Research article

A hierarchical chain-based Archimedes optimization algorithm

  • Received: 06 September 2023 Revised: 05 November 2023 Accepted: 06 November 2023 Published: 20 November 2023
  • The Archimedes optimization algorithm (AOA) has attracted much attention for its few parameters and competitive optimization effects. However, all agents in the canonical AOA are treated in the same way, resulting in slow convergence and local optima. To solve these problems, an improved hierarchical chain-based AOA (HCAOA) is proposed in this paper. The idea of HCAOA is to deal with individuals at different levels in different ways. The optimal individual is processed by an orthogonal learning mechanism based on refraction opposition to fully learn the information on all dimensions, effectively avoiding local optima. Superior individuals are handled by an Archimedes spiral mechanism based on Levy flight, avoiding clueless random mining and improving optimization speed. For general individuals, the conventional AOA is applied to maximize its inherent exploration and exploitation abilities. Moreover, a multi-strategy boundary processing mechanism is introduced to improve population diversity. Experimental outcomes on CEC 2017 test suite show that HCAOA outperforms AOA and other advanced competitors. The competitive optimization results achieved by HCAOA on four engineering design problems also demonstrate its ability to solve practical problems.

    Citation: Zijiao Zhang, Chong Wu, Shiyou Qu, Jiaming Liu. A hierarchical chain-based Archimedes optimization algorithm[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 20881-20913. doi: 10.3934/mbe.2023924

    Related Papers:

  • The Archimedes optimization algorithm (AOA) has attracted much attention for its few parameters and competitive optimization effects. However, all agents in the canonical AOA are treated in the same way, resulting in slow convergence and local optima. To solve these problems, an improved hierarchical chain-based AOA (HCAOA) is proposed in this paper. The idea of HCAOA is to deal with individuals at different levels in different ways. The optimal individual is processed by an orthogonal learning mechanism based on refraction opposition to fully learn the information on all dimensions, effectively avoiding local optima. Superior individuals are handled by an Archimedes spiral mechanism based on Levy flight, avoiding clueless random mining and improving optimization speed. For general individuals, the conventional AOA is applied to maximize its inherent exploration and exploitation abilities. Moreover, a multi-strategy boundary processing mechanism is introduced to improve population diversity. Experimental outcomes on CEC 2017 test suite show that HCAOA outperforms AOA and other advanced competitors. The competitive optimization results achieved by HCAOA on four engineering design problems also demonstrate its ability to solve practical problems.



    加载中


    [1] X. Li, J. Gu, Z. Huang, W. Wang, J. Li, Optimal design of model predictive controller based on transient search optimization applied to robotic manipulators, Math. Biosci. Eng., 19 (2022), 9371–9387. https://doi.org/10.3934/mbe.2022436 doi: 10.3934/mbe.2022436
    [2] J. Wang, C. Zhan, S. Li, Q. Zhao, J. Liu, Z. Xie, Adaptive variational mode decomposition based on Archimedes optimization algorithm and its application to bearing fault diagnosis, Measurement, 191 (2022), 110798. https://doi.org/10.1016/j.measurement.2022.110798 doi: 10.1016/j.measurement.2022.110798
