Citation: Paola F. Antonietti, Chiara Facciolà, Marco Verani. Unified analysis of discontinuous Galerkin approximations of flows in fractured porous media on polygonal and polyhedral grids[J]. Mathematics in Engineering, 2020, 2(2): 340-385. doi: 10.3934/mine.2020017
[1] | Hackbusch W, Sauter SA (1997) Composite finite elements for the approximation of PDEs on domains with complicated micro-structures. Numer Math 75: 447-472. doi: 10.1007/s002110050248 |
[2] | Hackbusch W, Sauter SA (1997) Composite finite elements for problems containing small geometric details. Part II: Implementation and numerical results. Comput Visual Sci 1: 15-25. |
[3] | Hyman J, Shashkov M, Steinberg S (1997) The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials. J Comput Phys 132: 130-148. doi: 10.1006/jcph.1996.5633 |
[4] | Brezzi F, Lipnikov K, Simoncini V (2005) A family of Mimetic finite difference methods on polygonal and polyhedral meshes. Math Mod Meth Appl S 15: 1533-1551. doi: 10.1142/S0218202505000832 |
[5] | Brezzi F, Lipnikov K, Shashkov M (2005) Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J Numer Anal 43: 1872-1896. doi: 10.1137/040613950 |
[6] | Brezzi F, Lipnikov K, Shashkov M (2006) Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math Mod Meth Appl S 16: 275-297. doi: 10.1142/S0218202506001157 |
[7] | Beirão da Veiga L, Lipnikov K, Manzini G (2014) The Mimetic Finite Difference Method for Elliptic Problems, Cham: Springer. |
[8] | Antonietti PF, Formaggia L, Scotti A, et al. (2016) Mimetic finite difference approximation of flows in fractured porous media. ESAIM Math Model Numer Anal 50: 809-832. doi: 10.1051/m2an/2015087 |
[9] | Sukumar N, Tabarraei A (2004) Conforming Polygonal Finite Elements. Int J Numer Meth Eng 61: 2045-2066. doi: 10.1002/nme.1141 |
[10] | Dolbow J, Moës N, Belytschko T (2001) An extended finite element method for modeling crack growth with frictional contact. Comput Method Appl M 190: 6825-6846. doi: 10.1016/S0045-7825(01)00260-2 |
[11] | Tabarraei A, Sukumar N (2008) Extended finite element method on polygonal and quadtree meshes. Comput Method Appl M 197: 425-438. doi: 10.1016/j.cma.2007.08.013 |
[12] | Fries TP, Belytschko T (2010) The extended/generalized finite element method: An overview of the method and its applications. Int J Numer Meth Eng 84: 253-304. |
[13] | Beirão da Veiga L, Brezzi F, Cangiani A, et al. (2013) Basic principles of virtual element methods. Math Mod Meth Appl S 23: 199-214. doi: 10.1142/S0218202512500492 |
[14] | Beirão da Veiga L, Brezzi F, Marini L, et al. (2016) Virtual element method for general second-order elliptic problems on polygonal meshes. Math Mod Meth Appl S 26: 729-750. doi: 10.1142/S0218202516500160 |
[15] | Antonietti PF, da Veiga LB, Mora D, et al. (2014) A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J Numer Anal 52: 386-404. doi: 10.1137/13091141X |
[16] | Beirão da Veiga L, Brezzi F, Marini LD, et al. (2016) Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math Model Numer Anal 50: 727-747. doi: 10.1051/m2an/2015067 |
[17] | Antonietti PF, da Veiga LB, Scacchi S, et al. (2016) A C1 virtual element method for the CahnHilliard equation with polygonal meshes. SIAM J Numer Anal 54: 34-56. doi: 10.1137/15M1008117 |
[18] | Di Pietro DA, Ern A, Lemaire S (2014) An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput Meth Appl Math 14: 461-472. |
[19] | Di Pietro DA, Ern A (2015) A hybrid high-order locking-free method for linear elasticity on general meshes. Comput Meth Appl Mech Eng 283: 1-21. doi: 10.1016/j.cma.2014.09.009 |
[20] | Di Pietro DA, Ern A (2015) Hybrid high-order methods for variable-diffusion problems on general meshes. CR Math 353: 31-34. |
[21] | Di Pietro DA, Ern A, Lemaire S (2016) A review of hybrid high-order methods: Formulations, computational aspects, comparison with other methods. In: Barrenechea GR, Brezzi F, Cangiani A, et al. Editors, Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Cham: Springer. |
[22] | Cockburn B, Dond B, Guzmán J (2008) A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math Comput 77: 1887-1916. doi: 10.1090/S0025-5718-08-02123-6 |
[23] | Cockburn B, Gopalakrishnan J, Lazarov R (2009) Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J Numer Anal 47: 1319-1365. doi: 10.1137/070706616 |
[24] | Cockburn B, Gopalakrishnan J, Sayas FJ (2010) A projection-based error analysis of HDG methods. Math Comput 79: 1351-1367. doi: 10.1090/S0025-5718-10-02334-3 |
[25] | Cockburn B, Guzmán J, Wang H (2009) Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math Comput 78: 1-24. doi: 10.1090/S0025-5718-08-02146-7 |
[26] | Antonietti PF, Giani S, Houston P (2013) hp-version composite discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM J Sci Comput 35: A1417-A1439. doi: 10.1137/120877246 |
[27] | Antonietti PF, Giani S, Houston P (2014) Domain decomposition preconditioners for discontinuous Galerkin methods for elliptic problems on complicated domains. J Sci Comput 60: 203-227. doi: 10.1007/s10915-013-9792-y |
[28] | Antonietti PF, Manzini G, Verani M (2018) The fully nonconforming virtual element method for biharmonic problems. Math Mod Meth Appl S 28: 387-407. doi: 10.1142/S0218202518500100 |
[29] | Ayuso de Dios B, Lipnikov K, Manzini G (2016) The nonconforming virtual element method. ESAIM Math Model Numer Anal 50: 879-904. doi: 10.1051/m2an/2015090 |
[30] | Cangiani A, Manzini G, Sutton OJ (2017) Conforming and nonconforming virtual element methods for elliptic problems. IMA J Numer Anal 37: 1317-1354. |
[31] | Droniou J, Eymard R, Herbin R (2016) Gradient schemes: Generic tools for the numerical analysis of diffusion equations. ESAIM Math Model Numer Anal 50: 749-781. doi: 10.1051/m2an/2015079 |
[32] | Antonietti PF, Brezzi F, Marini LD (2009) Bubble stabilization of discontinuous Galerkin methods. Comput Meth Appl Mech Eng 198: 1651-1659. doi: 10.1016/j.cma.2008.12.033 |
[33] | Bassi F, Botti L, Colombo A, et al. (2012) On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J Comput Phys 231: 45-65. doi: 10.1016/j.jcp.2011.08.018 |
[34] | Bassi F, Botti L, Colombo A, et al. (2012) Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations. Comput Fluids 61: 77-85. doi: 10.1016/j.compfluid.2011.11.002 |
[35] | Bassi F, Botti L, Colombo A (2014) Agglomeration-based physical frame dG discretizations: An attempt to be mesh free. Math Mod Meth Appl S 24: 1495-1539. doi: 10.1142/S0218202514400028 |
[36] | Cangiani A, Georgoulis EH, Houston P (2014) hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math Mod Meth Appl S 24: 2009-2041. doi: 10.1142/S0218202514500146 |
[37] | Cangiani A, Dong Z, Georgoulis EH, et al. (2016) hp-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. ESAIM Math Model Numer Anal 50: 699-725. doi: 10.1051/m2an/2015059 |
[38] | Cangiani A, Dong Z, Georgoulis EH (2017) hp-version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes. SIAM J Sci Comput 39: A1251-A1279. doi: 10.1137/16M1073285 |
[39] | Antonietti PF, Houston P, Hu X, et al. (2017) Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes. Calcolo 54: 1169-1198. doi: 10.1007/s10092-017-0223-6 |
[40] | Antonietti PF, Cangiani A, Collis J, et al. (2016) Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains, In: Lecture Notes in Computational Science and Engineering, Springer, 281-310. |
[41] | Cangiani A, Dong Z, Georgoulis EH, et al. (2017) hp-Version Discontinuous Galerkin Methods on Polytopic Meshes, Springer International Publishing. |
[42] | Antonietti PF, Mazzieri I (2018) High-order discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes. Comput Meth Appl Mech Eng 342: 414-437. doi: 10.1016/j.cma.2018.08.012 |
[43] | Antonietti PF, Bonaldi F, Mazzieri I (2018) A high-order discontinuous galerkin approach to the elasto-acoustic problem. arXiv preprint arXiv:180301351. |
[44] | Antonietti PF, Pennesi G (2019) V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes. J Sci Comput 78: 625-652. doi: 10.1007/s10915-018-0783-x |
[45] | Alboin C, Jaffré J, Roberts JE, et al. (2000) Domain decomposition for some transmission problems in flow in porous media. In: Numerical Treatment of Multiphase Flows in Porous Media, Berlin: Springer, 22-34. |
[46] | Alboin C, Jaffré J, Roberts JE, et al. (2002) Modeling fractures as interfaces for flow and transport in porous media. In: Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment (South Hadley, MA, 2001), Providence: Amer. Math. Soc., 13-24. |
[47] | Martin V, Jaffré J, Roberts JE (2005) Modeling fractures and barriers as interfaces for flow in porous media. SIAM J Sci Comput 26: 1667-1691. doi: 10.1137/S1064827503429363 |
[48] | Frih N, Roberts JE, Saada A (2008) Modeling fractures as interfaces: A model for Forchheimer fractures. Comput Geosci 12: 91-104. doi: 10.1007/s10596-007-9062-x |
[49] | Fumagalli A, Scotti A (2013) A numerical method for two-phase flow in fractured porous media with non-matching grids. Adv Water Resour 62: 454-464. doi: 10.1016/j.advwatres.2013.04.001 |
[50] | Jaffré J, Mnejja M, Roberts J (2011) A discrete fracture model for two-phase flow with matrix-fracture interaction. Procedia Comput Sci 4: 967-973. doi: 10.1016/j.procs.2011.04.102 |
[51] | Angot P, Boyer F, Hubert F (2009) Asymptotic and numerical modelling of flows in fractured porous media. M2AN Math Model Numer Anal 43: 239-275. doi: 10.1051/m2an/2008052 |
[52] | Formaggia L, Scotti A, Sottocasa F (2018) Analysis of a mimetic finite difference approximation of flows in fractured porous media. ESAIM Math Model Numer Anal 52: 595-630. doi: 10.1051/m2an/2017028 |
[53] | Benedetto MF, Berrone S, Pieraccini S, et al. (2014) The virtual element method for discrete fracture network simulations. Comput Meths Appl Mech Eng 280: 135-156. doi: 10.1016/j.cma.2014.07.016 |
[54] | Benedetto MF, Berrone S, Scialò S (2016) A globally conforming method for solving flow in discrete fracture networks using the virtual element method. Finite Elem Anal Des 109: 23-36. doi: 10.1016/j.finel.2015.10.003 |
[55] | Chave FA, Di Pietro D, Formaggia L (2018) A hybrid high-order method for Darcy flows in fractured porous media. SIAM J Sci Comput 40: A1063-A1094. doi: 10.1137/17M1119500 |
[56] | D'Angelo C, Scotti A (2012) A mixed finite element method for darcy flow in fractured porous media with non-matching grids. ESAIM Math Mod Numer Anal 46: 465-489. doi: 10.1051/m2an/2011148 |
[57] | Flemisch B, Fumagalli A, Scotti A (2016) A review of the XFEM-based approximation of flow in fractured porous media. In: Advances in Discretization Methods, Springer, 47-76. |
[58] | Burman E, Hansbo P, Larson MG, et al. (2019) Cut finite elements for convection in fractured domains. Comput Fluids 179: 726-734. doi: 10.1016/j.compfluid.2018.07.022 |
[59] | Antonietti PF, Facciolà C, Russo A, et al. (2019) Discontinuous Galerkin approximation of flows in fractured porous media on polytopic grids. SIAM J Sci Comput 41: A109-A138. doi: 10.1137/17M1138194 |
[60] | Antonietti PF, Sarti M, Verani M (2015) Multigrid algorithms for hp-discontinuous Galerkin discretizations of elliptic problems. SIAM J Numer Anal 53: 598-618. doi: 10.1137/130947015 |
[61] | Masud A, Hughes TJ (2002) A stabilized mixed finite element method for darcy flow. Comput Meth Appl Mech Eng 191: 4341-4370. doi: 10.1016/S0045-7825(02)00371-7 |
[62] | Brezzi F, Hughes TJ, Marini LD, et al. (2005) Mixed discontinuous Galerkin methods for darcy flow. J Sci Comput 22: 119-145. |
[63] | Arnold DN, Brezzi F, Cockburn B, et al. (2001/02) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39: 1749-1779. |
[64] | Wheeler MF (1978) An elliptic collocation-finite element method with interior penalties. SIAM J Numer Anal 15: 152-161. doi: 10.1137/0715010 |
[65] | Arnold DN (1982) An interior penalty finite element method with discontinuous elements. SIAM J Numer Anal 19: 742-760. doi: 10.1137/0719052 |
[66] | Cockburn B, Shu CW (1998) The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal 35: 2440-2463. doi: 10.1137/S0036142997316712 |
[67] | Castillo P, Cockburn B, Perugia I, et al. (2000) An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J Numer Anal 38: 1676-1706. doi: 10.1137/S0036142900371003 |
[68] | Perugia I, Schötzau D (2003) The hp-local discontinuous galerkin method for low-frequency time-harmonic maxwell equations. Math Comput 72: 1179-1214. |
[69] | Perugia I, Schötzau D (2002) An hp-analysis of the local discontinuous galerkin method for diffusion problems. J Sci Comput 17: 561-571. doi: 10.1023/A:1015118613130 |
[70] | Strang G, Fix GJ (1973) An analysis of the finite element method, Prentice-Hall Englewood Cliffs. |
[71] | Antonietti PF, Houston P (2011) A class of domain decomposition preconditioners for hpdiscontinuous Galerkin finite element methods. J Sci Comput 46: 124-149. doi: 10.1007/s10915-010-9390-1 |
[72] | Stein EM (1970) Singular integrals and differentiability properties of functions, Princeton university press. |
[73] | Talischi C, Paulino GH, Pereira A, et al. (2012) Polymesher: A general-purpose mesh generator for polygonal elements written in matlab. Struct Multidiscip O 45: 309-328. doi: 10.1007/s00158-011-0706-z |
[74] | Brenner K, Hennicker J, Masson R, et al. (2016) Gradient discretization of hybrid-dimensional Darcy flow in fractured porous media with discontinuous pressures at matrix-fracture interfaces. IMA J Numer Anal 37: 1551-1585. |
[75] | Antonietti PF, Facciolà C, Verani M (2020) Polytopic discontinuous Galerkin methods for the numerical modelling of flow in porous media with networks of intersecting fractures. MOX Rep 08, arXiv:2002.06420. |
[76] | Antonietti PF, De Ponti J, Formaggia L, et al. (2019) Preconditioning techniques for the numerical solution of flow in fractured porous media. MOX Rep 17. |
[77] | Antonietti PF, Houston P (2013) Preconditioning high-order discontinuous galerkin discretizations of elliptic problems. In: Domain Decomposition Methods in Science and Engineering XX, Springer, 231-238. |
[78] | Antonietti PF, Houston P, Pennesi G, et al. (2020) An agglomeration-based massively parallel non-overlapping additive Schwarz preconditioner for high-order discontinuous Galerkin methods on polytopic grids. Math Comput DOI: https://doi.org/10.1090/mcom/3510. |