Research article Special Issues

Structure preservation in high-order hybrid discretisations of potential-driven advection-diffusion: linear and nonlinear approaches

  • Received: 19 October 2023 Revised: 12 January 2024 Accepted: 17 January 2024 Published: 24 January 2024
  • We are interested in the high-order approximation of anisotropic, potential-driven advection-diffusion models on general polytopal partitions. We study two hybrid schemes, both built upon the Hybrid High-Order technology. The first one hinges on exponential fitting and is linear, whereas the second is nonlinear. The existence of solutions is established for both schemes. Both schemes are also shown to possess a discrete entropy structure, ensuring that the long-time behaviour of discrete solutions mimics the PDE one. For the nonlinear scheme, the positivity of discrete solutions is a built-in feature. On the contrary, we display numerical evidence indicating that the linear scheme violates positivity, whatever the order. Finally, we verify numerically that the nonlinear scheme has optimal order of convergence, expected long-time behaviour, and that raising the polynomial degree results, also in the nonlinear case, in an efficiency gain.

    Citation: Simon Lemaire, Julien Moatti. Structure preservation in high-order hybrid discretisations of potential-driven advection-diffusion: linear and nonlinear approaches[J]. Mathematics in Engineering, 2024, 6(1): 100-136. doi: 10.3934/mine.2024005

    Related Papers:

  • We are interested in the high-order approximation of anisotropic, potential-driven advection-diffusion models on general polytopal partitions. We study two hybrid schemes, both built upon the Hybrid High-Order technology. The first one hinges on exponential fitting and is linear, whereas the second is nonlinear. The existence of solutions is established for both schemes. Both schemes are also shown to possess a discrete entropy structure, ensuring that the long-time behaviour of discrete solutions mimics the PDE one. For the nonlinear scheme, the positivity of discrete solutions is a built-in feature. On the contrary, we display numerical evidence indicating that the linear scheme violates positivity, whatever the order. Finally, we verify numerically that the nonlinear scheme has optimal order of convergence, expected long-time behaviour, and that raising the polynomial degree results, also in the nonlinear case, in an efficiency gain.



    加载中


    [1] J. Aghili, D. A. Di Pietro, B. Ruffini, An $hp$-hybrid high-order method for variable diffusion on general meshes, Comput. Methods Appl. Math., 17 (2017), 359–376. https://doi.org/10.1515/cmam-2017-0009 doi: 10.1515/cmam-2017-0009
    [2] G. R. Barrenechea, E. H. Georgoulis, T. Pryer, A. Veeser, A nodally bound-preserving finite element method, IMA J. Numer. Anal., 2023. https://doi.org/10.1093/imanum/drad055 doi: 10.1093/imanum/drad055
    [3] G. R. Barrenechea, V. John, P. Knobloch, Finite element methods respecting the discrete maximum principle for convection-diffusion equations, SIAM Rev., 2023.
    [4] L. Beirão da Veiga, J. Droniou, G. Manzini, A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems, IMA J. Numer. Anal., 31 (2011), 1357–1401. https://doi.org/10.1093/imanum/drq018 doi: 10.1093/imanum/drq018
    [5] X. Blanc, E. Labourasse, A positive scheme for diffusion problems on deformed meshes, ZAMM-J. Appl. Math. Mech., 96 (2016), 660–680. https://doi.org/10.1002/zamm.201400234 doi: 10.1002/zamm.201400234
    [6] T. Bodineau, J. Lebowitz, C. Mouhot, C. Villani, Lyapunov functionals for boundary-driven nonlinear drift-diffusion equations, Nonlinearity, 27 (2014), 2111. https://doi.org/10.1088/0951-7715/27/9/2111 doi: 10.1088/0951-7715/27/9/2111
    [7] F. Bonizzoni, M. Braukhoff, A. Jüngel, I. Perugia, A structure-preserving discontinuous Galerkin scheme for the Fisher-KPP equation, Numer. Math., 146 (2020), 119–157. https://doi.org/10.1007/s00211-020-01136-w doi: 10.1007/s00211-020-01136-w
    [8] M. Braukhoff, I. Perugia, P. Stocker, An entropy structure preserving space-time formulation for cross-diffusion systems: analysis and Galerkin discretization, SIAM J. Numer. Anal., 60 (2022), 364–395. https://doi.org/10.1137/20M1360086 doi: 10.1137/20M1360086
    [9] F. Brezzi, K. Lipnikov, V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Mod. Meth. Appl. Sci., 15 (2005), 1533–1551. https://doi.org/10.1142/S0218202505000832 doi: 10.1142/S0218202505000832
    [10] F. Brezzi, L. D. Marini, P. Pietra, Two-dimensional exponential fitting and applications to drift-diffusion models, SIAM J. Numer. Anal., 26 (1989), 1342–1355. https://doi.org/10.1137/0726078 doi: 10.1137/0726078
    [11] C. Cancès, C. Chainais-Hillairet, M. Herda, S. Krell, Large time behavior of nonlinear finite volume schemes for convection-diffusion equations, SIAM J. Numer. Anal., 58 (2020), 2544–2571. https://doi.org/10.1137/19M1299311 doi: 10.1137/19M1299311
    [12] C. Cancès, C. Chainais-Hillairet, S. Krell, Numerical analysis of a nonlinear free-energy diminishing discrete duality finite volume scheme for convection diffusion equations, Comput. Methods Appl. Math., 18 (2018), 407–432. https://doi.org/10.1515/cmam-2017-0043 doi: 10.1515/cmam-2017-0043
    [13] C. Cancès, C. Guichard, Numerical analysis of a robust free-energy diminishing finite volume scheme for parabolic equations with gradient structure, Found. Comput. Math., 17 (2017), 1525–1584. https://doi.org/10.1007/s10208-016-9328-6 doi: 10.1007/s10208-016-9328-6
    [14] C. Chainais-Hillairet, J. Droniou, Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions, IMA J. Numer. Anal., 31 (2011), 61–85. https://doi.org/10.1093/imanum/drp009 doi: 10.1093/imanum/drp009
    [15] C. Chainais-Hillairet, M. Herda, Large-time behaviour of a family of finite volume schemes for boundary-driven convection-diffusion equations, IMA J. Numer. Anal., 40 (2020), 2473–2504. https://doi.org/10.1093/imanum/drz037 doi: 10.1093/imanum/drz037
    [16] C. Chainais-Hillairet, M. Herda, S. Lemaire, J. Moatti, Long-time behaviour of hybrid finite volume schemes for advection-diffusion equations: linear and nonlinear approaches, Numer. Math., 151 (2022), 963–1016. https://doi.org/10.1007/s00211-022-01289-w doi: 10.1007/s00211-022-01289-w
    [17] P. G. Ciarlet, Discrete maximum principle for finite-difference operators, Aeq. Math., 4 (1970), 338–352. https://doi.org/10.1007/BF01844166 doi: 10.1007/BF01844166
    [18] P. G. Ciarlet, P. A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Eng., 2 (1973), 17–31. https://doi.org/10.1016/0045-7825(73)90019-4 doi: 10.1016/0045-7825(73)90019-4
    [19] M. Cicuttin, A. Ern, N. Pignet, Hybrid high-order methods: a primer with applications to solid mechanics, Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-81477-9
    [20] B. Cockburn, D. A. Di Pietro, A. Ern, Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods, ESAIM: Math. Model. Numer. Anal., 50 (2016), 635–650. https://doi.org/10.1051/m2an/2015051 doi: 10.1051/m2an/2015051
    [21] P. L. Colin, Numerical analysis of drift-diffusion models: convergence and asymptotic behaviors, Ph.D. Thesis, Université de Lille 1, 2016.
    [22] M. Corti, F. Bonizzoni, P. F. Antonietti, Structure preserving polytopal discontinuous Galerkin methods for the numerical modeling of neurodegenerative diseases, arXiv, 2023. https://doi.org/10.48550/arXiv.2308.00547 doi: 10.48550/arXiv.2308.00547
    [23] D. A. Di Pietro, J. Droniou, The hybrid high-order method for polytopal meshes: design, analysis, and applications, Vol. 19, Cham: Springer, 2020. https://doi.org/10.1007/978-3-030-37203-3
    [24] D. A. Di Pietro, J. Droniou, A. Ern, A discontinuous-skeletal method for advection-diffusion-reaction on general meshes, SIAM J. Numer. Anal., 53 (2015), 2135–2157. https://doi.org/10.1137/140993971 doi: 10.1137/140993971
    [25] D. A. Di Pietro, A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Eng., 283 (2015), 1–21. https://doi.org/10.1016/j.cma.2014.09.009 doi: 10.1016/j.cma.2014.09.009
    [26] D. A. Di Pietro, A. Ern, S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators, Comput. Methods Appl. Math., 14 (2014), 461–472. https://doi.org/10.1515/cmam-2014-0018 doi: 10.1515/cmam-2014-0018
    [27] K. Domelevo, P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, ESAIM: Math. Model. Numer. Anal., 39 (2005), 1203–1249. https://doi.org/10.1051/m2an:2005047 doi: 10.1051/m2an:2005047
    [28] J. Droniou, Finite volume schemes for diffusion equations: introduction to and review of modern methods, Math. Mod. Meth. Appl. Sci., 24 (2014), 1575–1619. https://doi.org/10.1142/S0218202514400041 doi: 10.1142/S0218202514400041
    [29] J. Droniou, C. Le Potier, Construction and convergence study of schemes preserving the elliptic local maximum principle, SIAM J. Numer. Anal., 49 (2011), 459–490. https://doi.org/10.1137/090770849 doi: 10.1137/090770849
    [30] J. Droniou, L. Yemm, Robust hybrid high-order method on polytopal meshes with small faces, Comput. Methods Appl. Math., 22 (2022), 47–71. https://doi.org/10.1515/cmam-2021-0018 doi: 10.1515/cmam-2021-0018
    [31] D. A. Dunavant, High degree efficient symmetrical Gaussian quadrature rules for the triangle, Int. J. Numer. Methods Eng., 21 (1985), 1129–1148.
    [32] L. C. Evans, Partial differential equations, 2 Eds., American Mathematical Society, 2010.
    [33] R. Eymard, T. Gallouët, R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., 30 (2010), 1009–1043. https://doi.org/10.1093/imanum/drn084 doi: 10.1093/imanum/drn084
    [34] R. Eymard, C. Guichard, R. Herbin, Small-stencil 3D schemes for diffusive flows in porous media, ESAIM: Math. Model. Numer. Anal., 46 (2012), 265–290. https://doi.org/10.1051/m2an/2011040 doi: 10.1051/m2an/2011040
    [35] I. Faragó, J. Karátson, S. Korotov, Discrete maximum principles for nonlinear parabolic PDE systems, IMA J. Numer. Anal., 32 (2012), 1541–1573. https://doi.org/10.1093/imanum/drr050 doi: 10.1093/imanum/drr050
    [36] H. Gajewski, K. Gärtner, On the discretization of van Roosbroeck's equations with magnetic field, ZAMM-J. Appl. Math. Mech., 76 (1996), 247–264. https://doi.org/10.1002/zamm.19960760502 doi: 10.1002/zamm.19960760502
    [37] H. Gajewski, K. Gröger, Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi-Dirac statistics, Math. Nachr., 140 (1989), 7–36. https://doi.org/10.1002/mana.19891400102 doi: 10.1002/mana.19891400102
    [38] F. Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes, J. Comput. Phys., 160 (2000), 481–499. https://doi.org/10.1006/jcph.2000.6466 doi: 10.1006/jcph.2000.6466
    [39] C. Lehrenfeld, Hybrid discontinuous Galerkin methods for solving incompressible flow problems, MS.Thesis, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 2010.
    [40] C. Lehrenfeld, J. Schöberl, High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Eng., 307 (2016), 339–361. https://doi.org/10.1016/j.cma.2016.04.025 doi: 10.1016/j.cma.2016.04.025
    [41] H. Liu, Z. Wang, An entropy satisfying discontinuous Galerkin method for nonlinear Fokker-Planck equations, J. Sci. Comput., 68 (2016), 1217–1240. https://doi.org/10.1007/s10915-016-0174-0 doi: 10.1007/s10915-016-0174-0
    [42] H. Liu, H. Yu, Maximum-principle-satisfying third order discontinuous Galerkin schemes for Fokker-Planck equations, SIAM J. Sci. Comput., 36 (2014), A2296–A2325. https://doi.org/10.1137/130935161 doi: 10.1137/130935161
    [43] P. A. Markowich, A. Unterreiter, Vacuum solutions of a stationary drift-diffusion model, Ann. Scuola Norm. Sup. Pisa-Cl. Sci., 20 (1993), 371–386.
    [44] J. Moatti, A skeletal high-order structure preserving scheme for advection-diffusion equations, In: E. Franck, J. Fuhrmann, V. Michel-Dansac, L. Navoret, Finite volumes for complex applications X–Volume 1: elliptic and parabolic problems, Springer Proceedings in Mathematics & Statistics, Cham: Springer, 432 (2023), 345–354. https://doi.org/10.1007/978-3-031-40864-9_29
    [45] J. Moatti, A structure preserving hybrid finite volume scheme for semiconductor models with magnetic field on general meshes, ESAIM: Math. Model. Numer. Anal., 57 (2023), 2557–2593. https://doi.org/10.1051/m2an/2023041 doi: 10.1051/m2an/2023041
    [46] E. H. Quenjel, Positive Scharfetter–Gummel finite volume method for convection-diffusion equations on polygonal meshes, Appl. Math. Comput., 425 (2022), 127071. https://doi.org/10.1016/j.amc.2022.127071 doi: 10.1016/j.amc.2022.127071
    [47] D. L. Scharfetter, H. K. Gummel, Large-signal analysis of a silicon Read diode oscillator, IEEE Trans. Electron Dev., 16 (1969), 64–77. https://doi.org/10.1109/T-ED.1969.16566 doi: 10.1109/T-ED.1969.16566
    [48] M. Schneider, L. Agélas, G. Enchéry, B. Flemisch, Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes, J. Comput. Phys., 351 (2017), 80–107. https://doi.org/10.1016/j.jcp.2017.09.003 doi: 10.1016/j.jcp.2017.09.003
    [49] Z. Sheng, J. Yue, G. Yuan, Monotone finite volume schemes of nonequilibrium radiation diffusion equations on distorted meshes, SIAM J. Sci. Comput., 31 (2009), 2915–2934. https://doi.org/10.1137/080721558 doi: 10.1137/080721558
    [50] W. Van Roosbroeck, Theory of the flow of electrons and holes in germanium and other semiconductors, Bell Syst. Tech. J., 29 (1950), 560–607. https://doi.org/10.1002/j.1538-7305.1950.tb03653.x doi: 10.1002/j.1538-7305.1950.tb03653.x
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(660) PDF downloads(127) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog