Geometry and mechanics have both a relevant role in determining the three-dimensional packing of $ 8 $ bubbles displayed in a similar foam structure. We assume that the spatial arrangement of bubbles obeys a geometrical principle maximizing the minimum mutual distance between the bubble centroids. The compacted structure is then obtained by radially packing the bubbles under constraint of volume conservation. We generate a polygonal tiling on the central sphere and peripheral bubbles with both flat and curved interfaces. We verify that the obtained polyhedra is optimal under suitable physical criteria. Finally, we enforce the mechanical balance imposing the constraint of conservation of volume.We find an anisotropy in the distribution of the field of forces: surface tensions of bubble-bubble interfaces with normal oriented in the circumferential direction of bubbles aggregate are larger than the ones with normal unit vector pointing radially out of the aggregate. We suggest that this mechanical cue is key for the symmetry break of this bubbles configuration.
Citation: Giulia Bevilacqua. Symmetry break in the eight bubble compaction[J]. Mathematics in Engineering, 2022, 4(2): 1-24. doi: 10.3934/mine.2022010
Geometry and mechanics have both a relevant role in determining the three-dimensional packing of $ 8 $ bubbles displayed in a similar foam structure. We assume that the spatial arrangement of bubbles obeys a geometrical principle maximizing the minimum mutual distance between the bubble centroids. The compacted structure is then obtained by radially packing the bubbles under constraint of volume conservation. We generate a polygonal tiling on the central sphere and peripheral bubbles with both flat and curved interfaces. We verify that the obtained polyhedra is optimal under suitable physical criteria. Finally, we enforce the mechanical balance imposing the constraint of conservation of volume.We find an anisotropy in the distribution of the field of forces: surface tensions of bubble-bubble interfaces with normal oriented in the circumferential direction of bubbles aggregate are larger than the ones with normal unit vector pointing radially out of the aggregate. We suggest that this mechanical cue is key for the symmetry break of this bubbles configuration.
[1] | J. P. Plateau, Recherches expérimentales et théorique sur les figures l'équilibre d'une masse liquide sans pesanteur, Mémoires de l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, 37 (1869), 1–56. |
[2] | H. Kellay, W. I. Goldburg, Two-dimensional turbulence: a review of some recent experiments, Rep. Prog. Phys., 65 (2002), 845. doi: 10.1088/0034-4885/65/5/204 |
[3] | P. Morel, M. Larceveque, Relative dispersion of constant–level balloons in the 200–mb general circulation, J. Atmos. Sci., 31 (1974), 2189–2196. doi: 10.1175/1520-0469(1974)031<2189:RDOCBI>2.0.CO;2 |
[4] | T. Meuel, Y. L. Xiong, P. Fischer, C. H. Bruneau, M. Bessafi, H. Kellay, Intensity of vortices: from soap bubbles to hurricanes, Sci. Rep., 3 (2013), 1–7. |
[5] | F. Seychelles, Y. Amarouchene, M. Bessafi, H. Kellay, Thermal convection and emergence of isolated vortices in soap bubbles, Phys. Rev. Lett., 100 (2008), 144501. doi: 10.1103/PhysRevLett.100.144501 |
[6] | J. J. Bikerman, Formation and structure, In: Foams, Springer, 1973, 33–64. |
[7] | D. L. Weaire, S. Hutzler, The physics of foams, Oxford University Press, 2001. |
[8] | T. C. Hales, The honeycomb conjecture, Discrete Comput. Geom., 25 (2001), 1–22. |
[9] | F. J. Almgren Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Am. Math. Soc., 5 (1976), 165. |
[10] | F. Morgan, Geometric measure theory, In: Geometric measure theory: a beginner's guide, Elsevier, 2016, 3–15. |
[11] | S. J. Cox, F. Graner, F. Vaz, C. Monnereau-Pittet, N. Pittet, Minimal perimeter for $N$ identical bubbles in two dimensions: calculations and simulations, Philos. Mag., 83 (2003), 1393–1406. doi: 10.1080/1478643031000077351 |
[12] | K. A. Brakke, F. Morgan, Instabilities of cylindrical bubble clusters, Eur. Phys. J. E, 9 (2002), 453–460. doi: 10.1140/epje/i2002-10103-4 |
[13] | S. J. Cox, M. F. Vaz, D. Weaire, Topological changes in a two-dimensional foam cluster, Eur. Phys. J. E, 11 (2003), 29–35. doi: 10.1140/epje/i2002-10126-9 |
[14] | M. A. Fortes, M. F. Vaz, S. J. Cox, P. I. C. Teixeira, Instabilities in two-dimensional flower and chain clusters of bubbles, Colloid. Surface. A, 309 (2007), 64–70. doi: 10.1016/j.colsurfa.2007.02.039 |
[15] | D. Weaire, M. F. Vaz, P. I. C. Teixeira, M. A. Fortes, Instabilities in liquid foams, Soft Matter, 3 (2007), 47–57. doi: 10.1039/B608466B |
[16] | A. C. Ferro, M. A. Fortes, The elimination of grains and grain boundaries in grain growth, Interface Science, 5 (1997), 263–278. doi: 10.1023/A:1008615921333 |
[17] | M. Hutchings, F. Morgan, M. Ritoré, A. Ros, Proof of the double bubble conjecture, Ann. Math., 155 (2002), 459–489. doi: 10.2307/3062123 |
[18] | W. Thomson, On the division of space with minimum partitional area, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 24 (1887), 503–514. doi: 10.1080/14786448708628135 |
[19] | D. Weaire, R. Phelan, A counter-example to Kelvin's conjecture on minimal surfaces, Phil. Mag. Lett., 69 (1994), 107–110. doi: 10.1080/09500839408241577 |
[20] | P. M. L. Tammes, On the origin of number and arrangement of the places of exit on the surface of pollen-grains, Recueil des Travaux Botaniques Néerlandais, 27 (1930), 1–84. |
[21] | T. W. Melnyk, O. Knop, W. R. Smith, Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited, Can. J. Chem., 55 (1977), 1745–1761. doi: 10.1139/v77-246 |
[22] | I. Cantat, I. S. Cohen-Addad, F. Elias, F. Graner, R. Höhler, O. Pitois, et al., Foams: structure and dynamics, OUP Oxford, 2013. |
[23] | G. Brinkmann, B. D. McKay, Fast generation of planar graphs, MATCH Commun. Math. Comput. Chem., 58 (2007), 323–357. |
[24] | D. B. West, Introduction to graph theory, Prentice hall Upper Saddle River, 2001. |
[25] | K. Schütte, B. L. Van der Waerden, Auf welcher Kugel haben $5, 6, 7, 8$ oder $9$ Punkte mit Mindestabstand eins Platz?, Math. Ann., 123 (1951), 96–124. |
[26] | M. Berger, Geometry revealed: a Jacob's ladder to modern higher geometry, Springer Science & Business Media, 2010. |
[27] | A. L. Cauchy, Recherches sur les polyedres, J. Ecole Polytechnique, 9 (1813), 68–86. |
[28] | B. W. Clare, D. L. Kepert, The closest packing of equal circles on a sphere, Proc. R. Soc. Lond. A, 405 (1986), 329–344. doi: 10.1098/rspa.1986.0056 |
[29] | D. E. Sands, Introduction to crystallography, Courier Corporation, 1993. |
[30] | E. Garofalo, Absidi poligonali e impianti basilicali della Sicilia tardo-medievale, In: L'abside, costruzione e geometrie, 2015,169–185. |
[31] | B. Roman, J. Bico, Elasto-capillarity: deforming an elastic structure with a liquid droplet, J. Phys. Condens. Mat., 22 (2010), 493101. doi: 10.1088/0953-8984/22/49/493101 |
[32] | G. K. Batchelor, An introduction to fluid dynamics, Cambridge university press, 2000. |
[33] | D. Exerowa, P. M. Kruglyakov, Foam and foam films: theory, experiment, application, Elsevier, 1997. |
[34] | E. Korotkevich, R. Niwayama, A. Courtois, S. Friese, N. Berger, F. Buchholz, et al., The apical domain is required and sufficient for the first lineage segregation in the mouse embryo, Dev. Cell, 40 (2017), 235–247. doi: 10.1016/j.devcel.2017.01.006 |