Research article Special Issues

Nonnegative moment coordinates on finite element geometries

  • Received: 25 July 2023 Revised: 13 January 2024 Accepted: 15 January 2024 Published: 23 January 2024
  • In this paper, we introduce new generalized barycentric coordinates (coined as moment coordinates) on convex and nonconvex quadrilaterals and convex hexahedra with planar faces. This work draws on recent advances in constructing interpolants to describe the motion of the Filippov sliding vector field in nonsmooth dynamical systems, in which nonnegative solutions of signed matrices based on (partial) distances are studied. For a finite element with $ n $ vertices (nodes) in $ \mathbb{R}^2 $, the constant and linear reproducing conditions are supplemented with additional linear moment equations to set up a linear system of equations of full rank $ n $, whose solution results in the nonnegative shape functions. On a simple (convex or nonconvex) quadrilateral, moment coordinates using signed distances are identical to mean value coordinates. For signed weights that are based on the product of distances to edges that are incident to a vertex and their edge lengths, we recover Wachspress coordinates on a convex quadrilateral. Moment coordinates are also constructed on a convex hexahedra with planar faces. We present proofs in support of the construction and plots of the shape functions that affirm its properties.

    Citation: L. Dieci, Fabio V. Difonzo, N. Sukumar. Nonnegative moment coordinates on finite element geometries[J]. Mathematics in Engineering, 2024, 6(1): 81-99. doi: 10.3934/mine.2024004

    Related Papers:

  • In this paper, we introduce new generalized barycentric coordinates (coined as moment coordinates) on convex and nonconvex quadrilaterals and convex hexahedra with planar faces. This work draws on recent advances in constructing interpolants to describe the motion of the Filippov sliding vector field in nonsmooth dynamical systems, in which nonnegative solutions of signed matrices based on (partial) distances are studied. For a finite element with $ n $ vertices (nodes) in $ \mathbb{R}^2 $, the constant and linear reproducing conditions are supplemented with additional linear moment equations to set up a linear system of equations of full rank $ n $, whose solution results in the nonnegative shape functions. On a simple (convex or nonconvex) quadrilateral, moment coordinates using signed distances are identical to mean value coordinates. For signed weights that are based on the product of distances to edges that are incident to a vertex and their edge lengths, we recover Wachspress coordinates on a convex quadrilateral. Moment coordinates are also constructed on a convex hexahedra with planar faces. We present proofs in support of the construction and plots of the shape functions that affirm its properties.



    加载中


    [1] M. S. Floater, Generalized barycentric coordinates and applications, Acta Numer., 24 (2015), 161–214. https://doi.org/10.1017/S0962492914000129 doi: 10.1017/S0962492914000129
    [2] D. Anisimov, Barycentric coordinates and their properties, In: K. Hormann, N. Sukumar, Generalized barycentric coordinates in computer graphics and computational mechanics, CRC Press, 2017, 3–22. https://doi.org/10.1201/9781315153452-1
    [3] K. Hormann, N. Sukumar, Generalized barycentric coordinates in computer graphics and computational mechanics, CRC Press, 2017. https://doi.org/10.1201/9781315153452
    [4] E. Wachspress, Rational bases and generalized barycentrics, Applications to Finite Elements and Graphics, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-21614-0
    [5] J. Warren, Barycentric coordinates for convex polytopes, Adv. Comput. Math., 6 (1996), 97–108. https://doi.org/10.1007/BF02127699 doi: 10.1007/BF02127699
    [6] M. S. Floater, Mean value coordinates, Comput. Aided Geom. Des., 20 (2003), 19–27. https://doi.org/10.1016/S0167-8396(03)00002-5 doi: 10.1016/S0167-8396(03)00002-5
    [7] K. Hormann, M. S. Floater, Mean value coordinates for arbitrary planar polygons, ACM Trans. Graphics, 25 (2006), 1424–1441. https://doi.org/10.1145/1183287.1183295 doi: 10.1145/1183287.1183295
    [8] M. Arroyo, M. Ortiz, Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods, Int. J. Numer. Method Eng., 65 (2006), 2167–2202. https://doi.org/10.1002/nme.1534 doi: 10.1002/nme.1534
    [9] P. Joshi, M. Meyer, T. DeRose, B. Green, T. Sanocki, Harmonic coordinates for character articulation, ACM Trans. Graphics, 26 (2007), 71. https://doi.org/10.1145/1276377.1276466 doi: 10.1145/1276377.1276466
    [10] N. Sukumar, R. W. Wright, Overview and construction of meshfree basis functions: from moving least squares to entropy approximants, Int. J. Numer. Method Eng., 70 (2007), 181–205. https://doi.org/10.1002/nme.1885 doi: 10.1002/nme.1885
    [11] K. Hormann, N. Sukumar, Maximum entropy coordinates for arbitrary polytopes, Comput. Graph. Forum, 27 (2008), 1513–1520. https://doi.org/10.1111/j.1467-8659.2008.01292.x doi: 10.1111/j.1467-8659.2008.01292.x
    [12] J. Zhang, B. Deng, Z. Liu, G. Patanè, S. Bouaziz, K. Hormann, et al., Local barycentric coordinates, ACM Trans. Graphics, 33 (2014), 188. https://doi.org/10.1145/2661229.2661255 doi: 10.1145/2661229.2661255
    [13] J. Tao, B. Deng, J. Zhang, A fast numerical solver for local barycentric coordinates, Comput. Aided Geom. Des., 70 (2019), 46–58. https://doi.org/10.1016/j.cagd.2019.04.006 doi: 10.1016/j.cagd.2019.04.006
    [14] D. Anisimov, D. Panozzo, K. Hormann, Blended barycentric coordinates, Comput. Aided Geom. Des., 52-53 (2017), 205–216. https://doi.org/10.1016/j.cagd.2017.02.007 doi: 10.1016/j.cagd.2017.02.007
    [15] C. Deng, Q. Chang, K. Hormann, Iterative coordinates, Comput. Aided Geom. Des., 79 (2020), 101861. https://doi.org/10.1016/j.cagd.2020.101861 doi: 10.1016/j.cagd.2020.101861
    [16] L. Dieci, F. Difonzo, The moments sliding vector field on the intersection of two manifolds, J. Dyn. Diff. Equat., 29 (2017), 169–201. https://doi.org/10.1007/s10884-015-9439-9 doi: 10.1007/s10884-015-9439-9
    [17] L. Dieci, F. Difonzo, On the inverse of some sign matrices and on the moments sliding vector field on the intersection of several manifolds: nodally attractive case, J. Dyn. Diff. Equat., 29 (2017), 1355–1381. https://doi.org/10.1007/s10884-016-9527-5 doi: 10.1007/s10884-016-9527-5
    [18] V. Klee, R. Ladner, R. Manber, Signsolvability revisited, Linear Algebra Appl., 59 (1984), 131–157. https://doi.org/10.1016/0024-3795(84)90164-2 doi: 10.1016/0024-3795(84)90164-2
    [19] R. A. Brualdi, B. L. Shader, Matrices of sign-solvable linear systems, Cambridge University Press, 1995. https://doi.org/10.1017/CBO9780511574733
    [20] D. P. Flanagan, T. Belytschko, A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int. J. Numer. Method Eng., 17 (1981), 679–706. https://doi.org/10.1002/nme.1620170504 doi: 10.1002/nme.1620170504
    [21] M. Floater, A. Gillette, N. Sukumar, Gradient bounds for Wachspress coordinates on polytopes, SIAM J. Numer. Anal., 52 (2014), 515–532. https://doi.org/10.1137/130925712 doi: 10.1137/130925712
    [22] N. Sukumar, Construction of polygonal interpolants: a maximum entropy approach, Int. J. Numer. Method Eng., 61 (2004), 2159–2181. https://doi.org/10.1002/nme.1193 doi: 10.1002/nme.1193
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(844) PDF downloads(114) Cited by(0)

Article outline

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog