Research article

Unified analysis of discontinuous Galerkin approximations of flows in fractured porous media on polygonal and polyhedral grids

  • Received: 21 March 2019 Accepted: 08 January 2020 Published: 19 February 2020
  • We propose a unified formulation based on discontinuous Galerkin methods on polygonal/polyhedral grids for the simulation of flows in fractured porous media. We adopt a model for single-phase flows where the fracture is modeled as a (d-1)-dimensional interface in a d-dimensional bulk domain, and model the flow in the porous medium and in the fracture by means of the Darcy's law. The two problems are then coupled through physically consistent conditions. We focus on the numerical approximation of the coupled bulk-fracture problem and present and analyze, in an unified setting, all the possible combinations of primal-primal, mixed-primal, primal-mixed and mixed-mixed formulations for the bulk and fracture problems, respectively. For all the possible combinations, we prove their well-posedness and derive a priori hp-version error estimates in a suitable (mesh-dependent) energy norm. Finally, preliminary numerical experiments assess the theoretical error estimates and accuracy of the proposed formulations.

    Citation: Paola F. Antonietti, Chiara Facciolà, Marco Verani. Unified analysis of discontinuous Galerkin approximations of flows in fractured porous media on polygonal and polyhedral grids[J]. Mathematics in Engineering, 2020, 2(2): 340-385. doi: 10.3934/mine.2020017

    Related Papers:

  • We propose a unified formulation based on discontinuous Galerkin methods on polygonal/polyhedral grids for the simulation of flows in fractured porous media. We adopt a model for single-phase flows where the fracture is modeled as a (d-1)-dimensional interface in a d-dimensional bulk domain, and model the flow in the porous medium and in the fracture by means of the Darcy's law. The two problems are then coupled through physically consistent conditions. We focus on the numerical approximation of the coupled bulk-fracture problem and present and analyze, in an unified setting, all the possible combinations of primal-primal, mixed-primal, primal-mixed and mixed-mixed formulations for the bulk and fracture problems, respectively. For all the possible combinations, we prove their well-posedness and derive a priori hp-version error estimates in a suitable (mesh-dependent) energy norm. Finally, preliminary numerical experiments assess the theoretical error estimates and accuracy of the proposed formulations.


    加载中


    [1] Hackbusch W, Sauter SA (1997) Composite finite elements for the approximation of PDEs on domains with complicated micro-structures. Numer Math 75: 447-472. doi: 10.1007/s002110050248
    [2] Hackbusch W, Sauter SA (1997) Composite finite elements for problems containing small geometric details. Part II: Implementation and numerical results. Comput Visual Sci 1: 15-25.
    [3] Hyman J, Shashkov M, Steinberg S (1997) The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials. J Comput Phys 132: 130-148. doi: 10.1006/jcph.1996.5633
    [4] Brezzi F, Lipnikov K, Simoncini V (2005) A family of Mimetic finite difference methods on polygonal and polyhedral meshes. Math Mod Meth Appl S 15: 1533-1551. doi: 10.1142/S0218202505000832
    [5] Brezzi F, Lipnikov K, Shashkov M (2005) Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J Numer Anal 43: 1872-1896. doi: 10.1137/040613950
    [6] Brezzi F, Lipnikov K, Shashkov M (2006) Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math Mod Meth Appl S 16: 275-297. doi: 10.1142/S0218202506001157
    [7] Beirão da Veiga L, Lipnikov K, Manzini G (2014) The Mimetic Finite Difference Method for Elliptic Problems, Cham: Springer.
    [8] Antonietti PF, Formaggia L, Scotti A, et al. (2016) Mimetic finite difference approximation of flows in fractured porous media. ESAIM Math Model Numer Anal 50: 809-832. doi: 10.1051/m2an/2015087
    [9] Sukumar N, Tabarraei A (2004) Conforming Polygonal Finite Elements. Int J Numer Meth Eng 61: 2045-2066. doi: 10.1002/nme.1141
    [10] Dolbow J, Moës N, Belytschko T (2001) An extended finite element method for modeling crack growth with frictional contact. Comput Method Appl M 190: 6825-6846. doi: 10.1016/S0045-7825(01)00260-2
    [11] Tabarraei A, Sukumar N (2008) Extended finite element method on polygonal and quadtree meshes. Comput Method Appl M 197: 425-438. doi: 10.1016/j.cma.2007.08.013
    [12] Fries TP, Belytschko T (2010) The extended/generalized finite element method: An overview of the method and its applications. Int J Numer Meth Eng 84: 253-304.
    [13] Beirão da Veiga L, Brezzi F, Cangiani A, et al. (2013) Basic principles of virtual element methods. Math Mod Meth Appl S 23: 199-214. doi: 10.1142/S0218202512500492
    [14] Beirão da Veiga L, Brezzi F, Marini L, et al. (2016) Virtual element method for general second-order elliptic problems on polygonal meshes. Math Mod Meth Appl S 26: 729-750. doi: 10.1142/S0218202516500160
    [15] Antonietti PF, da Veiga LB, Mora D, et al. (2014) A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J Numer Anal 52: 386-404. doi: 10.1137/13091141X
    [16] Beirão da Veiga L, Brezzi F, Marini LD, et al. (2016) Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math Model Numer Anal 50: 727-747. doi: 10.1051/m2an/2015067
    [17] Antonietti PF, da Veiga LB, Scacchi S, et al. (2016) A C1 virtual element method for the CahnHilliard equation with polygonal meshes. SIAM J Numer Anal 54: 34-56. doi: 10.1137/15M1008117
    [18] Di Pietro DA, Ern A, Lemaire S (2014) An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput Meth Appl Math 14: 461-472.
    [19] Di Pietro DA, Ern A (2015) A hybrid high-order locking-free method for linear elasticity on general meshes. Comput Meth Appl Mech Eng 283: 1-21. doi: 10.1016/j.cma.2014.09.009
    [20] Di Pietro DA, Ern A (2015) Hybrid high-order methods for variable-diffusion problems on general meshes. CR Math 353: 31-34.
    [21] Di Pietro DA, Ern A, Lemaire S (2016) A review of hybrid high-order methods: Formulations, computational aspects, comparison with other methods. In: Barrenechea GR, Brezzi F, Cangiani A, et al. Editors, Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Cham: Springer.
    [22] Cockburn B, Dond B, Guzmán J (2008) A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math Comput 77: 1887-1916. doi: 10.1090/S0025-5718-08-02123-6
    [23] Cockburn B, Gopalakrishnan J, Lazarov R (2009) Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J Numer Anal 47: 1319-1365. doi: 10.1137/070706616
    [24] Cockburn B, Gopalakrishnan J, Sayas FJ (2010) A projection-based error analysis of HDG methods. Math Comput 79: 1351-1367. doi: 10.1090/S0025-5718-10-02334-3
    [25] Cockburn B, Guzmán J, Wang H (2009) Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math Comput 78: 1-24. doi: 10.1090/S0025-5718-08-02146-7
    [26] Antonietti PF, Giani S, Houston P (2013) hp-version composite discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM J Sci Comput 35: A1417-A1439. doi: 10.1137/120877246
    [27] Antonietti PF, Giani S, Houston P (2014) Domain decomposition preconditioners for discontinuous Galerkin methods for elliptic problems on complicated domains. J Sci Comput 60: 203-227. doi: 10.1007/s10915-013-9792-y
