We consider normal velocity of smooth sets evolving by the $ s- $fractional diffusion. We prove that for small time, the normal velocity of such sets is nearly proportional to the mean curvature of the boundary of the initial set for $ s\in [\frac{1}{2}, 1) $ while, for $ s\in (0, \frac{1}{2}) $, it is nearly proportional to the fractional mean curvature of the initial set. Our results show that the motion by (fractional) mean curvature flow can be approximated by fractional heat diffusion and by a diffusion by means of harmonic extension of smooth sets.
Citation: Anoumou Attiogbe, Mouhamed Moustapha Fall, El Hadji Abdoulaye Thiam. Nonlocal diffusion of smooth sets[J]. Mathematics in Engineering, 2022, 4(2): 1-22. doi: 10.3934/mine.2022009
We consider normal velocity of smooth sets evolving by the $ s- $fractional diffusion. We prove that for small time, the normal velocity of such sets is nearly proportional to the mean curvature of the boundary of the initial set for $ s\in [\frac{1}{2}, 1) $ while, for $ s\in (0, \frac{1}{2}) $, it is nearly proportional to the fractional mean curvature of the initial set. Our results show that the motion by (fractional) mean curvature flow can be approximated by fractional heat diffusion and by a diffusion by means of harmonic extension of smooth sets.
[1] | N. Abatangelo, E. Valdinoci, A notion of nonlocal curvature, Numer. Func. Anal. Opt., 35 (2014), 793-815. doi: 10.1080/01630563.2014.901837 |
[2] | P. Alexander, H. Gerhard, Geometric evolution equations for hypersurfaces, In: Calculus of variations and geometric evolution problems, Springer, 1999, 45-84. |
[3] | S. J. Altschuler, M. A. Grayson, Shortening space curves and flow through singularities, Institute for Mathematics and its Applications, USA, 1991. |
[4] | G. Barles, C. Georgelin, A simple proof of convergence for an approximation scheme for computing motions by mean curvature, SIAM J. Numer. Anal., 32 (1995), 484-500. doi: 10.1137/0732020 |
[5] | J. Bence, B. Merriman, S. Osher, Diffusion generated motion by mean curvature, Computational Crystal Growers Workshop, 1992. |
[6] | R. M. Blumenthal, R. K. Getoor, Some theorems on stable processes, T. Am. Math. Soc., 95 (1960), 263-273. doi: 10.1090/S0002-9947-1960-0119247-6 |
[7] | L. Caffarelli, J. M. Roquejoffre, O. Savin, Nonlocal minimal surfaces, Commun. Pure Appl. Math., 63 (2010), 1111-1144. |
[8] | L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306 |
[9] | L. A. Caffarelli, P. E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front propagation, Arch. Ration. Mech. Anal., 195 (2010), 1-23. doi: 10.1007/s00205-008-0181-x |
[10] | L. Capogna, G. Citti, C. S. G. Magnani, Sub-riemannian heat kernels and mean curvature flow of graphs, J. Funct. Anal., 264 (2013), 1899-1928. doi: 10.1016/j.jfa.2013.01.020 |
[11] | A. Chambolle, M. Morini, M. Ponsiglione, A nonlocal mean curvature flow and its semi-implicit time-discrete approximation, SIAM J. Math. Anal., 44 (2012), 4048-4077. doi: 10.1137/120863587 |
[12] | A. Chambolle, M. Morini, M. Ponsiglione, Minimizing movements and level set approaches to nonlocal variational geometric flows, In: Geometric partial differential equations, Edizioni della Normale, 2013, 93-104. |
[13] | A. Chambolle, M. Morini, M. Ponsiglione, Nonlocal curvature flows, Arch. Ration. Mech. Anal., 218 (2015), 1263-1329. |
[14] | E. Cinti, C. Sinestrari, E.Valdinoci, Neckpinch singularities in fractional mean curvature flows, P. Am. Math. Soc., 146 (2018), 2637-2646. doi: 10.1090/proc/14002 |
[15] | K. Ecker, G. Huisken, Mean curvature evolution of entire graphs, Ann. Math., 130 (1989), 453-471. doi: 10.2307/1971452 |
[16] | L. C. Evans, Convergence of an algorithm for mean curvature motion, Indian U. Math. J., 42 (1993), 533-557. doi: 10.1512/iumj.1993.42.42024 |
[17] | L. C. Evans, J. Spruck, Motion of level sets by mean curvature I, J. Differ. Geom., 33 (1991), 635-681. |
[18] | L. C. Evans, J. Spruck, Motion of level sets by mean curvature II, T. Am. Math. Soc., 330 (1992), 321-332. doi: 10.1090/S0002-9947-1992-1068927-8 |
[19] | L. C. Evans, J. Spruck, Motion of level sets by mean curvature III, J. Geom. Anal., 2 (1992), 121-150. doi: 10.1007/BF02921385 |
[20] | L. C. Evans, J. Spruck, Motion of level sets by mean curvature IV, J. Geom. Anal., 5 (1995), 77-114. doi: 10.1007/BF02926443 |
[21] | M. M. Fall, Constant nonlocal mean curvatures surfaces and related problems, In: Proceedings of the International Congress of Mathematicians (ICM 2018), 2018, 1631-1656. |
[22] | J. A. Garroni, S. Müller, $\Gamma $-limit of a phase-field model for dislocations, SIAM J. Math. Anal., 36 (2005), 1943-1964. doi: 10.1137/S003614100343768X |
[23] | J. A. Garroni, S. Müller, A variational model for dislocations in the line tension limit, Arch. Ration. Mech. Anal., 181 (2006), 535-578. doi: 10.1007/s00205-006-0432-7 |
[24] | Y. Giga, Surface evolution equations, Springer, 2006. |
[25] | Y. Goto, K. Ishii, T. Ogawa, Method of the distance function to the BenceMerriman-Osher algorithm for motion of mean curvature, Graduate School of Mathematics, Kyushu University, 2002. |
[26] | G. Huisken, Flow by mean curvature of convex surfaces into spheres, Australian National University, Centre for Mathematical Analysis, 1984. |
[27] | C. Imbert, Level set approach for fractional mean curvature flows, Interface. Free Bound., 11 (2009), 153-176. |
[28] | H. Ishii, A generalization of the Bence, Merriman and Osher algorithm for motion by mean curvature, Curvature flows and related topics (Levico, 1994), 5, 111-127. Available from: https://mathscinet.ams.org/mathscinet/. |
[29] | H. Ishii, G. E. Pires, P. E. Souganidis, Threshold dynamics type approximation schemes for propagating fronts, J. Math. Soc. Jpn., 51 (1999), 267-308. |
[30] | H. C. Lara, G. Davila, Regularity for solutions of nonlocal, non symmetric equations, Ann. Inst. H. Poincaré Anal. Non linéaire, 29 (2012), 833-859. doi: 10.1016/j.anihpc.2012.04.006 |
[31] | F. Leoni, Convergence of an approximation scheme for curvature-dependent motions of sets, SIAM J. Numer. Anal., 39 (2001), 1115-1131. doi: 10.1137/S0036142900370459 |
[32] | S. Osher, J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), 12-49. doi: 10.1016/0021-9991(88)90002-2 |
[33] | O. Savin, E. Valdinoci, G-convergence for nonlocal phase transitions, Ann. Inst. H. Poincaré Anal. Non Lineaire, 29 (2012), 479-500. doi: 10.1016/j.anihpc.2012.01.006 |
[34] | D. Swartz, N. K. Yip, Convergence of diffusion generated motion to motion by mean curvature, Commun. Part. Diff. Eq., 42 (2017), 1598-1643. doi: 10.1080/03605302.2017.1383418 |
[35] | J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Cont. Dyn S, 7 (2014), 857-885. |
[36] | L. Vivier, Convergence of an approximation scheme for computing motions with curvature dependent velocities, Differ. Integral Equ., 13 (2000), 1263-1288. |