    [3] K. Balakrishnan, R. Dhanalakshmi, U. M. Khaire, Excogitating marine predators algorithm based on random opposition-based learning for feature selection, Concurr. Comput. Pract. Exp., 34 (2021), e6630. https://doi.org/10.1002/cpe.6630 doi: 10.1002/cpe.6630
    [4] A. Y. Mahdi, S. S. Yuhaniz, Optimal feature selection using novel flamingo search algorithm for classification of COVID-19 patients from clinical text, Math. Biosci. Eng., 20 (2022), 5268–5297. https://doi.org/10.3934/mbe.2023244 doi: 10.3934/mbe.2023244
    [5] S. Das, A. Bhattacharya, A. K. Chakraborty, Quasi-reflected ions motion optimization algorithm for short-term hydrothermal scheduling, Neural Comput. Appl., 29 (2018), 123–149. https://doi.org/10.1007/s00521-016-2529-8 doi: 10.1007/s00521-016-2529-8
    [6] H. D. Quoc, MEMINV: A hybrid efficient approximation method solving the multi skill-resource constrained project scheduling problem, Math. Biosci. Eng., 20 (2023), 15407–15430. https://doi.org/10.3934/mbe.2023688 doi: 10.3934/mbe.2023688
    [7] C. Wang, S. Jiao, Y. Li, Q. Zhang, Capacity optimization of a hybrid energy storage system considering wind-Solar reliability evaluation based on a novel multi-strategy snake optimization algorithm, Expert Syst. Appl., 231 (2023), 120602. https://doi.org/10.1016/j.eswa.2023.120602 doi: 10.1016/j.eswa.2023.120602
    [8] S. Jiao, C. Wang, R. Gao, Y. Li, Q. Zhang, A novel hybrid harris hawk sine cosine optimization algorithm for reactive power optimization problem, J. Exp. Theor. Artif. Intell., (2022), https://doi.org/10.1080/0952813X.2022.2115144 doi: 10.1080/0952813X.2022.2115144
    [9] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Softw., 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
    [10] Y. Xiao, X. Sun, Y. Guo, H. Cui, Y. Wang, J. Li, et al., An enhanced honey badger algorithm based on Levy flight and refraction opposition-based learning for engineering design problems, J. Intell. Fuzzy Syst., 43 (2022), 4517–4540. https://doi.org/10.3233/JIFS-213206 doi: 10.3233/JIFS-213206
    [11] S. Jiao, C. Wang, R. Gao, Y. Li, Q. Zhang, Harris Hawks optimization with multi-strategy search and application, Symmetry-Basel, 13 (2021), 2364. https://doi.org/10.3390/sym13122364 doi: 10.3390/sym13122364
    [12] J. H. Holland, Genetic algorithms, Sci. Am., 267 (1992), 66–73. https://doi.org/10.1038/scientificamerican0792-66 doi: 10.1038/scientificamerican0792-66
    [13] R. Storn, K. Price, Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11 (1997), 341–359. https://doi.org/10.1023/A:1008202821328 doi: 10.1023/A:1008202821328
    [14] R. Nand, B. N. Sharma, K. Chaudhary, Stepping ahead firefly algorithm and hybridization with evolution strategy for global optimization problems, Appl. Soft Comput., 109 (2021), 107517. https://doi.org/10.1016/j.asoc.2021.107517 doi: 10.1016/j.asoc.2021.107517
    [15] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE Trans. Evol. Comput., 3 (1999), 82–102. https://doi.org/10.1109/4235.771163 doi: 10.1109/4235.771163
    [16] J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95 - International Conference on Neural Networks, (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
    [17] X. S. Yang, Firefly algorithm, stochastic test functions and design optimization, Int. J. Bio-Inspired Comput., 2 (2010), 78–84. https://doi.org/10.1504/IJBIC.2010.032124 doi: 10.1504/IJBIC.2010.032124