    [28] Antonietti PF, Manzini G, Verani M (2018) The fully nonconforming virtual element method for biharmonic problems. Math Mod Meth Appl S 28: 387-407. doi: 10.1142/S0218202518500100
    [29] Ayuso de Dios B, Lipnikov K, Manzini G (2016) The nonconforming virtual element method. ESAIM Math Model Numer Anal 50: 879-904. doi: 10.1051/m2an/2015090
    [30] Cangiani A, Manzini G, Sutton OJ (2017) Conforming and nonconforming virtual element methods for elliptic problems. IMA J Numer Anal 37: 1317-1354.
    [31] Droniou J, Eymard R, Herbin R (2016) Gradient schemes: Generic tools for the numerical analysis of diffusion equations. ESAIM Math Model Numer Anal 50: 749-781. doi: 10.1051/m2an/2015079
    [32] Antonietti PF, Brezzi F, Marini LD (2009) Bubble stabilization of discontinuous Galerkin methods. Comput Meth Appl Mech Eng 198: 1651-1659. doi: 10.1016/j.cma.2008.12.033
    [33] Bassi F, Botti L, Colombo A, et al. (2012) On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J Comput Phys 231: 45-65. doi: 10.1016/j.jcp.2011.08.018
    [34] Bassi F, Botti L, Colombo A, et al. (2012) Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations. Comput Fluids 61: 77-85. doi: 10.1016/j.compfluid.2011.11.002
    [35] Bassi F, Botti L, Colombo A (2014) Agglomeration-based physical frame dG discretizations: An attempt to be mesh free. Math Mod Meth Appl S 24: 1495-1539. doi: 10.1142/S0218202514400028
    [36] Cangiani A, Georgoulis EH, Houston P (2014) hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math Mod Meth Appl S 24: 2009-2041. doi: 10.1142/S0218202514500146
    [37] Cangiani A, Dong Z, Georgoulis EH, et al. (2016) hp-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. ESAIM Math Model Numer Anal 50: 699-725. doi: 10.1051/m2an/2015059
    [38] Cangiani A, Dong Z, Georgoulis EH (2017) hp-version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes. SIAM J Sci Comput 39: A1251-A1279. doi: 10.1137/16M1073285
    [39] Antonietti PF, Houston P, Hu X, et al. (2017) Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes. Calcolo 54: 1169-1198. doi: 10.1007/s10092-017-0223-6
    [40] Antonietti PF, Cangiani A, Collis J, et al. (2016) Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains, In: Lecture Notes in Computational Science and Engineering, Springer, 281-310.
    [41] Cangiani A, Dong Z, Georgoulis EH, et al. (2017) hp-Version Discontinuous Galerkin Methods on Polytopic Meshes, Springer International Publishing.
    [42] Antonietti PF, Mazzieri I (2018) High-order discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes. Comput Meth Appl Mech Eng 342: 414-437. doi: 10.1016/j.cma.2018.08.012
    [43] Antonietti PF, Bonaldi F, Mazzieri I (2018) A high-order discontinuous galerkin approach to the elasto-acoustic problem. arXiv preprint arXiv:180301351.
    [44] Antonietti PF, Pennesi G (2019) V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes. J Sci Comput 78: 625-652. doi: 10.1007/s10915-018-0783-x
    [45] Alboin C, Jaffré J, Roberts JE, et al. (2000) Domain decomposition for some transmission problems in flow in porous media. In: Numerical Treatment of Multiphase Flows in Porous Media, Berlin: Springer, 22-34.
    [46] Alboin C, Jaffré J, Roberts JE, et al. (2002) Modeling fractures as interfaces for flow and transport in porous media. In: Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment (South Hadley, MA, 2001), Providence: Amer. Math. Soc., 13-24.
    [47] Martin V, Jaffré J, Roberts JE (2005) Modeling fractures and barriers as interfaces for flow in porous media. SIAM J Sci Comput 26: 1667-1691. doi: 10.1137/S1064827503429363
    [48] Frih N, Roberts JE, Saada A (2008) Modeling fractures as interfaces: A model for Forchheimer fractures. Comput Geosci 12: 91-104. doi: 10.1007/s10596-007-9062-x
    [49] Fumagalli A, Scotti A (2013) A numerical method for two-phase flow in fractured porous media with non-matching grids. Adv Water Resour 62: 454-464. doi: 10.1016/j.advwatres.2013.04.001
    [50] Jaffré J, Mnejja M, Roberts J (2011) A discrete fracture model for two-phase flow with matrix-fracture interaction. Procedia Comput Sci 4: 967-973. doi: 10.1016/j.procs.2011.04.102
    [51] Angot P, Boyer F, Hubert F (2009) Asymptotic and numerical modelling of flows in fractured porous media. M2AN Math Model Numer Anal 43: 239-275. doi: 10.1051/m2an/2008052
    [52] Formaggia L, Scotti A, Sottocasa F (2018) Analysis of a mimetic finite difference approximation of flows in fractured porous media. ESAIM Math Model Numer Anal 52: 595-630. doi: 10.1051/m2an/2017028
    [53] Benedetto MF, Berrone S, Pieraccini S, et al. (2014) The virtual element method for discrete fracture network simulations. Comput Meths Appl Mech Eng 280: 135-156. doi: 10.1016/j.cma.2014.07.016
    [54] Benedetto MF, Berrone S, Scialò S (2016) A globally conforming method for solving flow in discrete fracture networks using the virtual element method. Finite Elem Anal Des 109: 23-36. doi: 10.1016/j.finel.2015.10.003
    [55] Chave FA, Di Pietro D, Formaggia L (2018) A hybrid high-order method for Darcy flows in fractured porous media. SIAM J Sci Comput 40: A1063-A1094. doi: 10.1137/17M1119500
    [56] D'Angelo C, Scotti A (2012) A mixed finite element method for darcy flow in fractured porous media with non-matching grids. ESAIM Math Mod Numer Anal 46: 465-489. doi: 10.1051/m2an/2011148
    [57] Flemisch B, Fumagalli A, Scotti A (2016) A review of the XFEM-based approximation of flow in fractured porous media. In: Advances in Discretization Methods, Springer, 47-76.
    [58] Burman E, Hansbo P, Larson MG, et al. (2019) Cut finite elements for convection in fractured domains. Comput Fluids 179: 726-734. doi: 10.1016/j.compfluid.2018.07.022
    [59] Antonietti PF, Facciolà C, Russo A, et al. (2019) Discontinuous Galerkin approximation of flows in fractured porous media on polytopic grids. SIAM J Sci Comput 41: A109-A138. doi: 10.1137/17M1138194
    [60] Antonietti PF, Sarti M, Verani M (2015) Multigrid algorithms for hp-discontinuous Galerkin discretizations of elliptic problems. SIAM J Numer Anal 53: 598-618. doi: 10.1137/130947015
    [61] Masud A, Hughes TJ (2002) A stabilized mixed finite element method for darcy flow. Comput Meth Appl Mech Eng 191: 4341-4370. doi: 10.1016/S0045-7825(02)00371-7
    [62] Brezzi F, Hughes TJ, Marini LD, et al. (2005) Mixed discontinuous Galerkin methods for darcy flow. J Sci Comput 22: 119-145.
    [63] Arnold DN, Brezzi F, Cockburn B, et al. (2001/02) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39: 1749-1779.
    [64] Wheeler MF (1978) An elliptic collocation-finite element method with interior penalties. SIAM J Numer Anal 15: 152-161. doi: 10.1137/0715010
    [65] Arnold DN (1982) An interior penalty finite element method with discontinuous elements. SIAM J Numer Anal 19: 742-760. doi: 10.1137/0719052
    [66] Cockburn B, Shu CW (1998) The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal 35: 2440-2463. doi: 10.1137/S0036142997316712
    [67] Castillo P, Cockburn B, Perugia I, et al. (2000) An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J Numer Anal 38: 1676-1706. doi: 10.1137/S0036142900371003
    [68] Perugia I, Schötzau D (2003) The hp-local discontinuous galerkin method for low-frequency time-harmonic maxwell equations. Math Comput 72: 1179-1214.
    [69] Perugia I, Schötzau D (2002) An hp-analysis of the local discontinuous galerkin method for diffusion problems. J Sci Comput 17: 561-571. doi: 10.1023/A:1015118613130
    [70] Strang G, Fix GJ (1973) An analysis of the finite element method, Prentice-Hall Englewood Cliffs.
    [71] Antonietti PF, Houston P (2011) A class of domain decomposition preconditioners for hpdiscontinuous Galerkin finite element methods. J Sci Comput 46: 124-149. doi: 10.1007/s10915-010-9390-1
    [72] Stein EM (1970) Singular integrals and differentiability properties of functions, Princeton university press.
    [73] Talischi C, Paulino GH, Pereira A, et al. (2012) Polymesher: A general-purpose mesh generator for polygonal elements written in matlab. Struct Multidiscip O 45: 309-328. doi: 10.1007/s00158-011-0706-z
    [74] Brenner K, Hennicker J, Masson R, et al. (2016) Gradient discretization of hybrid-dimensional Darcy flow in fractured porous media with discontinuous pressures at matrix-fracture interfaces. IMA J Numer Anal 37: 1551-1585.
    [75] Antonietti PF, Facciolà C, Verani M (2020) Polytopic discontinuous Galerkin methods for the numerical modelling of flow in porous media with networks of intersecting fractures. MOX Rep 08, arXiv:2002.06420.
    [76] Antonietti PF, De Ponti J, Formaggia L, et al. (2019) Preconditioning techniques for the numerical solution of flow in fractured porous media. MOX Rep 17.
    [77] Antonietti PF, Houston P (2013) Preconditioning high-order discontinuous galerkin discretizations of elliptic problems. In: Domain Decomposition Methods in Science and Engineering XX, Springer, 231-238.
    [78] Antonietti PF, Houston P, Pennesi G, et al. (2020) An agglomeration-based massively parallel non-overlapping additive Schwarz preconditioner for high-order discontinuous Galerkin methods on polytopic grids. Math Comput DOI: https://doi.org/10.1090/mcom/3510.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4192) PDF downloads(422) Cited by(10)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog