We derive interior curvature bounds for admissible solutions of a class of mixed Hessian curvature equations subject to affine Dirichlet data. As an application, we study a Plateau type problem for locally convex Weingarten hypersurfaces.
Citation: Weimin Sheng, Shucan Xia. Interior curvature bounds for a type of mixed Hessian quotient equations[J]. Mathematics in Engineering, 2023, 5(2): 1-27. doi: 10.3934/mine.2023040
We derive interior curvature bounds for admissible solutions of a class of mixed Hessian curvature equations subject to affine Dirichlet data. As an application, we study a Plateau type problem for locally convex Weingarten hypersurfaces.
[1] | A. Alexandroff, Zur theorie der gemischten volumina von konvexen korpern. Ⅱ. Neue ungleichungen zwischen den gemischten volumina und ihre anwendungen, Rec. Math. [Mat. Sbornik] N.S., 2(44) (1937), 1205–1238. |
[2] | I. Bakelman, B. Kantor, Existence of spherically homeomorphic hypersurfaces in Euclidean space with prescribed mean curvature, (Russian), Geometry and Topology, 1 (1974), 3–10. |
[3] | S.-Y. Cheng, S.-T. Yau, On the regularity of the solution of the $n$-dimensional Minkowski problem, Commun. Pure Appl. Math., 29 (1976), 495–516. https://doi.org/10.1002/cpa.3160290504 doi: 10.1002/cpa.3160290504 |
[4] | J. Chu, M.-C. Lee, Hypercritical deformed Hermitian-Yang-Mills equation, arXiv: 2107.13192. |
[5] | T. C. Collins, A. Jacob, S.-T. Yau, (1, 1) forms with specified Lagrangian phase: a priori estimates and algebraic obstructions, arXiv: 1508.01934. |
[6] | J.-X. Fu, S.-T. Yau, A Monge-Ampére-type equation motivated by string theory, Commun. Anal. Geom., 15 (2007), 29–76. https://dx.doi.org/10.4310/CAG.2007.v15.n1.a2 doi: 10.4310/CAG.2007.v15.n1.a2 |
[7] | J.-X. Fu, S.-T. Yau, The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampere equation, J. Differential Geom., 78 (2008), 369–428. https://doi.org/10.4310/jdg/1207834550 doi: 10.4310/jdg/1207834550 |
[8] | J.-X. Fu, S.-T. Yau, D. Zhang, A deformed Hermitian Yang-Mills Flow, arXiv: 2105.13576. |
[9] | C. Gerhardt, Closed Weingarten hypersurfaces in space forms, In: Geometric analysis and the calculus of variations, Boston: International Press, 1996, 71–97. |
[10] | D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Berlin, Heidelberg: Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0 |
[11] | B. Guan, P. Guan, Convex hypersurfaces of prescribed curvatures, Ann. Math., 156 (2002), 655–673. https://doi.org/10.2307/3597202 doi: 10.2307/3597202 |
[12] | P. Guan, J. Li, Y.-Y. Li, Hypersurfaces of prescribed curvature measure, Duke Math. J., 161 (2012), 1927–1942. https://doi.org/10.1215/00127094-1645550 doi: 10.1215/00127094-1645550 |
[13] | P. Guan, C. Lin, X. Ma, The Christoffel-Minkowski problem Ⅱ: Weingarten curvature equations, Chin. Ann. Math. Ser. B, 27 (2006), 595–614. https://doi.org/10.1007/s11401-005-0575-0 doi: 10.1007/s11401-005-0575-0 |
[14] | P. Guan, X. Ma, The Christoffel-Minkowski problem Ⅰ: Convexity of solutions of a Hessian equation, Invent. Math., 151 (2003), 553–577. https://doi.org/10.1007/s00222-002-0259-2 doi: 10.1007/s00222-002-0259-2 |
[15] | P. Guan, X. Ma, F. Zhou, The Christoffel-Minkowski problem Ⅲ: existence and convexity of admissible solutions, Commun. Pure Appl. Math., 59 (2006), 1352–1376. https://doi.org/10.1002/cpa.20118 doi: 10.1002/cpa.20118 |
[16] | P. Guan, X. Zhang, A class of curvature type equations, Pure Appl. Math. Q., 17 (2021), 865–907. https://doi.org/10.4310/PAMQ.2021.v17.n3.a2 doi: 10.4310/PAMQ.2021.v17.n3.a2 |
[17] | X. Han, X. Jin, Limit behavior of complex special Lagrangian equations with Neumann boundary-value conditions, Int. Math. Res. Notices, 2021, rnaa378. https://doi.org/10.1093/imrn/rnaa378 |
[18] | F. R. Harvey, H. B. Lawson, Calibrated geometries, Acta Math., 148 (1982), 47–157. https://doi.org/10.1007/BF02392726 doi: 10.1007/BF02392726 |
[19] | N. M. Ivochkina, F. Tomi, Locally convex hypersurfaces of prescribed curvature and boundary, Calc. Var., 7 (1998), 293–314. https://doi.org/10.1007/s005260050110 doi: 10.1007/s005260050110 |
[20] | A. Jacob, S.-T. Yau, A special Lagrangian type equation for holomorphic line bundles, Math. Ann., 369 (2017), 869–898. https://doi.org/10.1007/s00208-016-1467-1 doi: 10.1007/s00208-016-1467-1 |
[21] | M. Lin, N. S. Trudinger, The Dirichlet problem for the prescribed curvature quotient equations, Topolo. Methods Nonlinear Anal., 3 (1994), 307–323. |
[22] | M. Lin, N. S. Trudinger, On some inequalities for elementary symmetric functions, Bull. Aust. Math. Soc., 50 (1994), 317–326. https://doi.org/10.1017/S0004972700013770 doi: 10.1017/S0004972700013770 |
[23] | H. Minkowski, Volumen und oberfläche, In: Ausgewählte Arbeiten zur Zahlentheorie und zur Geometrie, Vienna: Springer, 1989,146–192. https://doi.org/10.1007/978-3-7091-9536-9_7 |
[24] | N. Nadirashvili, S. Vlăduţ, Singular solution to special Lagrangian equations, Annales de l'IHP Analyse non linéaire, 27 (2010), 1179–1188. https://doi.org/10.1016/j.anihpc.2010.05.001 doi: 10.1016/j.anihpc.2010.05.001 |
[25] | L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Commun. Pure Appl. Math., 6 (1953), 337–394. https://doi.org/10.1002/cpa.3160060303 doi: 10.1002/cpa.3160060303 |
[26] | A. V. Pogorelov, The Minkowski Multi-Dimensional problem, V. H. Winsion & Sons, 1978. |
[27] | D. H. Phong, S. Picard, X. Zhang, On estimates for the Fu-Yau generalization of a Strominger system, Journal für die reine und angewandte Mathematik (Crelles Journal), 2019 (2019), 243–274. https://doi.org/10.1515/CRELLE-2016-0052 doi: 10.1515/CRELLE-2016-0052 |
[28] | R. Schneider, Convex bodies: the Brunn–Minkowski theory, Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781139003858 |
[29] | W. Sheng, J. Urbas, X.-J. Wang, Interior curvature bounds for a class of curvature equations, Duke Math. J., 123 (2004), 235–264. https://doi.org/10.1215/S0012-7094-04-12321-8 doi: 10.1215/S0012-7094-04-12321-8 |
[30] | A. E. Treibergs, S. W. Wei, Embedded hyperspheres with prescribed mean curvature, J. Differential Geom., 18 (1983), 513–521. https://doi.org/10.4310/jdg/1214437786 doi: 10.4310/jdg/1214437786 |
[31] | N. S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rational Mech. Anal., 111 (1990), 153–179. https://doi.org/10.1007/BF00375406 doi: 10.1007/BF00375406 |
[32] | N. S. Trudinger, X.-J. Wang, On locally convex hypersurfaces with boundary, J. Reine Angew. Math., 551 (2002), 11–32. https://doi.org/10.1515/crll.2002.078 doi: 10.1515/crll.2002.078 |
[33] | K. Tso, On the existence of convex hypersurfaces with prescribed mean curvature, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 16 (1989), 225–243. |
[34] | X.-J. Wang, Interior gradient estimates for mean curvature equations, Math. Z., 228 (1998), 73–82. https://doi.org/10.1007/PL00004604 doi: 10.1007/PL00004604 |
[35] | D. Wang, Y. Yuan, Singular solutions to special Lagrangian equations with subcritical phases and minimal surface systems, Amer. J. Math., 135 (2013), 1157–1177. https://doi.org/10.1353/ajm.2013.0043 doi: 10.1353/ajm.2013.0043 |
[36] | J. Zhou, The interior gradient estimate for a class of mixed Hessian curvature equations, J. Korean Math. Soc., 59 (2022), 53–69. https://doi.org/10.4134/JKMS.j200665 doi: 10.4134/JKMS.j200665 |
[37] | X.-P. Zhu, Multiple convex hypersurfaces with prescribed mean curvature, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 21 (1994), 175–191. |