, y)dxdy =< µ, φ >, ∀φ ∈ W s,p

0 (Ω).

Let us now give the definition of weak supersolutions of L in Ω.

Definition 2.2. Let s ∈ (0, 1) and p > 1. We will say that u ∈ W s,p(RN) is a weak supersolution (resp.
subsolution) of L in Ω, if and only if satisfies∫

RN

∫
RN
|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y))K(x, y)dxdy ≥ 0 (resp. ≤ 0)

for any nonnegative φ ∈ W s,p
0 (Ω).

Next we state the comparison principle.

Proposition 2.3 ( [23, Lemma 6]). Let u ∈ W s,p(RN) be a weak supersolution of L in Ω as well as let
v ∈ W s,p(RN) be a weak subsolution of L in Ω such that (v − u)+ ∈ W s,p

0 (Ω). Then, u ≥ v a.e. in RN .

In view of the proof [11, Theorem 2.3], we may obtain the following existence result.

Proposition 2.4. For any µ ∈ (W s,p
0 (Ω))∗ there exists a unique weak solution of (2.2).

In order to state the first a priori estimate for the weak solution of (2.2), we need to give the definition
and the main properties of Marcinkiewicz spaces. Let D ⊂ RN be a domain. Denote Lp

w(D), 1 ≤ p < ∞,
the weak Lp space (or Marcinkiewicz space) defined as follows. A measurable function f in D belongs
to this space if there exists a constant c such that

λ f (a) := |{x ∈ D : | f (x)| > a}| ≤ ca−p, ∀a > 0. (2.3)

The function λ f is called the distribution function of f . For p ≥ 1, denote

Lp
w(D) = { f Borel measurable : sup

a>0
apλ f (a) < ∞},

‖ f ‖∗Lp
w(D) = (sup

a>0
apλ f (a))

1
p . (2.4)
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The ‖.‖∗Lp
w(D) is not a norm, but for p > 1, it is equivalent to the norm

‖ f ‖Lp
w(D) = sup


∫
ω
| f |dx

|ω|1/p′ : ω ⊂ D, ω measurable, 0 < |ω| < ∞

 . (2.5)

More precisely,

‖ f ‖∗Lp
w(D) ≤ ‖ f ‖Lp

w(D) ≤
p

p − 1
‖ f ‖∗Lp

w(D) . (2.6)

Notice that,
Lp

w(D) ⊂ Lr(D), ∀r ∈ [1, p).

From (2.4) and (2.6), one can derive the following estimate which is useful in the sequel.∫
{|u|≥s}

dx ≤ s−p ‖u‖p
Lp

w(D)
. (2.7)

Proposition 2.5. Let 1 < p < N
s , µ ∈ Lp′(Ω) and u ∈ W s,p

0 (Ω) be the unique weak solution of (2.2).
Then there exists a positive constant C = C(p, s,N,ΛK) such that

∥∥∥|u|p−1
∥∥∥∗

L
N

N−sp
w (RN )

≤ C
∫

Ω

|µ|dx. (2.8)

Proof. Let k > 0. Taking Tk(u) as test function and using the fact that

|u(x) − u(y)|p−2(u(x) − u(y))(Tk(u)(x) − Tk(u)(y)) ≥ |Tk(u)(x) − Tk(u)(y)|p, ∀x, y ∈ RN ,

we obtain ∫
RN

∫
RN

|Tk(u)(x) − Tk(u)(y)|p

|x − y|N+sp dxdy ≤ ΛKk
∫

Ω

|µ|dx. (2.9)

Now, by the above inequality and the fractional Sobolev inequality we have

|{|u(x)| ≥ k}| = |{|Tk(u)(x)| ≥ k}| ≤ k−
N p

N−sp

∫
RN
|Tk(u)(x)|

N p
N−sp dx ≤ Ck−

N(p−1)
N−sp

(∫
Ω

|µ|dx
) N

N−sp

,

which implies the desired result. �

Proposition 2.6. Let µ ∈ Lp′(Ω) and u ∈ W s,p
0 (RN) be the unique weak solution of (2.2). Then there

exists a positive constant C = C(p, s,N,ΛK) such that∫
RN

∫
RN

|u(x) − u(y)|p

(d + |u(x)| + |u(y)|)ξ
dxdy

|x − y|N+sp ≤
Cd1−ξ

(ξ − 1)

∫
Ω

|µ|dx (2.10)

for any ξ > 1 and d > 0.
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Proof. The proof is very similar to that of [26, Lemma 3.1] (see also [25, Lemma 8.4.1]). For the sake
of convenience we give it below.

Set φ± := ±(d1−ξ − (d + u±)1−ξ). Using φ± as test function we obtain∫
RN

∫
RN
|u(x) − u(y)|p−2(u(x) − u(y))(φ±(x) − φ±(y))K(x, y)dxdy =

∫
Ω

φ±µdx.

Now,

(φ±(x) − φ±(y)) = ±(ξ − 1)(u±(x) − u±(y))
∫ 1

0
(d + tu±(y) + (1 − t)u±(x))−ξdt,

which implies

|u(x) − u(y)|p−2(u(x) − u(y))(φ±(x) − φ±(y))K(x, y)
≥ (ξ − 1)|u(x) − u(y)|p−2(u±(x) − u±(y))2(d + |u(y)| + |u(x)|)−ξ.

Combining all above we can easily reach the desired result. �

We conclude this subsection by the following a priori estimate for the weak solutions of (2.2) in the
whole range p > 1.

Proposition 2.7. Let q = min{N(p−1)
N−s , p} µ ∈ Lp′(Ω) and u ∈ W s,p

0 (RN) be the unique weak solution
of (2.2). For any q ∈ (0, q) and h ∈ (0, s), there exists a positive constant c depending only on
N, s, p,ΛK , q and |Ω| such that(∫

RN

∫
RN

|u(x) − u(y)|q

|x − y|N+hq dxdy
) 1

q

≤ c
( ∫

Ω

|µ|dx
) 1

p−1

. (2.11)

Proof. The proof is an adaptation of the argument in [26, Lemma 3.2]. Let R = diam (Ω) and x0 ∈ Ω.

First, we note that∫
RN

∫
RN

|u(x) − u(y)|q

|x − y|N+hq dxdy =

∫
B2R(x0)

∫
B2R(x0)

|u(x) − u(y)|q

|x − y|N+hq dxdy

+

∫
RN\B2R(x0)

∫
RN\B2R(x0)

|u(x) − u(y)|q

|x − y|N+hq dxdy

+ 2
∫
RN\B2R(x0)

∫
B2R(x0)

|u(x) − u(y)|q

|x − y|N+hq dxdy.

Taking into account that u = 0 a.e. in RN \Ω, we can easily prove that∫
RN\B2R(x0)

∫
RN\B2R(x0)

|u(x) − u(y)|q

|x − y|N+hq dxdy = 0

and ∫
RN\B2R(x0)

∫
B2R(x0)

|u(x) − u(y)|q

|x − y|N+hq dxdy =

∫
RN\B2R(x0)

∫
BR(x0)

|u(x)|q

|x − y|N+hq dxdy

≈

∫
BR(x0)

|u(x)|qdx
∫
RN\B2R(x0)

1
(1 + |y − x0|)N+hq dy
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≈

∫
BR(x0)

|u(x)|qdx.

Here, we have also used the fact that |x− y| ≈ 1 + |y− x0| for any (x, y) ∈ BR(x0)× (RN \ B2R(x0)), where
the implicit constants in the last estimate depend only on R. Similarly, we have∫

B2R(x0)

∫
B2R(x0)

|u(x) − u(y)|q

|x − y|N+hq dxdy =

∫
B 3R

2
(x0)

∫
B 3R

2
(x0)

|u(x) − u(y)|q

|x − y|N+hq dxdy

+

∫
B2R(x0)\B 3R

2
(x0)

∫
B2R(x0)\B 3R

2
(x0)

|u(x) − u(y)|q

|x − y|N+hq dxdy

+ 2
∫

B2R(x0)\B 3R
2

(x0)

∫
B 3R

2
(x0)

|u(x) − u(y)|q

|x − y|N+hq dxdy

≈

∫
B 3R

2
(x0)

∫
B 3R

2
(x0)

|u(x) − u(y)|q

|x − y|N+hq dxdy +

∫
BR(x0)

|u|qdx.

Combining all above, we have∫
RN

∫
RN

|u(x) − u(y)|q

|x − y|N+hq dxdy ≈
∫

B2R(x0)

∫
B2R(x0)

|u(x) − u(y)|q

|x − y|N+hq dxdy +

∫
Ω

|u|qdx

≈

∫
B2R(x0)

∫
B2R(x0)

|u(x) − u(y)|q

|x − y|N+hq dxdy.
(2.12)

Now, by Hölder inequality we obtain∫
B2R(x0)

∫
B2R(x0)

|u(x) − u(y)|q

|x − y|N+hq dxdy

=

∫
B2R(x0)

∫
B2R(x0)

(
|u(x) − u(y)|p

(d + |u(x)| + |u(y)|)ξ |x − y|ps (d + |u(x)| + |u(y)|)ξ |x − y|p(s−h)
) q

p dxdy
|x − y|N

≤

(∫
B2R(x0)

∫
B2R(x0)

|u(x) − u(y)|p

(d + |u(x)| + |u(y)|)ξ |x − y|N+sp dxdy
) q

p

×

∫
B2R(x0)

∫
B2R(x0)

(d + |u(x)| + |u(y)|)
ξq

p−q

|x − y|N−
qp(s−h)

p−q

dxdy


p−q

p

.

(2.13)

Setting

d =

(∫
Ω

|u(y)|
ξq

p−q dx
) p−q

ξq

and combining (2.10) and (2.13), we conclude∫
B2R(x0)

∫
B2R(x0)

|u(x) − u(y)|q

|x − y|N+hq dxdy ≤ cd
q
p

( ∫
Ω

|µ|dx
) q

p

. (2.14)

If p > 2 − s
N , without loss of generality, we may assume that q > 1. Therefore, we may apply the

fractional Sobolev inequality to d as in the proof of [26, Lemma 3.2] to obtain the desired result.
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If 1 < p ≤ 2 − N
s , we have that 0 < q ≤ 1, therefore, we can not apply the fractional Sobolev

inequality to d. To overcome this difficulty we use (2.8) instead of fractional Sobolev inequality.
More precisely, let 1 < p < N

s , then 0 < q < N(p−1)
N−s < p. Hence, we may choose ξ > 1 such that

1 < γ := ξq
(p−1)(p−q) <

N
N−sp . Thus, by (2.6) and (2.8), we deduce

(∫
Ω

|u|γ(p−1)
) 1
γ

≤ C(γ,N, p, s, |Ω|,ΛK)
∫

Ω

|µ|dx,

which in turn implies

d ≤ C(γ,N, p, s, |Ω|,ΛK)
(∫

Ω

|µ|dx
) 1

p−1

.

The desired result follows by (2.12), (2.14) and the above inequality. �

2.2. Existence and main properties

In this subsection, we construct a very weak solution to problem (2.2) which possesses several
important properties, such as it satisfies pointwise estimates in terms of Wolff’s potential. These
estimates play an important role in the study of problems (P±).

We start with the following existence result.

Proposition 2.8. Let 1 < p < N
s and µ ∈ Mb(Ω). Then there exists a very weak solution to (2.2)

satisfying ∥∥∥|u|p−1
∥∥∥∗

L
N

N−sp
w (RN )

≤ C1(N, p, s,ΛK)µ(Ω) (2.15)

and ∫
RN

∫
RN

|Tk(u)(x) − Tk(u)(y)|p

|x − y|N+sp dxdy ≤ kΛK |µ|(Ω), ∀k > 0. (2.16)

In addition, for any q ∈ (0, N(p−1)
N−s ) and h ∈ (0, s), there exist a positive constant C2 =

C2(N, p, s,ΛK , q, h, |Ω|) such that(∫
RN

∫
RN

|u(x) − u(y)|q

|x − y|N+hq dxdy
) 1

q

≤ C2|µ|(Ω)
1

p−1 . (2.17)

Proof. Let {ρn}n be a sequence of mollifiers and µn = ρn ∗ µ. Then µn ∈ C∞0 (RN) and µn ⇀ µ weakly in
RN . We denote by un the weak solution of (2.2) with µ = µn.

By (2.8), (2.9) and (2.11), there exist positive constants C1 and C2 such that∥∥∥|un|
p−1

∥∥∥∗
L

N
N−sp
w (RN )

≤ C1(N, p, s,ΛK)µ(Ω), ∀n ∈ N, (2.18)

∫
RN

∫
RN

|Tk(un)(x) − Tk(un)(y)|p

|x − y|N+sp dxdy ≤ kΛKµ(Ω), ∀k > 0 and n ∈ N, (2.19)
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and (∫
RN

∫
RN

|un(x) − un(y)|q

|x − y|N+hq dxdy
) 1

q

≤ C2(N, p, s,ΛK , q, h)µ(Ω)
1

p−1 (2.20)

for any n ∈ N, q ∈ (0, N(p−1)
N−s ) and h ∈ (0, s).

In the spirit of the proof of [10, Theorem 3.4], we will show that the existence of a subsequence
(still denoted by {un}) and a function u : RN → R satisfying the following properties:

(i) u ∈ Wh,q(RN) for any 0 < q < N(p−1)
N−s and 0 < h < s.

(ii) un → u a.e. in RN , u = 0 a.e. in RN \ Ω and ‖u − un‖Wh,q(RN ) → 0 for any q ∈ (0, N(p−1)
N−s ) and

h ∈ (0, s).
(iii) Tk(u) ∈ W s,p

0 (Ω) for any k > 0.
Step 1. There exists a subsequence, still denoted by un, such that

lim
n→∞

lim
m→∞
|{x ∈ Ω : |un − um| > η}| = 0, ∀ η > 0.

Let n,m ∈ N and η, ρ > 0. Then

{|un − um| > η} ⊂ {|Tk(un)| > k} ∪ {|Tk(um)| > k} ∪ {|Tk(un) − Tk(um)| > η}.

By (2.18) and (2.7), there exists k0 > 0 such that

|{|Tk(un)| > k}| + |{|Tk(um)| > k}| ≤
ρ

2
, ∀k ≥ k0. (2.21)

By (2.19), the fractional Sobolev embedding theorem (see e.g., [13, Corollary 7.2]) and the fact that
W s,p

0 (Ω) is a reflexive Banach space, we may prove the existence of a subsequence Tk0(un j) of Tk0(un)
such that Tk0(un j)→ vk0 in Lp(RN) and a.e. in RN as well as Tk0(un j) ⇀ vk0 in W s,p

0 (Ω). Hence,

|{|Tk0(un j) − Tk0(um j̃
)| > η}| ≤

ρ

2
, ∀ j, j̃ ≥ n0. (2.22)

The desired result follows by (2.21) and (2.22).

Step 2. Weak convergence of the truncates. Since un → u a.e. in RN , we have that Tk(un) → Tk(u)
a.e. in RN . Furthermore, by (2.19) and the fractional Sobolev embedding theorem, we can find a
subsequence {Tk(un j)}

∞
j=1 such that Tk(un j) → vk in Lp(RN) and Tk(un j) ⇀ vk in W s,p

0 (Ω). Since vk =

Tk(u) a.e. in RN , we have that Tk(u) ∈ W s,p
0 (Ω). This implies that the limit does not depend on the

subsequence. Hence, for the same subsequence un of the Step 1, we have that

Tk(un) ⇀ Tk(u) in W s,p
0 (Ω), ∀k > 0.

Furthermore, by (2.18)–(2.20) and Fatou’s lemma, we have that∥∥∥|u|p−1
∥∥∥∗

L
N

N−sp
w (RN )

≤ C1(N, p, s,ΛK)µ(Ω), (2.23)

∫
RN

∫
RN

|Tk(u)(x) − Tk(u)(y)|p

|x − y|N+sp dxdy ≤ kΛKµ(Ω), ∀k > 0, (2.24)
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and (∫
RN

∫
RN

|u(x) − u(y)|q

|x − y|N+hq dxdy
) 1

q

≤ C2(N, p, s,ΛK , q, h)µ(Ω)
1

p−1 (2.25)

for any q ∈ (0, N(p−1)
N−s ) and h ∈ (0, s).

By (2.20), (2.25) and the fact that un → u a.e. in RN , We can easily show that ‖u − un‖Wh,q(RN ) → 0
for any q ∈ (0, N(p−1)

N−s ) and h ∈ (0, s). Let φ ∈ C∞0 (Ω), q ∈ (p − 1, N(p−1)
N−s ) and h ∈ (max( sp−1

p−1 , 0), s). For
any bounded Borel set E ⊂ RN , we have that∣∣∣∣∣∫

E

∫
E
|un(x) − un(y)|p−2(un(x) − un(y))(φ(x) − φ(y))K(x, y)dxdy

∣∣∣∣∣
≤ C(φ,ΛK)

∫
E

∫
E

|un(x) − un(y)|p−1

|x − y|N+hp−1+sp−h(p−1)−1

≤ C(φ,ΛK)
(∫

E

∫
E

|un(x) − un(y)|q

|x − y|N+hq dxdy
) p−1

q
(∫

E

∫
E
|x − y|−N− q(sp−h(p−1)−1)

q−p+1 dxdy
) q−p+1

q

.

This, together with (i), (ii) and the fact that q(sp−h(p−1)−1)
q−p+1 < 0, implies that∫

Ω

φdµ = lim
n→∞

∫
Ω

φµndx

= lim
n→∞

∫
RN

∫
RN
|un(x) − un(y)|p−2(un(x) − un(y))(φ(x) − φ(y))K(x, y)dxdy

=

∫
RN

∫
RN
|u(x) − u(y)|p−2(un(x) − un(y))(φ(x) − φ(y))K(x, y)dxdy.

The proof is complete. �

In the next theorem, we establish a priori pointwise estimates for a certain nonnegative very weak
solution of problem (2.2) with µ ∈ M+

b (Ω).

Proposition 2.9. Let 1 < p < N
s and µ ∈ M+

b (Ω). Then there exist a nonnegative very weak solution u
of (2.2) and a positive constant C depending only on N, s, p,ΛK such that

C−1W
d(x)

8
s,p [µ](x) ≤ u(x)

≤ C
(

ess inf
B d(x)

4
(x)

u + W
d(x)

2
s,p [µ](x) +

((d(x)
4

)sp ∫
RN\B d(x)

4
(x)

u(y)p−1

|x − y|N+sp dy
) 1

p−1
) (2.26)

for a.e. x ∈ Ω.

Proof. Let u be the solution constructed in Proposition 2.8 and {un} be the sequence defined in
Proposition 2.8 such that

(i) u ∈ Wh,q(RN) for any 0 < q < N(p−1)
N−s and 0 < h < s.

(ii) un → u a.e. in RN , u = 0 a.e. in RN \ Ω and ‖u − un‖Wh,q(RN ) → 0 for any q ∈ (0, N(p−1)
N−s ) and

h ∈ (0, s).
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Since µn ∈ C∞0 (RN) is a nonnegative function, by (2.3), we have that un ≥ 0 a.e. in RN . Hence,
by [23, Lemma 7], uk,n = min(un, k) is a nonnegative weak supersolution. By properties (i) and (ii), we
may show that uk = min(u, k) is a nonnegative weak supersolution. Hence, there exists a nonnegative
Radon measure µk ∈ M

+(Ω) such that∫
RN

∫
RN
|uk(x) − uk(y)|p−2(uk(x) − uk(y))(φ(x) − φ(y))K(x, y)dxdy =

∫
Ω

φ(x)dµk (2.27)

for any φ ∈ C∞0 (Ω). Since uk → u in RN , we have that ‖u − uk‖Wh,q(RN ) → 0 for any h ∈ (0, s) and
q ∈ (0, N(p−1)

N−s ). This, together with (2.27), implies∫
Ω

φ(x)dµk →

∫
Ω

φ(x)dµ, ∀φ ∈ C∞0 (Ω). (2.28)

Now, we remark that, in view of the proof of [26, Theorem 1.3], we may apply [26, estimate (1.25)] to
uk. Hence,

C−1W
d(x)

8
s,p [µk](x) ≤ uk(x), for a.e. x ∈ Ω and ∀k > 0.

Letting k → ∞ in the above inequality and using some elementary manipulations, we may obtain the
lower estimate in (2.26).

For the upper estimate in (2.26), by [23, Theorem 9], we have that

vk(x) := ess lim inf
y→x

uk(y) = uk(x), for a.e. x ∈ RN .

Hence, vk is a lower semicontinuous functions in Ω and a nonnegative weak supersolution. By [23,
Theorem 12], vk is (s, p)-superharmonic function in Ω (see [23, Definition 1] for the definition of
(s, p)-superharmonic function). This, together with [23, Lemma 12], implies that v := limk→∞ vk is
(s, p)-superharmonic function in Ω and v = u a.e. in RN . The desired result follows by applying [21,
Theorem 5.3] to v and the fact that v = u a.e. in RN . �

Proposition 2.10. Let µ ∈ Mb(Ω). Then there exists a very weak solution u of (2.2) and a positive
constant C depending only on N, s, p and ΛK such that

−CW2diam (Ω)
s,p [µ−] ≤ u ≤ CW2diam (Ω)

s,p [µ+], a.e. in Ω. (2.29)

Proof. Let u be the solution constructed in Proposition 2.8 and x0 ∈ Ω. Set R = diam (Ω), µn = ρn ∗ µ

and µ⊕n = ρn ∗ µ
+. We denote by v⊕n ∈ W s,p

0 (Ω) the solution ofLv⊕n = µ⊕n , in B2R(x0),
v⊕n = 0, in RN \ B2R(x0).

By Proposition 2.3, we have that v⊕n ≥ 0 and v⊕n ≥ un, where un ∈ W s,p
0 (Ω) is the weak solution

of (2.2) with µ = µn. By statements (i)–(iii) in the proof of Proposition 2.8, there exist subsequences
{unk , v

⊕
nk
}∞k=1 such that unk → u and v⊕nk

→ v⊕ a.e. in RN and∥∥∥u − unk

∥∥∥
Wh,q(RN )

+
∥∥∥v⊕ − v⊕nk

∥∥∥
Wh,q(RN )

→ 0
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for any h ∈ (0, s) and q ∈ (0, N(p−1)
N−s ). Combining all above, we may deduce that u ≤ v⊕ a.e. in RN and

v⊕ is a nonnegative very weak solution toLv⊕ = µ+, in B2R(x0),
v⊕ = 0, in RN \ B2R(x0).

In addition, in view of the proof of Proposition 2.9, there exists a positive constant C = C(p, s,ΛK ,N)
such that

u(x) ≤ v⊕(x) ≤ C
(
WR

s,p[µ+](x) + ess inf
B R

2
(x)

v⊕ + Tail(v⊕; x,
R
2

)
)
, for a.e. x ∈ Ω, (2.30)

where

Tail(v⊕; x,
R
2

) =

((R
2

)sp ∫
RN\B R

2
(x)

|v⊕(y)|p−1

|x − y|N+sp dy
) 1

p−1

.

By (2.15) and (2.6), we derive that

ess inf
B R

2
(x)

v⊕ .
(
−

∫
B R

2
(x)
|v⊕|p−1dx

) 1
p−1

. R−
N−sp
p−1 µ+(BR(x))

1
p−1 . W2R

s,p[µ+](x), (2.31)

and

Tail(v⊕; x0,
R
2

) .
(
−

∫
B2R(x0

)|v⊕|p−1dx
) 1

p−1

. W2R
s,p[µ+](x), ∀x ∈ Ω, (2.32)

where the implicit constants in (2.31) and (2.32) depend only on p, s,ΛK ,N. The inequalities in (2.32)
follow by the fact that v⊕ = 0 in RN \ B2R(x0) and µ(RN \Ω) = 0.

Combining (2.30)–(2.32), we obtain the upper bound in (2.29).
The proof of the lower bound in (2.29) is similar and we omit it. �

3. Nonlocal equations with absorption nonlinearities

3.1. The variational problem

We assume that g ∈ C(R) and rg(r) ≥ 0. Let Ω ⊂ RN be an open bounded domain and µ ∈

(W s,p
0 (Ω))∗. Set G(r) =

∫ r

0
g(s)ds,

J(v) =
1
p

∫
RN

∫
RN
|v(x) − v(y)|pK(x, y)dxdy +

∫
Ω

G(v)dx− < µ, v >

and
XG(Ω) = {v ∈ W s,p

0 (Ω) : G(v) ∈ L1(Ω)}.

Theorem 3.1. Let s ∈ (0, 1), p > 1 and µ ∈ (W s,p
0 (Ω))∗. Then, there exists a minimizer uµ of J in XG(Ω).

Furthermore, uµ is a weak solution of J, in the sense of∫
RN

∫
RN
|uµ(x) − uµ(y)|p−2(uµ(x) − uµ(y))(ζ(x) − ζ(y))K(x, y)dxdy +

∫
Ω

g(uµ)ζdx =< µ, ζ > (3.1)

for any ζ ∈ W s,p
0 (Ω) ∩ L∞(Ω).

If g is nondecreasing the solution uµ is unique and the mapping µ 7→ uµ is nondecreasing.
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Proof. We adapt the argument used in the proof of [15, Theorem 5.1]. Let {vn} be a minimizing
sequence. Taking in to account that G(t) ≥ 0 for any t ∈ R and the fractional Sobolev inequality,
we can easily show the existence of a positive constant C = C(p,Ω,ΛK) such that

‖vn‖
p
W s,p

0 (Ω)
≤ C(J(vn) + ‖µ‖

p′

(W s,p
0 (Ω))∗

), ∀n ∈ N. (3.2)

This implies that vn is uniformly bounded in W s,p
0 (Ω). Thus, by the fractional Sobolev embedding

theorem (see e.g., [13, Corollary 7.2]) and the fact that W s,p
0 (Ω) is a reflexive Banach space, we may

prove the existence of a subsequence, still denoted by {vn} and a function v ∈ W s,p
0 (Ω) such that there

hold:
(i) vn → v a.e. in RN .

(ii) vn ⇀ v in W s,p
0 (Ω) and vn → v in Wh,q(RN) for any h ∈ (0, s) and q ∈ (1, p).

By Fatou’s lemma, we obtain

1
p

∫
RN

∫
RN
|v(x) − v(y)|pK(x, y)dxdy +

∫
Ω

G(v)dx

≤ lim inf
k→∞

1
p

∫
RN

∫
RN
|vk(x) − vk(y)|pK(x, y)dxdy +

∫
Ω

G(vk)dx.

Hence v is a minimizer. If g is nondecreasing, the uniqueness of the minimizer follows by the fact that
J is strictly convex.

We next show (3.1). Let vk be the minimizer of J associated with gk = max(−k,min(g, k)). Then, in
view of the proof of [11, Theorem 2.3], vk satisfies∫

RN

∫
RN
|vk(x) − vk(y)|p−2(vk(x) − vk(y))(ζ(x) − ζ(y))K(x, y)dxdy +

∫
Ω

gk(vk)ζdx =< µ, ζ > (3.3)

for any ζ ∈ W s,p
0 (Ω). Taking vk as test function, we have∫

RN

∫
RN
|vk(x) − vk(y)|pK(x, y)dxdy +

∫
Ω

g(vk)vkdx =< µ, vk >

≤
1
p
‖vk‖

p
W s,p

0 (Ω)
+

1
p′
‖µ‖

p′

(W s,p
0 (Ω))∗

,

which implies∫
RN

∫
RN

|vk(x) − vk(y)|p

|x − y|N+sp dxdy +

∫
Ω

gk(vk)vkdx ≤ C(ΛK , p) ‖µ‖p′

(W s,p
0 (Ω))∗

=: M. (3.4)

By the above inequality, we may deduce that there exists a subsequence, still denoted by {vk} and a
function v ∈ W s,p

0 (Ω) such that they satisfy statements (i) and (ii).
Let ζ ∈ L∞(Ω) with ‖ζ‖L∞(Ω) = N and E ⊂ Ω be a Borel set. Then, for any λ > 0, we have∫

E∩{|vk |>λ}

|ζgk(vk)|dx ≤
1
λ

∫
E∩{vk>λ}

|ζ ||vkgk(vk)|dx ≤
N
λ

∫
Ω

vkgk(vk)dx ≤
MN
λ
.

Also, ∫
E∩{|uk |≤λ}

|ζgk(vk)|dx ≤ |E|N sup{|g(t)| : |t| ≤ λ}.
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Let ε > 0, λ = 2MN
ε

and δ = ε

2N sup{|g(t)|:|t|≤ 2MN
ε }+1

. Then for any Borel set E ⊂ Ω with |E| < δ, we have∫
E
|ζgk(vk)|dx < ε.

Thus, by Vitali’s theorem, we conclude∫
Ω

gk(vk)ζdx→
∫

Ω

g(v)ζdx. (3.5)

Combining all above, we obtain that v satisfies (3.1).
Now for any u ∈ XG(Ω), we have that u ∈ XGk(Ω), Gk(u) ≤ G(u) and

1
p

∫
RN

∫
RN
|vk(x) − vk(y)|pK(x, y)dxdy +

∫
Ω

Gk(vk)dx− < µ, vk >

≤
1
p

∫
RN

∫
RN
|u(x) − u(y)|pK(x, y)dxdy +

∫
Ω

Gk(u)dσ− < µ, u >,

where Gk(r) =
∫ r

0
gk(s)ds. By the above inequality and Fatou’s Lemma, we deduce that v is a minimizer

of J in XG(Ω).
Let g be nondecreasing and uν be the minimizer of J associated with ν ∈ (W s,p

0 (Ω))∗, such that ν ≤ µ.
Then, using vk = min{(uν − uµ)+, k} as test function, we have that∫

RN

∫
RN
|uν(x) − uν(y)|p−2(uν(x) − uν(y))(vk(x) − vk(y))K(x, y)dxdy

−

∫
RN

∫
RN
|uµ(x) − uµ(y)|p−2(uµ(x) − uµ(y))(vk(x) − vk(y))K(x, y)dxdy

= −

∫
Ω

(g(uν) − g(uµ))vkdx+ < ν − µ, vk >≤ 0.

Letting k → ∞ in the above inequality and then proceeding as in the proof of [23, Lemma 6], we obtain
that uν ≤ uµ a.e. in RN . �

When µ ∈ Lp′(Ω), we derive the following result which will be useful in the next subsection.

Lemma 3.2. Let µ ∈ Lp′(Ω), g ∈ C(RN) be a nondecreasing function with g(0) = 0 and u ∈ W s,p
0 (Ω)

satisfy (3.1). Then there holds, ∫
Ω

|g(u)|dx ≤
∫

Ω

|µ|dx. (3.6)

In addition, if we assume that µ ≥ 0, then u ≥ 0 a.e. in RN .

Proof. Let k > 0. Using φk = tanh(ku) as test function in (3.1), we obtain∫
RN

∫
RN
|u(x) − u(y)|p−2(u(x) − u(y))(φk(x) − φk(y))K(x, y)dxdy +

∫
Ω

g(u)φkdx =

∫
Ω

µφkdx.

If∞ > u(x) > u(y) > −∞, then there exists ξ ∈ (u(y), u(x)) such that

φk(x) − φk(y) = (1 − tanh2(kξ))(u(x) − u(y)) ≥ c(ξ, k)(u(x) − u(y)).
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Combining the last two displays, we can easily obtain that∫
Ω

g(u)φkdx ≤
∫

Ω

|µ|dx.

Since g(u)φk ≥ 0 a.e. in Ω, by Fatou’s lemma and the above inequality, we can easily deduce (3.6). �

3.2. Subcritical nonlinearities

In this subsection, we always assume that s ∈ (0, 1), 1 < p < N
s and g ∈ C(R) is nondecreasing such

that g(0) = 0.

Lemma 3.3. Let g ∈ L∞(R) and λi ∈ M
+
b (Ω) (i = 1, 2). Then there exist very weak solutions u, ui

(i = 1, 2) to problems Lu + g(u) = λ1 − λ2, in Ω,

u = 0, in RN \Ω,
(3.7)

Lu1 + g(u1) = λ1, in Ω,

u = 0, in RN \Ω
(3.8)

and Lu2 − g(−u2) = λ2, in Ω,

u = 0, in RN \Ω,
(3.9)

such that there hold

u1, u2 ≥ 0 and − u2 ≤ u ≤ u1, a.e. in RN . (3.10)

In addition, for any q ∈ (0, N(p−1)
N−s ) and h ∈ (0, s), there exists a positive constant c =

c(N, p, s,ΛK , q, h, |Ω|) such that(∫
Ω

|g(u)|dx
) 1

p−1

+

(∫
RN

∫
RN

|u(x) − u(y)|q

|x − y|N+hq dxdy
) 1

q

≤ c(λ1(Ω) + λ2(Ω))
1

p−1 (3.11)

and (∫
Ω

|g((−1)i+1ui)|dx
) 1

p−1

+

(∫
RN

∫
RN

|ui(x) − ui(y)|q

|x − y|N+hq dxdy
) 1

q

≤ cλi(Ω)
1

p−1 . (3.12)

Finally, there exist very weak solutions vi to (2.2) with µ = λi (i=1,2) such that

0 ≤ ui ≤ vi ≤ CiW2diam (Ω)
s,p [λi], a.e. in Ω, (3.13)

where Ci is a positive constant depending only on p, s,ΛK and N.
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Proof. Let {ρn}
∞
1 be a sequence of mollifiers and λn,i = ρn ∗λi. Then λn,i ∈ C∞0 (RN). By Proposition 3.1,

there exist unique solutions un, un,i, vn,i ∈ W s,p
0 (Ω) to the following problemsLun + g(un) = λn,1 − λn,2, in Ω,

u = 0, in RN \Ω,

Lun,1 + g(un,1) = λn,1, in Ω,

u = 0, in RN \Ω,

Lun,2 − g(−un,2) = λn,2, in Ω,

u = 0, in RN \Ω,

and Lvn,i = λn,i in Ω

u = 0, in RN \Ω,

such that there holds

−vn,2 ≤ −un,2 ≤ un ≤ un,1 ≤ vn,1, a.e. in RN . (3.14)

By Lemma 3.2 and Proposition 2.7, for any q ∈ (0, N(p−1)
N−s ) and h ∈ (0, s), there exists a positive

constant c = c(N, p, s,ΛK , q, h, |Ω|) such that(∫
Ω

|g(un)|dx
) 1

p−1

+

(∫
RN

∫
RN

|un(x) − un(y)|q

|x − y|N+hq dxdy
) 1

q

≤ c
( ∫

Ω

λn,1 + λn,2dx
) 1

p−1

, (3.15)

(∫
Ω

|g(un,1)|dx
) 1

p−1

+

(∫
RN

∫
RN

|un,1(x) − un,1(y)|q

|x − y|N+hq dxdy
) 1

q

≤ c
( ∫

Ω

λn,1dx
) 1

p−1

, (3.16)

(∫
Ω

|g(−un,2)|dx
) 1

p−1

+

(∫
RN

∫
RN

|un,2(x) − un,2(y)|q

|x − y|N+hq dxdy
) 1

q

≤ c
( ∫

Ω

λn,2dx
) 1

p−1
(3.17)

and (∫
RN

∫
RN

|vn,i(x) − vn,i(y)|q

|x − y|N+hq dxdy
) 1

q

≤ c
( ∫

Ω

λn,idx
) 1

p−1

. (3.18)

Furthermore, in view of the proof of (2.16), we have that Tk(un),Tk(un,i),Tk(vn,i) ∈ W s,p
0 (Ω) and

satisfy (2.19) with µ = λ1 + λ2.

Since the sequences {λn,i}n are uniformly bounded inMb(Ω), as in the proof of Proposition 2.8, we
may show that there exist subsequences, still denoted by the same index, such that un → u, un,i → ui
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vn,i → vi in Wh,q(RN) and a.e. in RN . In addition, we may prove that Tk(u),Tk(ui),Tk(vi) ∈ W s,p
0 (Ω) for

any k > 0. Finally, by dominated convergence theorem, we deduce that g(un)→ g(u), g(un,1)→ g(u1),
g(−un,2) → g(−u2) in L1(Ω). Hence, combining all above, we can easily show that u, ui are very weak
solutions of problems (3.7)–(3.9) respectively and vi are very weak solutions of problem (2.2) with
µ = λi (i = 1, 2).

By proceeding as in the proof of Proposition 2.10 and using (3.14), we derive (3.13).
Estimates (3.11) and (3.12) follow by (3.15), (3.16) and Fatou’s lemma. �

Lemma 3.4. Let λi ∈ M
+
b (Ω) for i = 1, 2. We also assume that g((−1)1+iCW2R

s,p[λi]) ∈ L1(Ω), where C
is the constant in Proposition 2.10. Then the conclusion of Lemma 3.3 holds true.

Proof. Let Tn(t) = max(−n,min(t, n)) for any n ∈ N. By Lemma 3.3, there exist very weak solutions
un, un,i, vn,i ∈ W s,p

0 (Ω) of the following problemsLun + Tnog(un) = λ1 − λ2 in Ω

u = 0 in RN \Ω,

Lun,1 + Tnog(un,1) = λ1, in Ω,

u = 0, in RN \Ω,

Lun,2 − Tnog(−un,2) = λ2, in Ω,

u = 0, in RN \Ω

and Lvi = λi, in Ω,

u = 0, in RN \Ω,

such that there holds

−CW2diam (Ω)
1,p [λ2] ≤ −v2 ≤ −un,2 ≤ un ≤ un,1 ≤ v1 ≤ CW2diam (Ω)

1,p [λ1], a.e. in RN

and for any n ∈ N. The rest of the proof can proceed similarly to the proof of Lemma 3.3 and we
omit it. �

Proposition 3.5. Assume

Λg :=
∫ ∞

1
s−q̃−1(g(s) − g(−s))ds < ∞ (3.19)

for q̃ > 0. Let v be a measurable function defined in Ω. For s > 0, set

Es(v) := {x ∈ Ω : |v(x)| > s} and e(s) := |Es(v)|.

Assume that there exists a positive constant C0 such that

e(s) ≤ C0s−q̃, ∀s ≥ 1. (3.20)
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Then for any s0 ≥ 1, there hold

‖g(|v|)‖L1(Ω) ≤

∫
Ω\Es0 (v)

g(|v|)dx + q̃C0

∫ ∞

s0

s−q̃−1g(s)ds,

‖g(−|v|)‖L1(Ω) ≤ −

∫
Ω\Es0 (v)

g(−|v|)dx − q̃C0

∫ ∞

s0

s−q̃−1g(−s)ds.

Proof. The proof is very similar to the one of [16, Lemma 5.1] and we omit it. �

Proof of Theorem 1.2. Let λ1 = µ+ and λ2 = µ−. By Lemma 3.3, there exist very weak solutions un, vi

of the following problems Lun + Tnog(un) = λ1 − λ2, in Ω,

u = 0, in RN \Ω

and Lvi = λi, in Ω,

u = 0, in RN \Ω,

such that there holds

−v2 ≤ un ≤ v1, a.e. in RN and ∀n ∈ N.

Also, taking into consideration that g in nondecreasing with g(0) = 0, we may show that Tk(un),Tk(vi)
satisfy (2.19) with µ = λ1 + λ2. In addition, by (2.15), there holds∥∥∥vp−1

1

∥∥∥∗
L

N
N−sp
w (RN )

+
∥∥∥vp−1

2

∥∥∥∗
L

N
N−sp
w (RN )

≤ C1(N, p, s,ΛK)(λ1(Ω) + λ2(Ω)).

By (2.7) and Proposition 3.5, we have that |Tnog(un)| ≤ g(v1) − g(−v2) and

‖Tnog(un)‖L1(Ω) ≤ ‖g(v1)‖L1(Ω) + ‖g(−v2)‖L1(Ω)

≤ (g(s0) − g(s0))|Ω|

+ q̃C1(N, p, s,ΛK ,Λg)(λ1(Ω) + λ2(Ω))
N(p−1)
N−sp

∫ ∞

s0

s−q̃−1(g(s) − g(−s)ds, ∀n ∈ N,

where q̃ =
N(p−1)
N−sp . The desired result follows by proceeding as in the proof of Lemma 3.3. �

3.3. Power nonlinearities: proof of Theorem 1.3

In order to prove Theorem 1.3, we need to introduce some notations concerning the Bessel
capacities, we refer the reader to [1] for more detail. For α ∈ R we define the Bessel kernel of order α
by Gα(ξ) = F −1(1 + |.|2)−

α
2 (ξ), where F is the Fourier transform of moderate distributions in RN . For

any β > 1, the Bessel space Lα,β(RN) is given by

Lα,β(RN) := { f = Gα ∗ g : g ∈ Lβ(RN)},

with norm
‖ f ‖Lα,β(RN ) := ‖g‖Lβ(RN ) = ‖G−α ∗ f ‖Lβ(RN ).

The Bessel capacity is defined as follows.
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Definition 3.6. Let α > 0, 1 < β < ∞ and E ⊂ RN . Set

SE := {g ∈ Lβ(RN) : g ≥ 0, Gα ∗ g(x) ≥ 1 for any x ∈ E}.

Then

Capα,β(E) := inf{‖g‖βLβ(RN ); g ∈ SE}. (3.21)

If SE = ∅, we set Capα,β(E) = ∞.

In the sequel, we denote by L−α,β′(RN) the dual of Lα,β(RN) and we set

Gα[µ](x) =

∫
RN

Gα(x, y)dµ(y), ∀µ ∈ M(RN).

Proof of Theorem 1.3. Since µ is absolutely continuous with respect to the capacity Capsp, κ
κ−p+1

, the
measures µ+, µ− have the same property. Thus, by [5, Theorem 2.5] (see also [3]), there are
nondecreasing sequences {µ±n }n ⊂ L−sp, κ

p−1 (RN) ∩ M+
b (RN) with compact support in Ω, such that they

converge to µ± in the narrow topology. Furthermore, by [5, Theorem 2.3] (see also [1, Corollary 3.6.3]),∥∥∥W2diam (Ω)
α,p [µ±n ]

∥∥∥κ
Lκ(RN )

≈
∥∥∥Gsp[µ±n ]

∥∥∥ κ
p−1

L
κ

p−1 (RN )
< ∞.

By Lemma 3.4, there exist solutions un, un,i, vi to the problemsLun + |un|
κ−1un = λn,1 − λn,2, in Ω,

u = 0, in RN \Ω,
(3.22)

Lun,1 + |un,1|
κ−1un,1 = λn,1, in Ω,

u = 0, in RN \Ω,
(3.23)

Lun,2 + |un,2|
κ−1un,2 = λn,2, in Ω,

u = 0, in RN \Ω,
(3.24)

and Lvn,i = λn,i, in Ω,

u = 0, in RN \Ω,

such that there holds

−vn,2 ≤ −un,2 ≤ un ≤ un,1 ≤ vn,1, a.e. in RN . (3.25)

Furthermore, in view of the proof of Lemmas 3.3 and 3.4, the sequences {un,i}, {vn,i} satisfy (3.15)–
(3.18) with g(t) = |t|κsign(t), λn,1 = µ+

n and λn,2 = µ−n , as well as they can be constructed such that

un,i ≤ un+1,i and vn,i ≤ vn+1,i, a.e. in RN ,∀n ∈ N and i = 1, 2. (3.26)

Mathematics in Engineering Volume 6, Issue 1, 45–80.



68

By (3.15) and (3.16) with g(t) = |t|κsign(t), λn,1 = µ+
n and λn,2 = µ−n , we have∫

Ω

|un,1|
κd ≤ µ+(Ω) and

∫
Ω

|un,2|
κd ≤ µ−(Ω), ∀n ∈ N.

By (3.15)–(3.18) with g(t) = |t|κsign(t), λn,1 = µ+
n and λn,2 = µ−n , there are subsequences, still denoted

by the same index, such that un → u, un,i → ui vn,i → v in Wh,q(RN) and a.e. in RN . In addition,
Tk(u),Tk(ui),Tk(vi) ∈ W s,p

0 (RN) and∫
Ω

|u1|
kdx ≤ µ+(Ω), and

∫
Ω

|u2|
kdx ≤ µ−(Ω).

Therefore, by dominated convergence theorem, we obtain that |un|
κ → |u|κ, |un,1|

κ → |u1|
κ, |un,2|

κ → |u2|
κ

in L1(Ω). This, implies that u, ui are very weak solutions of problems (3.7)–(3.9) respectively and vi

are very weak solution of problem (2.2) with µ = λi, where λ1 = µ+ and λ2 = µ−.

Estimate (1.13) follows by (3.25) and (3.13). Estimate (1.14) follows by (3.15) with g(t) =

|t|κsign(t), λn,1 = µ+
n , λn,2 = µ−n and Fatou’s lemma. �

4. Nonlocal equations with source nonlinearities

4.1. Subcritical nonlinearities

In this subsection, we investigate the existence of solutions to the following problemLv = g(v) + ρτ, in Ω,

v = 0, in RN \Ω,
(4.1)

where ρ > 0, g ∈ C(R) is a nondecreasing function and

|g(t)| ≤ a|t|d for some a > 0, d > p − 1 and for any |t| ≤ 1. (4.2)

Let us state the first existence result.

Lemma 4.1. Let 1 < p < N
s and τ ∈ C∞0 (RN) be such that ‖τ‖L1(RN ) ≤ 1. Assume that g ∈ L∞(Ω)∩C(R)

satisfies (3.19) for

q̃ =
N(p − 1)
N − sp

.

In addition, we assume that g is nondecreasing and satisfies (4.2).
Then there exists a positive constant ρ0 depending on N,Ω,Λg,ΛK , a, d, p, s such that for every

ρ ∈ (0, ρ0), problem (4.1) admits a weak solution v ∈ W s,p
0 (Ω) satisfying

‖|v|p−1‖
L

N
N−sp
w (Ω)

≤ t0, (4.3)

where t0 > 0 depends on N,Ω,Λg,ΛK , a, d, p, s.
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Proof. We shall use Schauder fixed point theorem to show the existence of a positive weak solution
of (4.1).

Let 1 < κ < min{ N
N−sp ,

d
p−1 } and v ∈ L1(Ω). Since g ∈ L∞(Ω), we can easily show that the following

problem Lu = g(|v|
1

p−1 sign(v)) + ρτ, in Ω,

u = 0, in RN \Ω,
(4.4)

admits a unique weak solution T(v) ∈ W s,p
0 (Ω).

We define the operator S by

S(v) := |T(v)|p−1sign(T(v)), ∀v ∈ L1(Ω). (4.5)

By (2.8), we obtain

‖S(v)‖
L

N
N−sp
w (Ω)

≤ C(s, p,N,ΛK)
(
ρ

∫
Ω

|τ|dx +

∫
Ω

|g(|v|
1

p−1 sign(v))|dx
)

≤ C(s, p,N,ΛK)
(
ρ +

∫
Ω

g(|v|
1

p−1 ) − g(−|v|
1

p−1 )dx
)
.

(4.6)

Let v ∈ L
N

N−sp
w (Ω). For any λ > 0, we set Eλ := {x ∈ Ω : |v(x)|

1
p−1 > λ} and e(λ) =

∫
Eλ

dx. By (2.4)
and (2.6), we can easily show that

e(λ) ≤ C(N, s, p) ‖v‖
N

N−sp

L
N

N−sp
w (Ω)

λ−
N(p−1)
N−sp .

By the above inequality and Lemma 3.5 with λ0 = 1 and q̃ =
N(p−1)
N−sp , we deduce∫

Ω

g(|v|
1

p−1 ) − g(−|v|
1

p−1 )dx ≤ 2a
∫

Ω

|v|κdx + C(p, s,N) ‖v‖
N

N−sp

L
N

N−sp
w (Ω)

Λg.

Let λ = ‖v‖
L

N
N−sp
w (Ω)

. By (2.6), we have that

∫
Ω

|v|κd =

∫ ∞

0
|{x ∈ Ω : |v| ≥ t}|dtκ

=

∫ λ

0
|{x ∈ Ω : |v| ≥ t}|dtκ +

∫ ∞

λ

|{x ∈ Ω : |v| ≥ t}|dtκ

≤ |Ω|λκ + κλ
N

N−sp

∫ ∞

λ

tκ−
N

N−sp−1dt ≤ C(Ω, κ, s, p,N)λk.

Combining all above, we may prove that

‖S(v)‖
L

N
N−sp
w (Ω)

≤ C(p,N, κ, |Ω|,Λg,ΛK , a)
(
ρ + ‖v‖

N
N−sp

L
N

N−sp
w (Ω)

+ ‖v‖κ
L

N
N−sp
w (Ω)

)
.
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Therefore, if ‖v‖
L

N
N−sp
w (Ω)

≤ t then

‖S(v)‖
L

N
N−sp
w (Ω)

≤ C
(
t

N
N−sp + tκ + ρ

)
. (4.7)

Since 1 < κ < N
N−sp , there exist t0 > 0 and ρ0 > 0 depending on |Ω|,Λg, p, κ,N, a such that for any

t ∈ (0, t0] and ρ ∈ (0, ρ0), the following inequality holds

C
(
t

N
N−sp + tκ + ρ

)
≤ t0,

where C is the constant in (4.7). Hence,

‖v‖
L

N
N−sp
w (Ω)

≤ t0 =⇒ ‖S(v)‖
L

N
N−sp
w (Ω)

≤ t0. (4.8)

Next, we apply Schauder fixed point theorem to our setting.

We claim that S is continuous. First we assume that vn → v in L1(Ω) and T(vn) → T(v) in W1,p
0 (Ω),

then by fractional Sobolev inequality, we have∫
Ω

|T(vn) − T(v)|dx ≤ |Ω|
pN−N+sp

N p ‖T(vn) − T(v)‖
L

N p
N−sp (Ω)

≤ C|Ω|
pN−N+sp

N p ‖T(vn) − T(v)‖W1,p
0 (Ω) → 0.

(4.9)

Let k > 0 and ε > 0, then∫
Ω

|S(vn) − S(v)|dx =

∫
{x∈Ω: |S(vn)(x)|≤k}∩{x∈Ω: |S(v)(x)|≤k}

|S(vn) − S(v)| dx

+

∫
Ω\({x∈Ω: |S(vn)(x)|≤k}∩{x∈Ω: |S(v)(x)|≤k})

|S(vn)(x) − S(v)(x)| dx.
(4.10)

By (4.6) and the fact that g ∈ L∞(R), we have that S(vn) ∈ Lβ(Ω) and {S(vn)} is uniformly bounded
in Lβ(Ω) for any β ∈ (1, N

N−sp ). Hence, there exists k0 ∈ N, such that∫
Ω\({x∈Ω: |S(vn)(x)|≤k}∩{x∈Ω: |S(v)(x)|≤k})

|S(vn) − S(v)| dx ≤
ε

3
∀k ≥ k0, and n ∈ N. (4.11)

Now, we set

Ak0,n = {x ∈ Ω : |T(vn)(x)| ≤ k
1

p−1

0 } ∩ {x ∈ Ω : |T(v)(x)| ≤ k
1

p−1

0 }

and Bδ,n = {x ∈ Ω : |T(v)(x) − T(vn)(x)| ≤ δ}. Then, we have that∫
Ω∩{x∈Ω: |S(vn)|≤k0}∩{x∈Ω: |S(v)|≤k0}

|S(vn) − S(v)| dx

=

∫
Ak0 ,n∩Bδ,n

∣∣∣|T(vn)|p−1sign(T(vn)) − |T(v)|p−1sign(T(v))
∣∣∣ dx

+

∫
Ak0 ,n\Bδ,n

∣∣∣|T(vn)|p−1sign(T(vn)) − |T(v)|p−1sign(T(v))
∣∣∣ dx.

(4.12)
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Since h(t) = tp−1sign(t) is uniformly continuous in [−k0, k0], there exists δ0 > 0 independent of n such
that ∫

Ak0 ,n∩Bδ0 ,n

∣∣∣|T(vn)|p−1sign(T(vn)) − |T(v)|p−1sign(T(v))
∣∣∣ dx ≤

ε

3
. (4.13)

Moreover, by (4.9), there exists n0 = n0(δ0, k0, p) ∈ N such that∫
Ak0 ,n0\Bδ0 ,n0

∣∣∣|T(vn0)|
p−1sign(T(vn0)) − |T(v)|p−1sign(T(v))

∣∣∣ dx ≤
ε

3
. (4.14)

Hence, combining (4.9)–(4.14), we obtain that S(vn)→ S(v) in L1(Ω).
Therefore, it is enough to show that T(vn)→ T(v) in W s,p

0 (Ω). In order to prove this, we will consider
two cases.

Case 1. 1 < p < 2. Let M := supt∈R |g(t)|. We will show that T(vn) → T(v) in W s,p
0 (Ω). Since

T(vn),T(v) ∈ W s,p
0 (Ω) are weak solutions of (4.4) with vn and v respectively, we have∫

RN

∫
RN
|T(vn)(x) − T(vn)(y)|pK(x, y)dxdy =

∫
Ω

T(vn)(g(|vn|
1

p−1 sign(vn))dx +

∫
Ω

T(vn)τdx

≤ M|Ω|
p−1

p

(∫
Ω

|T(vn)|pdx
) 1

p

+

(∫
Ω

|T(vn)|pdx
) 1

p
(∫

Ω

|τ|
p

p−1 dx
) p−1

p

≤ C1(M,Ω, p,N, τ, s)
(∫
RN

∫
RN

|T(vn)(x) − T(vn)(y)|p

|x − y|N+sp dxdy
) 1

p

.

(4.15)

Therefore, ∫
RN

∫
RN

|T(vn)(x) − T(vn)(y)|p

|x − y|N+sp dxdy ≤ C
p−1

p

1 (M,Ω, p,N, τ, s,ΛK). (4.16)

Using φ = T(vn) − T(v) as test function, we have

I :=
∫
RN

∫
RN
|T(vn)(x) − T(vn)(y)|p−2(T(vn)(x) − T(vn)(y)) (φ(x) − φ(y)) K(x, y)dxdy

−

∫
RN

∫
RN
|T(v)(x) − T(v)(y)|p−2(T(v)(x) − T(v)(y)) (φ(x) − φ(y)) K(x, y)dxdy

=

∫
Ω

φ(g(|vn|
1

p−1 sign(vn)) − g(|v|
1

p−1 sign(v)))dx =: II.

(4.17)

We first treat I. On one hand, since

(|a|p−2a − |b|p−2b)(a − b) ≥ C(p)
|a − b|2

(|a| + |b|)2−p

for any (a, b) ∈ R2N \ {(0, 0)} and p ∈ (1, 2), we have

I ≥ C(p)
∫
RN

∫
RN
|φ(x) − φ(y)|2 (|T(vn)(x) − T(vn)(y)| + |T(v)(x) − T(v)(y)|)p−2 K(x, y)dxdy. (4.18)
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On the other hand, by Hölder inequality, we obtain∫
RN

∫
RN

|φ(x) − φ(y)|p

|x − y|N+sp dxdy ≤ ΛK

∫
RN

∫
RN
|φ(x) − φ(y)|p K(x, y)dxdy

≤ C(p,ΛK)
(∫
RN

∫
RN

(|T(vn)(x) − T(vn)(y)| + |T(v)(x) − T(v)(y)|)p K(x, y)dxdy
) 2−p

2

I
p
2

≤ C(p,C1,Ω,ΛK)I
p
2 ,

(4.19)

where C1 is the constant in (4.16). Hence, by (4.18) and (4.19), we obtain

C
(∫
RN

∫
RN

|φ(x) − φ(y)|p

|x − y|N+sp dxdy
) 2

p

≤ I. (4.20)

Next we treat II. Let r =
N p

N−sp , proceeding as in the proof of (4.15), we have

II ≤
(∫

Ω

|φ|rd
) 1

r
(∫

Ω

|g(|vn|
1

p−1 sign(vn)) − g(|v|
1

p−1 sign(v))|r
′

d
) 1

r′

≤ C(N, p, s)
(∫
RN

∫
RN

|φ(x) − φ(y)|p

|x − y|N+sp dxdy
) 1

p

×

(∫
Ω

|g(|vn|
1

p−1 sign(vn)) − g(|v|
1

p−1 sign(v))|r
′

d
) 1

r′

,

(4.21)

where in the last inequality we used the fractional Sobolev inequality.
Combining (4.17), (4.20) and (4.21), we obtain(∫

RN

∫
RN

|φ(x) − φ(y)|p

|x − y|N+sp dxdy
) 1

p

≤ C(p,C1,Ω, s,ΛK)
(∫

Ω

|g(|vn|
1

p−1 sign(vn)) − g(|v|
1

p−1 sign(v))|r
′

d
) 1

r′

.

(4.22)

Since g ◦ (| · |p−1sign(·)) is uniformly continuous in R, bounded and vn → v in L1(Ω), we obtain

lim
n→∞

∫
Ω

|g(|v|
1

p−1 sign(v)) − g(|vn|
1

p−1 sign(vn))|r
′

dx = 0,

which, together with (4.22), implies the desired result.

Case 2. p ≥ 2. We note here that

(|a|p−2a − |b|p−2b)(a − b) ≥ C(p)|a − b|p

for any (a, b) ∈ R2N and p ≥ 2. Thus,

I ≥ C(N, p,ΛK)
(∫
RN

∫
RN

|φ(x) − φ(y)|p

|x − y|N+sp dxdy
)
.
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By using a similar argument to the one in Case 1, we may show that T(vn)→ T(v) in W s,p
0 (Ω).

Next we claim that S is compact. Indeed, let {vn} be a sequence in L1(Ω) then by (4.16), we obtain
that T(vn) is uniformly bounded in W s,p

0 (Ω). Hence there exists a subsequence still denoted by {T(vn)}
such that T(vn) ⇀ ψ in W s,p

0 (Ω) and T(vn)→ ψ a.e. in RN . Furthermore, in view of (4.6), we can easily
show that S(vn) = |T(vn)|p−1sign(T(vn))→ |ψ|p−1sign(ψ) in L1(Ω).

Now set
O := {v ∈ L1(Ω) : ‖v‖

L
N

N−sp
w (Ω)

≤ t0}. (4.23)

Then O is a closed, convex subset of L1(Ω) and by (4.8), S(O) ⊂ O. Thus we can apply Schauder
fixed point theorem to obtain the existence of a function v ∈ O such that S(v) = v. This means that
u = v

1
p−1 sign(v) is a solution of (4.1) satisfying (4.3). �

Proof of Theorem 1.4. Let {ρn}
∞
n=1 be a sequence of mollifiers. Set τn = ρn ∗ τ and gn =

max(−n,min(g, n)). Then gn satisfies (1.9) with the same constant Λg. Thus, there exists a weak solution
un ∈ W s,p

0 (Ω) of Lv = gn(v) + ρτn, in Ω,

v = 0, in RN \Ω.

In addition, it satisfies

‖|un|
p−1‖

L
N

N−sp
w (Ω)

≤ t0, (4.24)

where t0 > 0 depends on N,Ω,Λg,ΛK , a, s, p, d.
By (4.24), we have that

|{x ∈ Ω : |un| > s}| ≤ t
N

N−sp

0 s−
N(p−1)
N−sp .

Hence by Proposition 3.5, ∫
Ω

|gn(un)|dx ≤ C, ∀n ∈ N,

where C depends only on N,Ω,Λg,ΛK , a, s, p, d and t0. This, together with Proposition 2.7, implies that
for any q ∈ (p − 1, N(p−1)

N−s ) and h ∈ (0, s), there exists a positive constant c = c(N, s, p,ΛK , s, h, q, |Ω|)
such that (∫

RN

∫
RN

|un(x) − un(y)|q

|x − y|N+hq dxdy
) 1

q

≤ c(C + ρ

∫
Ω

|τn|dx)
1

p−1 . (4.25)

Therefore, in view of the proof of Proposition 2.8, we may show that there exists a subsequence, still
denoted by the same notation, such that un → u in Wh,q(RN) and a.e. in RN .

Now, we will show that gn(un) → g(u) in L1(Ω). We will prove it by using Vitali’s convergence
theorem. Let E ⊂ Ω be a Borel set. Then, by Lemma 3.5 and (4.24), we have∫

E
|gn(un)|dx ≤

∫
Ω

|g(un)|dx

≤ (g(s0) − g(−s0))|E| + C(t0, p,Λg,N)
∫ ∞

s0

(g(s) − g(−s))s−1− (p−1)N
N−sp ds, ∀s0 ≥ 1.
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Let ε > 0, then there exists s0 such that

C(t0, p,Λg,N)
∫ ∞

s0

(g(s) − g(−s))s−1− (p−1)N
N−sp ds ≤

ε

2
.

Set δ = ε
2(1+g(s0)−g(−s0)) > 0. Then for any Borel set E with |E| ≤ δ, we have

g(s0)|E| ≤
ε

2
.

Hence, by the last three inequalities, we may invoke Vitali’s convergence theorem in order to prove
that gn(un)→ g(u) in L1(Ω).

In view of the proof of Proposition 2.8, we may deduce that u is a very weak solution of (1.16).
Furthermore, by Fatou’s lemma, we can easily show that u satisfies (1.17) and (1.18). �

4.2. Power nonlinearities: proof of Proposition 1.5 and Theorem 1.6

Proof of Proposition 1.5. Let w = ACW2diam (Ω)
s,p [ρτ], where C is the constant in (2.29) and A > 1 is a

constant that will be determined later. Set dν = wκdx + ρdτ, then by (1.20), we obtain

CW2(diam (Ω))
s,p [ν] ≤ 2

1
p−1 C(W2diam (Ω)

s,p [wκ] + W2diam (Ω)
s,p [ρdτ])

≤ 2
1

p−1 C((AC)
κ

p−1ρ
κ

(p−1)2 MW2diam (Ω)
s,p [τ] + W2diam (Ω)

s,p [ρdτ])

≤ 2
1

p−1 C((AC)
κ

p−1 Mρ
κ−p+1
(p−1)2 + 1)W2diam (Ω)

s,p [ρdτ].

If we choose A = 2
1

p−1 +1 and ρ small enough such that (AC)
κ

p−1 Mρ
κ−p+1
(p−1)2 + 1 < 2, we deduce that

CW2diam (Ω)
s,p [ν] ≤ w. (4.26)

Now, let x0 ∈ Ω be such that W2diam (Ω)
s,p [τ](x0) < ∞. If 0 ≤ v ≤ c0W2diam (Ω)

s,p [τ] a.e. in RN , for some
constant c0 > 0, then we have(∫

Ω

|v|κdx
) 1

p−1

≤

(∫
Bdiam (Ω)(x0)

|v|κdx
) 1

p−1

≤ C(Ω,N, s, p,M,K, c0)W2diam (Ω)
s,p [τ](x0) < ∞.

Thus v ∈ Lκ(Ω).
Let u0 ≥ 0 be a very weak solution ofLu0 = ρτ, in Ω,

v = 0, in RN \Ω,

satisfying C−1W
d(x)

8
s,p [µn−1](x) ≤ u0(x) ≤ CW2diam (Ω)

s,p [ρτ](x) a.e. in Ω. We may construct a nondecreasing
sequence {un}n≥0, such that un is a very weak solution to problemLun = uκn−1 + ρτ, in Ω,

v = 0, in RN \Ω
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and satisfies
C−1W

d(x)
8

s,p [µn−1](x) ≤ un(x) ≤ CW2diam (Ω)
s,p [µn−1](x), for a.e. x ∈ Ω,

for any n ∈ N, where dµn−1 = uκn−1dx + ρdτ. In addition, by (4.26) and the above inequality, there holds

C−1W
d(x)

8
s,p [µn−1](x) ≤ un(x) ≤ w(x), for a.e. x ∈ Ω, (4.27)

where the positive constant C−1 depends only on N, p, s, q. Finally, un satisfies (2.15)–(2.17) with
dµ = wκdx + ρdτ.

Proceeding as in the proof of Proposition 2.8, we may show that there exists a subsequence, still
denoted by {un}, such that un → u a.e. in RN and u is a very weak solution of problem (1.19). By (4.27)
and Fatou’s Lemma, we obtain estimate (1.21). The proof is complete. �

Proof of Theorem 1.6. We will first prove that (i) implies (ii) by using some ideas from [30]. Without
loss of generality we assume that ρ = 1. Extend µ to whole RN by setting µ(RN \Ω) = 0.

Let 0 ≤ g ∈ L
κ

p−1 (RN; µ). We set

Mµg(x) := sup
r>0, µ(B(x,r)),0

µ(B(x, r))−1
∫

B(x,r)
g(y)dµ.

It is well known that there exists a positive constant c1 depending only on N, p, κ such that∫
RN

(Mµg(x))
κ

p−1 dµ ≤ c1

∫
RN
|g(x)|

κ
p−1 dµ (4.28)

(see, e.g., [14]). Also, ∫
Ω

(
W

d(x)
8

s,p [gµ](x)
)κ

dx ≤
∫

Ω

(
W

d(x)
8

s,p [µ](x)
)κ

(Mµg(x))
κ

p−1 dx

≤ Cκ

∫
Ω

uκ(x)(Mµg(x))
κ

p−1 dx

≤ Cκ

∫
Ω

(Mµg(x))
κ

p−1 dµ

≤ c2

∫
RN
|g(x)|

κ
p−1 dµ.

(4.29)

Let K = supp τ. By the assumption, we have that r0 := dist (K, ∂Ω) > 0. Set g = 1K g̃, for any
nonnegative g̃ ∈ L

κ
p−1 (RN; µbK). We first note that B r0

8
(x) ∩ K = ∅ if x ∈ Ω with d(x) < r0

8 or if
x ∈ RN \Ω, which implies

W
d(x)
24

s,p [g̃µbK](x) = 0,

if x ∈ Ω with d(x) < r0
24 or if x ∈ RN \Ω. Therefore, by the above equality and (4.29), we have∫

RN

(
W

r0
24
s,p[g̃µbK](x)

)κ
dx ≤

∫
Ω

(
W

d(x)
8

s,p [gµ](x)
)κ

dx ≤ c2

∫
RN
|g̃(x)|

κ
p−1 dµbK .

Also, by [5, Theorem 2.3] (see also [1, Corollary 3.6.3]), we have∫
RN

(
W

r0
24
s,p[g̃µbK](x)

)κ
dx ≈

∫
RN

(Gsp[g̃µbK])
κ

p−1 dx, (4.30)
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where the implicit constant depends only on s, p,N, κ and r0.

Hence, combining the last two displays, we may show that there exists a positive constant c3 =

c3(N, p, s, κ, r0) such that ∫
RN

(Gsp[g̃µbK])
κ

p−1 dx ≤ c3

∫
RN
|g̃(x)|

κ
p−1 dµbK . (4.31)

Let f ∈ L
κ

κ−p+1 (RN). Then, for any g̃ ∈ L
κ

p−1 (RN; µbK), there holds∣∣∣∣∣∫
RN

f (x)Gsp ∗ (g̃µbK)(x)dx
∣∣∣∣∣ =

∣∣∣∣∣∫
RN

g̃(y)Gsp ∗ f (y)dµbK
∣∣∣∣∣ ≤ C1 ‖ f ‖L

κ
κ−p+1 (RN )

‖g̃‖
L

κ
p−1 (RN ;µbK )

.

The last inequality implies,∫
RN
|Gsp ∗ f (x)|

κ
κ−p+1 dµbK ≤ c4

∫
RN
| f |

κ
κ−p+1 dx ∀ f ∈ L

κ
κ−p+1 (RN).

By [1, Theorem 7.2.1], the above inequality is equivalent to

µbK(F) ≤ c5Capsp, κ
κ−p+1

(F), (4.32)

for any compact F ⊂ RN . (1.23) follows by the above inequality and the fact that τ ≤ µbK .
Next, we prove that (ii) implies (iii). We note that proceeding as above, in the opposite direction,

we may prove that (1.23) implies∫
RN

(Gsp[g̃τ])
κ

p−1 dx ≤ c3

∫
RN
|g̃(x)|

κ
p−1 dτ, ∀g̃ ∈ L

κ
p−1 (RN; τ).

By (4.30) and taking g̃ = 1B, we can easily show that there exists a positive constant C depending
only on N, s, p,Ω such that ∫

RN
(W2diam (Ω)

s,p [τbB])κdx ≤ Cτ(B).

We will show that (iii) implies (iv). Let R = 2diam (Ω) and C3 be the constant in (1.24). In
the spirit of the proof of [31, Theorem 2.10], we need to prove that there exists a positive constant
c0 = c0(N, p, κ, s,C3,R, τ(Ω)) > 0 such that

τ(Bt(x)) ≤ c0t
κ(N−sp)−N(p−1)

κ−p+1 (4.33)

for any t ≤ R and ∀x ∈ Ω.

Concerning the proof of the above inequality, we first note that for any y ∈ Bt(x) and t ≤ R
4 , there

holds

WR
s,p[τbBt(x)](y) =

∫ R

0

(
τ(Br(y) ∩ Bt(x))

rN−sp

) 1
p−1 dr

r
≥

∫ 4t

2t

(
τ(Br(y) ∩ Bt(x))

rN−sp

) 1
p−1 dr

r

≥ C(N, p, s)
(
τ(Bt(x))

tN−sp

) 1
p−1

.
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By the above inequality, we deduce

tNCκ(N, p, s)
(
τ(Bt(x))

tN−sp

) κ
p−1

≤

∫
Bt(x)

(WR
s,p[τbBt(x)](y))κdy

≤ C3τ(Bt(x)), ∀t ∈ (0
R
4

],

(4.34)

where in the last inequality we used (1.24). This implies (4.33).
For any x ∈ Ω and t < R, we set

νt(x) :=
∫

Bt(x)

( ∫ t

0

(
τ(Br(y))

rN−sp

) 1
p−1 dr

r

)κ
dy

and

µt(x) :=
∫

Bt(x)

( ∫ R

t

(
τ(Br(y))

rN−sp

) 1
p−1 dr

r

)κ
dy.

Then we can easily prove that

WR
s,p[(WR

s,p[τ])κ] ≤ C(q, p)
( ∫ R

0

(
νt(x)
tN−sp

) 1
p−1 dt

t
+

∫ R

0

(
µt(x)
tN−sp

) 1
p−1 dt

t

)
. (4.35)

Now, we treat the first term on the right hand in (4.35). By (1.24), we have

νt(x) =

∫
Bt(x)

( ∫ t

0

(
τ(Br(y) ∩ B2t(x))

rN−sp

) 1
p−1 dr

r

)κ
dy ≤ Cτ(B2t(x)), (4.36)

which implies ∫ R

0

(
νt(x)
tN−sp

) 1
p−1 dt

t
≤ CW2R

s,p[τ](x). (4.37)

Next, we treat the second term on the right hand in (4.35). First we note that

µt(x) ≤
∫

Bt(x)

( ∫ R

t

(
τ(B2r(x))

rN−sp

) 1
p−1 dr

r

)κ
dy

≤ C(N)tN
( ∫ 2R

t

(
τ(Br(x))

rN−sp

) 1
p−1 dr

r

)κ
=: C(N)tNµκ1,t(x),

which implies∫ R

0

(
µt(x)
tN−sp

) 1
p−1 dt

t
≤ C(N, p)

∫ R

0
µ

κ
p−1

1,t (x)t
sp

p−1−1dt

= C(N, p, s, q)
(
µ

κ
p−1

1,R (x)R
sp

p−1 +

∫ R

0

(
µ1,t(x)

) κ
p−1−1 t

sp
p−1

(
τ(Bt(x))

tN−sp

) 1
p−1 dt

t

)
,
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where we have used integration by parts in the last equality. By (4.33), we have

µ1,t(x) =

∫ 2R

t

(
τ(Br(x))

rN−sp

) 1
p−1 dr

r
≤ Ct−

sp
κ−p+1 .

Combining the last two displays, we obtain∫ R

0

(
µt(x)
tN−sp

) 1
p−1 dt

t
≤ C(N, p, s, κ,R)

(
τ(B2R(x))

κ

(p−1)2 + WR
s,p[τ](x)

)
. (4.38)

The desired result follows by (4.35), (4.37), (4.38) and the fact that

τ(B2R(x))
κ

(p−1)2 ≤ τ(Ω)
κ−p+1
(p−1)2 τ(BR

2
(x))

1
p−1 ≤ C(R,N, p, τ, s, κ)WR

s,p[τ](x), ∀x ∈ Ω.
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