    [18] S. Zhao, T. Zhang, S. Ma, M. Wang, Sea-horse optimizer: A novel nature-inspired meta-heuristic for global optimization problems, Appl. Intell., 53 (2022), 11833–11860. https://doi.org/10.1007/s10489-022-03994-3 doi: 10.1007/s10489-022-03994-3
    [19] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris Hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
    [20] S. Arora, S. Singh, Butterfly optimization algorithm: A novel approach for global optimization, Soft Comput., 23 (2019), 715–734. https://doi.org/10.1007/s00500-018-3102-4 doi: 10.1007/s00500-018-3102-4
    [21] J. O. Agushaka, A. E. Ezugwu, L. Abualigah, Dwarf mongoose optimization algorithm, Comput. Methods Appl. Mech. Engrg., 391 (2022), 114570. https://doi.org/10.1016/j.cma.2022.114570 doi: 10.1016/j.cma.2022.114570
    [22] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, Science, 220 (1983), 671–680. https://doi.org/10.1126/science.220.4598.671 doi: 10.1126/science.220.4598.671
    [23] I. Ahmadianfar, O. Bozorg-Haddad, X. Chu, Gradient-based optimizer: A new metaheuristic optimization algorithm, Inf. Sci., 540 (2020), 131–159. https://doi.org/10.1016/j.ins.2020.06.037 doi: 10.1016/j.ins.2020.06.037
    [24] S. Talatahari, M. Azizi, A. H. Gandomi, Material generation algorithm: A novel metaheuristic algorithm for optimization of engineering problems, Processes, 9 (2021), 859. https://doi.org/10.3390/pr9050859 doi: 10.3390/pr9050859
    [25] S. Mirjalili, SCA: A sine cosine algorithm for solving optimization problems, Knowl. Based Syst., 96 (2016), 120–133. https://doi.org/10.1016/j.knosys.2015.12.022 doi: 10.1016/j.knosys.2015.12.022
    [26] V. Goodarzimehr, S. Talatahari, S. Shojaee, S. Hamzehei-Javaran, Special relativity search for applied mechanics and engineering, Comput. Meth. Appl. Mech. Eng., 403 (2023), 115734. https://doi.org/10.1016/j.cma.2022.115734 doi: 10.1016/j.cma.2022.115734
    [27] F. A. Hashim, K. Hussain, E. H. Houssein, M. S. Mabrouk, W. Al-Atabany, Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems, Appl. Intell., 51 (2020), 1531–1551. https://doi.org/10.1007/s10489-020-01893-z doi: 10.1007/s10489-020-01893-z
    [28] M. Jahangiri, M. A. Hadianfard, M. A. Najafgholipour, M. Jahangiri, M. R. Gerami, Interactive autodidactic school: A new metaheuristic optimization algorithm for solving mathematical and structural design optimization problems, Comput. Struct., 235 (2020), 106268. https://doi.org/10.1016/j.compstruc.2020.106268 doi: 10.1016/j.compstruc.2020.106268
    [29] S. H. S. Moosavi, V. K. Bardsiri, Poor and rich optimization algorithm: A new human-based and multi populations algorithm, Eng. Appl. Artif. Intell., 86 (2019), 165–181. https://doi.org/10.1016/j.engappai.2019.08.025 doi: 10.1016/j.engappai.2019.08.025
    [30] A. Naik, S. C. Satapathy, Past present future: A new human-based algorithm for stochastic optimization, Soft Comput., 25 (2021), 12915–12976. https://doi.org/10.1007/s00500-021-06229-8 doi: 10.1007/s00500-021-06229-8
    [31] H. Bayzidi, S. Talatahari, M. Saraee, C. P. Lamarche, Social network search for solving engineering optimization problems, Comput. Intell. Neurosci., 2021 (2021), 8548639. https://doi.org/10.1155/2021/8548639 doi: 10.1155/2021/8548639
    [32] Q. Zhang, R. Wang, J. Yang, K. Ding, Y. Li, J. Hu, Collective decision optimization algorithm: A new heuristic optimization method, Neurocomputing, 221 (2017), 123–137. ttps://doi.org/10.1016/j.neucom.2016.09.068
    [33] M. A. Al-Betar, Z. A. A. Alyasseri, M. A. Awadallah, I. Abu Doush, Coronavirus herd immunity optimizer (CHIO), Neural Comput. Appl., 33 (2021), 5011–5042. https://doi.org/10.1007/s00521-020-05296-6 doi: 10.1007/s00521-020-05296-6
    [34] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw., 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
    [35] D. H. Wolpert, W. G. Macready, No free lunch theorem for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67–82. https://doi.org/10.1109/4235.585893 doi: 10.1109/4235.585893
    [36] H. T. K. Abdelbadie, A. T. M. Taha, H. M. Hasanien, R. A. Turky, S. M. Muyeen, Stability enhancement of wind energy conversion systems based on optimal superconducting magnetic energy storage systems using the Archimedes optimization algorithm, Processes, 10 (2022), 366. https://doi.org/10.3390/pr10020366 doi: 10.3390/pr10020366
    [37] I. Neggaz, H. Fizazi, An intelligent handcrafted feature selection using Archimedes optimization algorithm for facial analysis, Soft Comput., 26 (2022), 10435–10464. https://doi.org/10.1007/s00500-022-06886-3 doi: 10.1007/s00500-022-06886-3
    [38] J. Balakrishnan, C. Govindaraju, Multi-phase permanent magnet generator with Halbach array for direct driven wind turbine: a hybrid technique, Energy Sources Part A-Recovery Util. Environ. Eff., 44 (2022), 5699–5717. https://doi.org/10.1080/15567036.2022.2086324 doi: 10.1080/15567036.2022.2086324
    [39] J. Annrose, N. H. A. Rufus, C. R. E. S. Rex, D. G. Immanuel, A cloud-based platform for soybean plant disease classification using Archimedes optimization based hybrid deep learning model, Wirel. Pers. Commun., 122 (2021), 2995–3017. https://doi.org/10.1007/s11277-021-09038-2 doi: 10.1007/s11277-021-09038-2
    [40] H. R. Tizhoosh, Opposition-based learning: A new scheme for machine intelligence, in Proceedings of International Conference on Computational Intelligence for Modelling, Control & Automation Jointly with International Conference on Intelligent Agents, Web Technologies & Internet Commerce, (2006), 695–701. https://doi.org/10.1109/CIMCA.2005.1631345
    [41] B. S. Yildiz, N. Pholdee, S. Bureerat, A. R. Yildiz, S. M. Sait, Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems, Eng. Comput., 38 (2021), 4207–4219. https://doi.org/10.1007/s00366-021-01368-w doi: 10.1007/s00366-021-01368-w
    [42] E. H. Houssein, B. E. D. Helmy, H. Rezk, A. M. Nassef, An efficient orthogonal opposition-based learning slime mould algorithm for maximum power point tracking, Neural Comput. Appl., 34 (2022), 3671–3695. https://doi.org/10.1007/s00521-021-06634-y doi: 10.1007/s00521-021-06634-y
    [43] A. Arcuri, G. Fraser, Parameter tuning or default values? An empirical investigation in search-based software engineering, Empir. Softw. Eng., 18 (2013), 594–623. https://doi.org/10.1007/s10664-013-9249-9 doi: 10.1007/s10664-013-9249-9
    [44] M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, An improved grey wolf optimizer for solving engineering problems, Expert Syst. Appl., 166 (2021), 113917. https://doi.org/10.1016/j.eswa.2020.113917 doi: 10.1016/j.eswa.2020.113917
    [45] C. Ma, H. Huang, Q. Fan, J. Wei, Y. Du, W. Gao, Grey wolf optimizer based on Aquila exploration method, Expert Syst. Appl., 205 (2022), 117629. https://doi.org/10.1016/j.eswa.2022.117629 doi: 10.1016/j.eswa.2022.117629
    [46] O. E. Turgut, M. S. Turgut, Local search enhanced Aquila optimization algorithm ameliorated with an ensemble of wavelet mutation strategies for complex optimization problems, Math. Comput. Simul., 206 (2022), 302–374. https://doi.org/10.1016/j.matcom.2022.11.020 doi: 10.1016/j.matcom.2022.11.020
    [47] E. V. Altay, Hybrid Archimedes optimization algorithm enhanced with mutualism scheme for global optimization problems, Artif. Intell. Rev., 56 (2022), 6885–6946. https://doi.org/10.1007/s10462-022-10340-z doi: 10.1007/s10462-022-10340-z
    [48] N. Chopra, M. M. Ansari, Golden jackal optimization: a novel nature-inspired optimizer for engineering applications, Expert Syst. Appl., 198 (2022), 116924. https://doi.org/10.1016/j.eswa.2022.116924 doi: 10.1016/j.eswa.2022.116924
    [49] B. Abdollahzadeh, F. S. Gharehchopogh, S. Mirjalili, African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems, Comput. Ind. Eng., 158 (2021), 107408. https://doi.org/10.1016/j.cie.2021.107408 doi: 10.1016/j.cie.2021.107408
    [50] S. Rajmohan, E. Elakkiya, S. R. Sreeja, Multi-cohort whale optimization with search space tightening for engineering optimization problems, Neural Comput. Appl., 35 (2023), 8967–8986. https://doi.org/10.1007/s00521-022-08139-8 doi: 10.1007/s00521-022-08139-8
    [51] F. S. Gharehchopogh, M. H. Nadimi-Shahraki, S. Barshandeh, B. Abdollahzadeh, H. Zamani, CQFFA: A chaotic quasi-oppositional farmland fertility algorithm for solving engineering optimization problems, J. Bionic Eng., 20 (2022), 158–183. https://doi.org/10.1007/s42235-022-00255-4 doi: 10.1007/s42235-022-00255-4
    [52] J. Zhao, Z. Gao, The heterogeneous Aquila optimization algorithm, Math. Biosci. Eng., 19 (2022), 5867–5904. https://doi.org/10.3934/mbe.2022275 doi: 10.3934/mbe.2022275
    [53] Y. Xiao, Y. Guo, H. Cui, Y. Wang, J. Li, Y. Zhang, IHAOAVOA: An improved hybrid Aquila optimizer and African vultures optimization algorithm for global optimization problems, Math. Biosci. Eng., 19 (2022), 10963–11017. https://doi.org/10.3934/mbe.2022512 doi: 10.3934/mbe.2022512
    [54] A. Seyyedabbasi, F. Kiani, Sand cat swarm optimization: A nature-inspired algorithm to solve global optimization problems, Eng. Comput., 39 (2022), 2627–2651. https://doi.org/10.1007/s00366-022-01604-x doi: 10.1007/s00366-022-01604-x
    [55] F. S. Gharehchopogh, An improved tunicate swarm algorithm with best-random mutation strategy for global optimization problems, J. Bionic Eng., 19 (2022), 1177–1202. https://doi.org/10.1007/s42235-022-00185-1 doi: 10.1007/s42235-022-00185-1
    [56] P. Chen, S. Zhou, Q. Zhang, N. Kasabov, A meta-inspired termite queen algorithm for global optimization and engineering design problems, Eng. Appl. Artif. Intell., 111 (2022), 104805. https://doi.org/10.1016/j.engappai.2022.104805 doi: 10.1016/j.engappai.2022.104805
    [57] S. Duan, H. Luo, H. Liu, An elastic collision seeker optimization algorithm for optimization constrained engineering problems, Math. Probl. Eng., 2022 (2022), 1344667. https://doi.org/10.1155/2022/1344667 doi: 10.1155/2022/1344667
    [58] S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowl. Based Syst., 89 (2015), 228–249. https://doi.org/10.1016/j.knosys.2015.07.006 doi: 10.1016/j.knosys.2015.07.006
    [59] H. Yu, S. Qiao, A. A. Heidari, C. Bi, H. Chen, Individual disturbance and attraction repulsion strategy enhanced seagull optimization for engineering design, Mathematics, 10 (2022), 276. https://doi.org/10.3390/math10020276 doi: 10.3390/math10020276
    [60] G. Hu, J. Zhong, B. Du, G. Wei, An enhanced hybrid arithmetic optimization algorithm for engineering applications, Comput. Meth. Appl. Mech. Eng., 394 (2022), 114901. https://doi.org/10.1016/j.cma.2022.114901 doi: 10.1016/j.cma.2022.114901
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1212) PDF downloads(58) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog