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Abstract: We propose a unified formulation based on discontinuous Galerkin methods on
polygonal/polyhedral grids for the simulation of flows in fractured porous media. We adopt a model for
single-phase flows where the fracture is modeled as a (d — 1) - dimensional interface in a d - dimensional
bulk domain, and model the flow in the porous medium and in the fracture by means of the Darcy’s
law. The two problems are then coupled through physically consistent conditions. We focus on the
numerical approximation of the coupled bulk-fracture problem and present and analyze, in an unified
setting, all the possible combinations of primal-primal, mixed-primal, primal-mixed and mixed-mixed
formulations for the bulk and fracture problems, respectively. For all the possible combinations, we
prove their well-posedness and derive a priori hp-version error estimates in a suitable (mesh-dependent)
energy norm. Finally, preliminary numerical experiments assess the theoretical error estimates and
accuracy of the proposed formulations.
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1. Introduction

Many geophysical and engineering applications, including, for example, fluid-structure interaction,
crack and wave propagation problems, and flow in fractured porous media, are characterized by a strong
complexity of the physical domain, possibly involving thousands of fault/fractures, heterogeneous media,
moving geometries/interfaces and complex topographies. Whenever classical Finite-Element-based
approaches are employed to discretize the underlying differential model, the process of mesh generation
can be the bottleneck of the whole simulation, as classical finite elements only support computational
grids composed by tetrahedral/hexahedral/prismatic elements. To overcome this limitation, in the last
decade a wide strand of literature focused on the design of numerical methods that support computational
meshes composed of general polygonal and polyhedral (polytopic, for short) elements. In the conforming
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setting, we mention for example the composite finite element method [1,2], the mimetic finite difference
method [3-8], the polygonal finite element method [9], the extended finite element method [10-12],
the virtual element method [13—17] and the hybrid high-order method [18-21]. In the setting of non-
conforming/discontinuos polygonal methods, we mention, for example, hybridizable discontinuous
Galerkin methods [22-25], composite discontinuous finite element methods [26,27], non-conforming
VEM [28-30], gradient schemes [31] and the polytopic discontinuous Galerkin method [32—44].

Within this framework, we focus our attention on the problem of modelling the flow in a fractured
porous medium, which is fundamental in many energy or environmental engineering applications, such
as tracing oil migration, isolation of radioactive waste, groundwater contamination, etc. Fractures are
regions of the porous medium that are typically characterized both by a different porous structure and by
a very small width. The first feature implies that fractures have a very strong impact on the flow, since
they can possibly act as barriers or as preferential paths for the fluid. The second feature entails the
need for a very large number of elements for the discretization of the fracture layer and, consequently, a
high computational cost. For this reason, one popular modelling choice consists in a reduction strategy,
so that fractures are treated as (d — 1)-dimensional interfaces between d-dimensional porous matrices,
d = 2,3. In particular, we refer to the model for single-phase flow developed in [45-48]. Here, the
flow in the porous medium (bulk) is assumed to be governed by Darcy’s law and a suitable reduced
version of the law is formulated on the surface modelling the single fracture. The two problems are then
coupled through physically consistent conditions to account for the exchange of fluid between them.
We remark that this model is able to handle both fractures with low and large permeability. Moreover,
its extension to the case of two-phase flows has been addressed in [49, 50], while the case of a totally
immersed fracture has been considered e.g., in [51].

Even if the use of this kind of dimensionally reduced models avoids the need for extremely refined
grids inside the fracture domains, in realistic cases, the construction of a computational grid aligned with
the fractures is still a major issue. For example, a fractured oil reservoir can be cut by several thousands
of fractures, which often intersect, create small angles or are nearly coincident [52]. In line with the
previous discussion, in order to avoid the limitations imposed by standard finite element methods,
various numerical methods supporting polytopic elements have been employed in the literature for the
approximation of the coupled bulk-fracture problem. For example, in [8,52] a mixed approximation
based on the use of mimetic finite difference method has been explored; in [53, 54] a framework for
treating flows in discrete fracture networks based on the virtual element method has been introduced,
and in [55] the hybrid high-order method has been employed. We also mention that an alternative
strategy consists in the use of non-conforming discretizations, where fractures are allowed to arbitrarily
cut the bulk grid, which can then be chosen fairly regular. In particular, we refer to [49,56,57], where
an approximation employing extended finite element method (XFEM) has been proposed and to the
recent work [58], where the use of the cut finite element method (CUTFEM) has been explored.

Recently in [59], in the setting of conforming discretizations, we developed a numerical
approximation of the coupled bulk-fracture model based on polytopic discountinuous Galerkin
(PolyDG) methods. In particular, the intrinsic “discontinuous” nature of DG methods allows very
general polytopic elements because of the freedom in representing the underlying (local) polynomial
space. Indeed the degrees of freedom are not “attached” to any geometric quantity, (vertexes, edges,
etcc), so that mesh elements with edges/faces that may be in arbitrary number and whose measure may
be arbitrarily small compared to the diameter of the corresponding element are naturally supported with
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a solid theoretical background. This approach is then very well suited to tame the geometrical
complexity featured by most of applications in the computational geoscience field. Moreover, since the
interface conditions between the bulk and fracture problem can be naturally formulated using jump and
average operators, the coupling of the two problems can be naturally embedded in the variational
formulation.

The goal of this paper is to extend the results obtained in [59], where the proposed discretization based
on PolyDG was in a primal-primal setting. Indeed, when dealing with the approximation of Darcy’s
flow there are two possible approaches: primal and mixed. The primal approach considers a single-
field formulation with the pressure field of the fluid as only unknown. The mixed approach describes
the flow not only through the pressure field, but also through an additional unknown representing
Darcy’s velocity, which is of primary interest in many engineering applications. The primal setting
has the advantage of featuring less degrees of freedom and leads to a symmetric positive definite
algebraic system of equations that can be efficiently solved based on employing, for example, multigrid
techniques [39,44, 60]. In this case, Darcy’s velocity is afterwards reconstructed taking the gradient
of the computed pressure and multiplying it by the permeability tensor. However, this process usually
entails a loss of accuracy and does not guarantee mass conservation, see for example [61,62]. For this
reason, the mixed setting is sometimes preferred. In this case Darcy’s velocity is directly computed,
so that a higher degree of accuracy is achieved, together with local and global mass conservation.
However, the drawback of this approach is the complexity of the resulting scheme, which leads to a
generalized saddle point algebraic system of equations. From the above discussion we may infer that,
according to the desired approximation properties of the model, one may resort to either a primal or
mixed approximation for the problem in the bulk, as well as to a primal or mixed approximation for the
problem in the fracture. Our aim is then to design and analyze, in the unified framework of [63] based
on the flux-formulation, all the possible combinations of primal-primal, mixed-primal, primal-mixed
and mixed-mixed formulations for the bulk and fracture problems, respectively. In particular, the primal
discretizations are obtained using the symmetric interior penalty discontinuous Galerkin method [64,65],
whereas the mixed discretizations are based on employing the local DG (LDG) method of [66], both
in their generalization to polytopic grids [36-38,40,41]. Moreover, the coupling conditions between
bulk and fracture are imposed through a suitable definition of the numerical fluxes on the fracture faces.
Such an abstract setting allows to analyse theoretically at the same time all the possible formulations.
We perform a unified analysis of all the derived combinations of DG discretizations for the bulk-fracture
problem. We prove their well-posedness and derive a priori Ap-version error estimates in a suitable
(mesh-dependent) energy norm. Finally, we present preliminary numerical experiments assessing the
validity of the theoretical error estimates and comparing the accuracy of the proposed formulations on
simplified geometries with manufactured solutions.

The rest of the paper is organized as follows. In Section 2 we introduce the model problem; its
weak formulation is discussed in Section 3. The discretization based on employing PolyDG methods is
presented, in the unified setting of [63], in Section 4. In Section 5, we address the problem of stability
and prove that all formulations, namely primal-primal (PP), mixed-primal (MP), primal-mixed (PM) and
mixed-mixed (MM) are well-posed. The corresponding error analysis is presented in Section 6. Several
numerical tests, focusing, for the sake of brevity, on the primal-primal (PP) and mixed-primal (MP)
cases, are presented in Section 7 to confirm the theoretical bounds. Moreover, we assess the capability
of the method of handling more complicated geometries, presenting some test cases featuring networks
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of partially immersed fractures.
2. Model problem

For simplicity, we consider the case where the porous medium is cut by a single, non immersed
fracture. The extension to the case of a network of disjoint fractures can be treated analogously. The
case where the fracture is partially or totally immersed in the domain is more complex to analyze,
and we refer to [51, 52] for its discussion. Nevertheless, the capability of our method to deal with
networks of partially immersed fractures will be explored via numerical experiments in Section 7.4 in
the mixed-primal setting (MP). Finally, the case of a network of interecting fractures will be the object
of a future work and we refer to [59] for preliminary numerical results (in the primal-primal setting)
showing that our method is able to handle also such cases.

The porous matrix is represented by the domain Q C R?, d = 2,3, which we assume to be open,
bounded, convex and polygonal/polyhedral. Moreover, following the strategy of [47], we suppose that
the fracture may be described by the (d — 1)-dimensional C* manifold (with no curvature) I' ¢ R4,
d = 2,3. This approach is justified by the fact that the thickness of the fracture domain is typically
some orders of magnitude smaller than the size of the domain. Since we are assuming that I is not
immersed, it separates  into two connected disjoint subdomains, Q \ I' = Q; U Q, with Q; N Q, = 0.
We decompose the boundary of Q into two disjoint subsets dQ2p and dQy, i.e., 0Q = 0Qp U 0Qy, with
0Qp N 0Qy = 0, and we define 0Qp,; = 0Qp N 0Q; and IQy,; = 0Qy N 0Q;, for i = 1,2. Finally, we
denote by n;, i = 1,2 the unit normal vector to I" pointing outwards from €; and, for a (regular enough)
scalar-valued function ¢ and a (regular enough) vector-valued function v, we define the classical jump
and average operators across the fracture I as

1
g} = 5(611 +q2) [4] = ¢ini + gomy,

1 2.1
{v} = E(Vl + V) [Vl = vi-n; + vy ny,

where the subscript i = 1,2 denotes the restriction to the subdomain €2;. Note that, since we are assuming
that the fracture is continuously differentiable, it holds n; = —n,. We also denote by nr the normal unit
vector on I" with a fixed orientation from €, to €),, so that we have nr = n; = —n,. In Figure 1 we
report an example of domain cut by a single fracture.

We can now introduce the governing equations for our model. In the bulk, we suppose that the flow
is governed by Darcy’s law. The motion of an incompressible fluid in each domain Q;, i = 1, 2, with
pressure p; and velocity u; may then be described by:

u;, = V[Vp[ in Q[,
-V u; = f; in Qi’

2.2)
pi=8p; onoQyp,,

u-n =0 on 0Qy ;,

where f € L*(Q) represents a source term, g, € H'/>(0Qp) is the Dirichlet boundary datum and
v = v(x) € R is the bulk permeability tensor, which we assume to be symmetric, positive definite,
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uniformly bounded from below and above and with entries that are bounded, piecewise continuous
real-valued functions.

GQN,Z
r

0Qp,>

8.Q.N’1

6QD,1

(@) (b)

Figure 1. The subdomains €, and Q, separated by the fracture I" considered as an interface,
for d = 3 (left) and d = 2 (right).

On the manifold I' representing the fracture, we formulate a reduced version of Darcy’s law in the
tangential direction (we refer to [47] for a rigorous derivation of the model). To this aim we assume that
the fracture permeability tensor vr, has a block-diagonal structure of the form

_pr 0
VF—[O v;], (2.3)

when written in its normal and tangential components. Here, vl € R“"D*(-1 js a positive definite,
uniformly bounded tensor (it reduces to a positive number for d = 2). Moreover, we assume that
vr satisfies the same regularity assumptions as those satisfied by the bulk permeability v. Setting
ol =T'NoQ, l' = dl'p U dl'y, introducing the fracture thickness ¢r > 0 and denoting by pr and ur the
fracture pressure and velocity, the governing equations for the fracture flow are

Ur = VIEKFVTPF in F,

=V.-ur=fr—|u inT,
= fo - [u] o

pr = &r on dl'p,

ur-7=0 on dl'y,

where fi € L*(T), gr € H'?(AI), 7 is vector in the tangent plane of I" normal to dI" and V, and V.-
denote the tangential gradient and divergence operators, respectively.

Finally, following [47], we close the model providing the interface conditions to couple problems
(2.2) and (2.4) along their interface. Given a positive real number & # % that will be chosen later on, the
coupling conditions read as follows

—{u}-nr =Br[p] - nr onT, (2.5a)
—[u] = er({p} - pr) onT, (2.5b)
where fr = ﬁ and ar = m and nr = 5_15-’ v{. being the normal component of the fracture permeability

tensor, see (2.3).
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In conclusion, the coupled bulk-fracture model problem is the following:

u; =v;Vp; in Q;,
-V.u =f in Q;,
Pi = 8b.i on yp,i,
w-n =0 on yy,
ur = vilrV.pr ?n I, 2.6)
=V:-ur = fr - [uf inT,
Pr = &r on dl'p,
ur-7=0 on dl'y,
—{u} - nr = Br[p] - nr onl,
—[u] =er(pt =pr)  onT.

3. Weak formulation

In this section we introduce the weak formulation of our model problem (2.6) and prove its well-
posedness. We start with the introduction of the functional setting.

3.1. Functional setting

We will employ the following notation. For an open, bounded domain D ¢ R?, d = 2, 3, we denote
by H*(D) the standard Sobolev space of order s, for a real number s > 0. For s = 0, we write L?>(D)
in place of H°(D). The usual norm on H*(D) is denoted by || - |ls.p and the usual seminorm by | - |, p.
We also introduce the standard space Hy,(D) = {v : D — R? : IVllo.p + IV - Vllo.p < oo}. Given a
decomposition of the domain into elements 7, we will denote by H*(77},) the standard broken Sobolev
space, equipped with the broken norm || - ||;7,. Furthermore, we will denote by P,(D) the space of
polynomials of fotal degree less than or equal to k > 1 on D. The symbol < (and %) will signify that the
inequalities hold up to multiplicative constants which are independent of the discretization parameters,
but might depend on the physical parameters.

Next, we introduce the functional spaces for our weak formulation. For the bulk pressure and velocity,
we introduce the spaces M? = L2(Q) and V? = {v € Hy;,(Q) : [v]Ir € L*(D), {v}|r € [L*T)]% v - njsq, =
0}, and equip the space V” with the norm ||V||2 ||v|| + ||V - v|| + ||[[v]]|| + |[{v ||

Similarly, for the fracture pressure and velocity we define the spaces MF L>T)and V' = {vy €
Hyi, () : vr - 7|]gr = 0}. The norm on V' is given by ||Vr||Vr ||Vr||0’1- + ||V, - Vr||0’1-. Finally, we define
the global spaces for the pressure and the velocity as M = M” x M" and W = V? x V', equipped with
the canonical norms for product spaces. In order to deal with non-homogeneous boundary conditions,
we also introduce the affine spaces Vé,’ = L, + V? and V; = L, + V', where L, € Hy;(Q) and
L, € Hy;, (') are liftings of the boundary data g and gr, respectively. We can then define the global
space W, = V2 X V.
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3.2. Weak problem

We can now formulate problem (2.6) in weak form as follows: Find (u,ur) € W, and (p, pr) € M
such that

(3.1)
—B((u, ur), (¢, 9r)) = F7(q, qr)

where the bilinear form A(-,-) : W, X W, — R is defined as A((u, ur), (v, vr)) = a(u,v) + ar(ur, vr)

with
a(u v)—fv‘lu-v+fi[[u]][[v]]+fi{u}-{v}
T Q r ar r Br ’

-1
ar(ur, vr) = f(Vyr) ur - vr,
r

{A((u, ur), (v, vr)) + B((V, vr), (p, pr)) = F*(v, Vr)

and the bilinear form B(-, ) : W, XM — Ris defined as B((v, vr), (¢, gr)) = b(v, q)+br(vr, qr)+d(v, gr),
with

b(v,q) = fV Vg, br(vr, qr) = fv‘r “Vrqr, d(v,qr) = — f[["]]CIr-
Q r r

Finally the linear operators F"(-) : W, — R and F”(:) : M — R are defined as

F“(v,Vr)=f gv-n+fngr-T, F”(q,qr)=ffq+ffrcn.
oQ or Q T

Next, we prove that formulation (3.1) is well-posed. For the sake of simplicity, we will assume that
homogeneous Dirichlet boundary conditions are imposed for both the bulk and fracture problems, i.e.,
gp; =0,1=1;2, and gr = 0 and that the domain and fracture are smooth enough. The extension to
the general non-homogeneous case is straightforward. Note that the existence and uniqueness of the
problem can be proven only under the condition that the parameter & > 1/2.

Theorem 3.1. Suppose that & > 1/2. Then problem (3.1) admits a unique solution.

Proof. For the proof we follow the technique of [47]. First, we define the subspace of W, W= (v,vr) €
W : B((v,vr),(q,qr)) =0 V(q, qQ € M}. To show existence and uniqueness of the solution of (3.1), we
only need to show that A(-, -) is W-elliptic and that B(-, -) satisfies the inf-sup condition, that is

A((V’ Vr)’ (V’ Vl")) > lnf B((Va Vl“), (CI’ QF))
wnew Vvl (@ar)eM (v ypyew 11(gs gollall(v, vo)llw

First, we prove that A(-, -) is W-elliptic. Since for elements in (v, vr) € W we have V- v = 0 in L*(Q)
and V. - vp = [v]|r in L*(I), the norm ||(v, vr)|lw is equivalent to ||V||S’Q +Ivells - + VDG - + VMG -
Owing to the regularity properties of the permeability tensors v and vr, this implies that

AV, V), (V, VD) 2 [0V, ve) Iy

Note that the hidden constant also depends on the parameter ar, and that we need to assume ar > 0, or,
equivalently, & > 1/2, for the inequality to hold true.
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To show that B satisfies the inf-sup condition, given (g, gr) € M, we construct, exploiting the adjoint
problem, (v,vr) € W such that B((v, vr),(¢,qr)) = ll(g, g0}, and [I(v,vD)llw < ll(g, gr)llu. Given
(g,qr) € M, let (¢, ¢r) be the solution of

-A¢p =¢q, onQ d —A:¢r =qr, onl
an
¢ =0, on 9Q ér =0, on dr.
If we set v = (vy,vp) withv; = =V@|o,i=1,2,and vp = =V ¢, weobtain V-v =g, V. - vp = gr and

[V[Ir = 0, since v € H'(Q). This implies that (v, vr) € W and B((V, vr), (¢, qr)) = llqll§ o + llgrllg =
11, gr)Il};- Finally, from elliptic regularity, we have [|(v, Vi)l = [IVBIIG o, + IV=rllg - + lgll5 o + llgrlls - +
||{V¢}||<2),r < ||q||&Q + ”‘IF”ar’ and this concludes the proof.

o

4. Numerical dicretization based on PolyDG methods

In this section we present a family of discrete formulations for the coupled bulk-fracture problem
(3.1), which are based on discontinuous Galerkin methods on polytopic grids. In particular, since we can
choose to discretize the problem in the bulk and the one in the fracture either in their mixed or in their
primal form, we derive four formulations that embrace all the possible combinations of primal-primal,
mixed-primal, primal-mixed and mixed-mixed discretizations. The mixed discretizations will be based
on the local discontinuous Galerkin method (LDG) [66—68], while the primal discretizations on the
Symmetric Interior Penalty method (SIPDG) [64, 65], all supporting polytopic grids [36,37,40,41]. The
derivation of our discrete formulations will be carried out following the same strategy as in [63], so
that it will be based on the introduction of the numerical fluxes, which approximate the trace of the
solutions on the boundary of each mesh element. In particular, the imposition of the coupling conditions
(2.5a)—(2.5b) will be achieved through a proper definition of the numerical fluxes on the faces belonging
to the fracture.

First, we introduce the notation related to the discretization of the domains by means of polytopic
meshes. For the problem in the bulk, we consider a family of meshes 7, made of disjoint open
polygonal/polyhedral elements. Following [36,37,40], we introduce the concept of mesh interface,
defined as the intersection of the (d — 1)-dimensional facets of two neighbouring elements. We need
now to distinguish between the case when d = 3 and d = 2:

e when d = 3, each interface consists of a general polygon, which we assume may be decomposed
into a set of co-planar triangles. We assume that a sub-triangulation of each interface is provided
and we denote the set of all these triangles by ;. We then use the terminology face to refer to one
of the triangular elements in 7;

e when d = 2, each interface simply consists of a line segment, so that the concepts of face and
interface are in this case coincident. We still denote by 7, the set of all faces.

Note that ¥, is always defined as a set of (d — 1)-dimensional simplices (triangles or line segments). As
in [36,37,40], no limitation on either the number of faces of each polygon E € 77, or on the relative size
of the faces compared to the diameter of the element is imposed.

We consider meshes 77, that are aligned with the fracture I', so that any element E € 7, cannot be
cut by I' and it belongs exactly to one of the two disjoint subdomains €, or Q,. This implies that each
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mesh 77, induces a subdivision of the fracture I" into faces, which we denote by I';. It follows that we
can write

Fin=Fi UFy UL,

where 7, is the set of faces lying on the boundary of the domain dQ and ¥ is the set of interior faces
not belonging to the fracture. In addition, we write 7,° = P UF ), where ,” and F," are the boundary
faces contained in 0Qp and 9Qy, respectively (we assume the decomposition to be matching with the
partition of 9Q into 0Qp and 0Qy).

The induced discretization of the fracture I';, consists of the faces of the elements of 7, that share
part of their boundary with the fracture, so that I';, is made up of line segments when d = 2 and of
triangles when d = 3. Note that, in the 3D case, the triangles are not necessarily shape-regular and
they may present hanging nodes, due to the fact that the sub-triangulations of each elemental interface
is chosen independently from the others. For this reason, we extend the concept of interface also to
the (d — 2)-dimensional facets of elements in I';, defined again as intersection of boundaries of two
neighbouring elements. When d = 2, the interfaces reduce to points, while when d = 3 they consists of
line segments. We denote by &r, the set of all the interfaces (that we will also call edges) of the elements
in T, and we write, accordingly to the previous notation, &, = 8§’h ] 85,1, with 81‘3’ W= 83 U SQ W

For each element E € 7,, we denote by |E| its measure, by A its diameter and we set 1 = maxger, hE.
Given an element E € 7, for any face F' ¢ JF, with F € ¥, we define ny as the unit normal vector on
F that points outward of E. We can then define the standard jump and average operators across a face
FeF,\ ThB for (regular enough) scalar and vector-valued functions similarly to (2.1). We also recall a
well-known identity [65] for scalar and vector-valued functions ¢ and v that are piecewise smooth on

T
Y[ aveme= [t [ M @1
EeT; Y OE Tn Fi\Fy

where we have used the compact notation fﬂ © = Yrer, fF and jump and average operators on a

boundary face F € F are defined as [g] = gny and {v} = v.

Analogous definitions may be also set up on the fracture. In particular, given an element F € I,
with measure |F| and diameter &g, for any edge e C dF, with e € &, we define n, as the unit normal
vector on e pointing outward of F (it reduces to +£1 when d = 2). Finally, standard jump and average
operators across every edge e can be defined for (regular enough) scalar and vector-valued functions
and an analogous version of formula (4.1) can be stated for piecewise smooth function on the fracture
mesh I',.

We have now all the ingredients to introduce the discrete formulation of model problem (3.1).

4.1. Discrete formulation

For simplicity in the forthcoming analysis, we will suppose that the permeability tensors v and v are
piecewise constant on mesh elements, i.e., v|z € [Po(E)]% for all E € T, and vr|p € [Po(F)]¢-Dx@=D
for all F' € I',. First, we introduce the finite-dimensional spaces where we will set our discrete problem.
We set

0F ={qeL*(Q): qlg € Py, (E) VE € T}
W = (v e [LXQ)]: Vg € [P (E)* VE € T)
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Q) = (qr € L) : grlr € Py, (F) VF €T}
Wi, = {vr € [P 1 vrlr € [Py ()1 VF € T).
Note that, to each element E € 7, is associated the polynomial degree kg > 1, as well as to each face
F €T, is associated the degree kr > 1. We remark that the polynomial degrees in the bulk and fracture
discrete spaces just defined are chosen independently of each other.

We first focus on the problem in the bulk. Multiplying the first and second equations in (2.2) by test
functions v € WZ and g € Q7, respectively, and integrating by parts over an element E € 7, we obtain

fv‘lu-V:—fpV-v+f PV - ng,
E E OE
fu-Vq:fqu-nE+ffq.

E OE E

In the spirit of [63], we start the derivation of our DG discretization from these equations. Adding over
the elements E € 7, the general discrete formulation for the problem in the bulk will then be: Find
pn € QZ and u;, € WZ such that for all £ € 7 we have

ZLV‘luh-V:—ZLphV-V+ZfaEﬁEwnE

EeTy, EeTy EeTy
> [weva=Y [ qiener Y [ sa
EeTy E EeTy 9E EeTy, E

where the numerical fluxes pr and @i are approximations to the exact solutions u and p, respectively,
on the boundary of E. The definition of the numerical fluxes in terms of pj,, u;, of the boundary data
and of the coupling conditions (2.5a)—(2.5b) will determine the method. Using identity (4.1), we get

fv—‘uh~v=—fphv-v+f{ﬁ}[[v]]+f 1] - {v}, 4.2)
Th Th Fury, FluFBur,
f w, - Vg - f ta)-[q] - | [alig}= | fa (4.3)
7i 7 '

uFBury, F, Ul Th
where we have introduced p = (Pg)ger, and @ = (Ug)ger,. The numerical fluxes p and G must be
interpreted as linear functionals taking values in the spaces Ilger, L2(OE) and [Ilger, L*(OE))Y,
respectively. In particular, this means that they are, in general, double-valued on ¥ U I, and
single-valued on ,°. We also observe for future use that, after integrating by parts and using again
identity (4.1), Eq. (4.2) may also be rewritten as

ffluh-v=f Vph"’"‘f {ﬁ—ph}[[V]]+f [P = pal - (v} 4.4)
Th Th th’ uly, 7—‘,1’ uThBUFh

We now reason analogously for the fracture. Multiplying the first and second equations in (2.4) by
test functions vr and gr, respectively, integrating by parts over an element F € ', and summing over
all the elements in I';, we obtain the following problem: Find pr, € Q}rl and ur, € Wg such that for all
F €I, we have

(Ve My, - vr = - fpr,hV “Vr + f Prrv - np,
3 J o 2], 2],

Fely, Fely, Fel'y,
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ZLur’h'qu_Zﬁquﬁr’F'nF:ZfFfqu_ZfF[[ﬁ]]qr'

Fely, Fely, 9 Fely, Fely,

Here, we have introduced the numerical fluxes prr and G r. Again, the idea is that they represent
approximations on the boundary of the fracture face F of the exact solutions pr and ur, respectively.
Note also that here 1 is the numerical flux approximating the bulk velocity on I',. Using identity (4.1),

we get
f(VFfr)_lllr,h -Vr = — Z fpr,hV “Vr + f {prifvr] + f {vr} - [pr] 4.5)
T Fely, F Sll“,h Ern

ful“,h'VCIF_f {QF}[[ﬁr]]—f {ﬁr}'[[CIF]]:ffFCIr—f[[ﬁ]]QF (4.6)
I Slr, N Ern I Ly

We point out that, in all previous equations, the gradient and divergence operators are actually tangent
operators. Here, we have dropped the subscript 7 in order to simplify the notation.

In the following, we explore all possible combinations of primal-primal, mixed-primal, primal mixed
and mixed-mixed formulations for the bulk and fracture, respectively.

4.2. Primal-Primal formulation

In order to obtain the primal-primal formulation, we need to eliminate the velocities u;, and ur,
from equations (4.2)—(4.3) and (4.5)—(4.6). To do so, we need to express uy, solely in terms of p;, (and
pr.), and ur, solely in terms of prj;. As in [63] this will be achieved via the definition of proper lifting
operators.

We start by focusing on the problem in the bulk. In order to complete the specification of the DG
method that we want to use for the approximation, we need to give an expression to the numerical fluxes.
We choose the classic symmetric interior penalty method (SIPDG). Moreover, coupling conditions
(2.5a)—(2.5b) are imposed through a suitable definition of the numerical fluxes on the fracture faces.
Since we want a primal formulation, the definition of p and @ will not contain u;,. The numerical fluxes
are defined as follows:

{pn} onF,/
A A gp onFpP
p=p(ps) =
/ pn onF)Y
pn only
{YWpi} — orpa] on 77/11
L VVpj, — or(py — gp)0r on¥,”
u = a(py, = 4.7
(Pn> Pra) 0 on ?,hN 4.7)
—lar({pn} = pra)5 + Brlps]l onTy,

Here, we have introduced the discontinuity penalization parameter o. In particular, o is a non-
negative bounded function, i.e., o € L*(F, U ) and its precise definition will be given in Definition
5.2 below. Moreover, we have used the notation o = o, for F € 7’,{ U ﬂD . We remark that, with this
choice, the numerical flux p is doubled valued on I';, and single valued on ¥, U F,°.
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Using the definition of the numerical fluxes, it follows that

(p—pt =0, [a] =0 on %,
{p—put =0, [4] = —ar({pa} = pra) onl’,
[p = pu] = ~[pal. {a} = (WVps} — orpil on ¥,
[p - pil = (¢p = P, {@} = vVp;, — or(py — gp)nrp onF,?,
[P = pa] =0, fa} =0 onF,",
[p - pu] =0, {a} = —Br[ps] onl},

so we rewrite (4.4) as

fV_lllh'V=f Vph~v—f [[ph]]~{v}+f gpv - . 4.8)
Th Th 7:hIU(FhD FDh

h

At this point, we proceed with the elimination of the auxiliary variable u,, from our equations. To this
aim, we introduce the lifting operator £:" : [L'(F} U F)1* — W? defined by

L&) v =~ f (vi-& VveW. (4.9)

g TP

Similarly, we define the lifting G,(gp) € WZ of the Dirichlet boundary datum g as
gb-v:f gpv-n Vvewz. (4.10)
Th FP
Thanks to the introduction of the lifting operators, Eq. (4.8) may be rewritten as

f (uh — V[Vph + ;Zflp([[ph]]) + Qb]) -v=0.
Th
Since VQ? € W” we can write
w, = v[Vp, + 2" ([pi]) + Gb, (4.11)

where Vp, + Z;""([pa])) + G» can be seen as a discrete approximation of the gradient Vp.
We can then rewrite Eq. (4.3) as

f V[V + 2" ([pa]) + Gb) - Vg - f {a} - [q] - f ﬂﬁ]]{q}:f 14
7, FHUTT, 7iJT 7

Using the definition of the discrete gradient (4.11), of the lifting operators (4.9) and (4.10) and of the
numerical flux @ (4.7), we have

fr YV pn- Vg + fr v (pl) - Vg + fr v (ql) - Vi + f oelpa] - [a]
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+f,3r[[l?h]]'[[61]]+far({Ph}—Pr,h){q}:f fCI"‘f 8D0'Fq_f vGy, - Vq. (4.12)
Iy Iy Th FP Th

h

Now we move our attention to the problem in the fracture. We define the numerical fluxes pr and Gr
in order to obtain a symmetric interior penalty approximation as follows:

{prn} on 8%,11
pr = pr(prn) = 8r on 8?,/1
prn  on&Y

T
Vi Vpra) = oepral on&f,

Ur = ar(pr) = \VileVpry — oo(pra — grm,  on&R, (4.13)
0 on&Y,.

Again, we have introduced the discontinuity penalization parameter o € L“(Sé’h U 83 ) and we set
o, =or|, fore € 8%5 WY SQ ,- 1ts precise definition will be given in Definition 5.3 below. Next, as before,
we introduce the lifting operator 2" : [L'(E[, UED )11 — W and the lifting of the boundary datum
Gr(grp) € W;rz defined by

f L&) v = - f & {vr} Vvr € W), (4.14)
Ty &l uer,
f Gr-vr = f grovr - N, Vv € W, (4.15)
Iy &L,

Integrating by parts and using (4.1), we can rewrite Eq. (4.5) as
f (llr,h —vilr[Vpry + " (pra]) + QF]) ~vp = 0.
Iy

Again, since VQ}Fl c Wg elementwise, we can write
ur, = vilr[Vpr, + L7 ([pral) + Grl.

Plugging this last identity and the definition of the numerical fluxes G (see (4.7)) and tr (see (4.13))
into Eq. (4.6), we obtain

f vilrVpry-Var+ f vilr L ([pral) - Var + f vilr " (lgr]) - Vors + f i oelpra] - lar]

I Iy Iy 8{"’ h UST, h

+farPr,hQF—far{Ph}QF:ffr(Ir‘*‘f 8r0'eQF—fVFfr§F'V(]r- (4.16)
Ty Iy Iy &b Ty

T.h

In conclusion, summing Eqs. (4.12) and (4.16) we obtain the following discrete formulation: Find
(P, P)) € QF x Q) such that

A ((w P> (@-40) = L (g ar) (g, qr) € O X O, (4.17)
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where PP stands for primal-primal and where £, : QZXQZ — Ris defined as L} (q, qr) = L, (¢)+L{(gr)
and A 1 (00 x OF) X (QF x Q}) — R is defined as

A ((par 1) (@ ar)) = AP @) + ALPras ar) + T((pus Pras (4> ar),

with
Ay (pr,q) = f YWpi - Vg + f v.Z,"([pn]) - Vq
Th Th
+ f v.Z"([q]) - Vpu + f orlps] - (4] (4.18)
i TP
ANPpra, qr) = f vilrVpr, - Vgr + f vilr L ([pral) - Var
rh lﬂh
+ f vilr 27" ([qr]) - Vors + f a.lpral - lar], (4.19)
Iy Sﬁhua’r)!h
T(prs pro (@ qr)) = f elpi] - [a] + f ar(ipa) = pra)(iq) — g, (420)
Ty s
and
Li@=| fq+ f gpOFq — f VG - Vg, (4.21)
Th 7 T
?(QF)=ffr4r+f gFO'eQF—fVFerF'VCIF- (4.22)
Ty &, Ty

We remark that we have recovered the formulation already obtained in [59] (in its not strongly consistent
version), the only difference being that the bilinear form for the problem in the fracture is in the shape
of SIPDG method, instead of classical conforming finite elements.

4.3. Mixed-Primal formulation

In this section, we discretize the problem in the bulk in its mixed form. To this aim, we use the local
discontinuous Galerkin (LDG) method [66—69]. The LDG method is a particular DG method that can
be included in the class of mixed finite element methods. However, the variable u;, can be locally solved
in terms of p, and then eliminated from the equations, giving rise to a primal formulation with p, as
only unknown.

In what follows, we first derive the formulation of our method in a mixed setting. After that, we
recast it in a primal setting, in order to perform the analysis in the framework of [63,69]. However,
we remark that the mixed formulation is the one that will actually be implemented for the numerical
experiments of Section 7. As far as the problem in the fracture is concerned, we work again in a primal
setting, using the SIPDG method for the discretization.

In the bulk, we define the numerical fluxes as

{pr}+b-[ps] on¥F/

p=pp =15 on}’
= h =

Ph on ‘th

Dh onl’,
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{ws) = b[ws] - o [ps] on
@ = @y, pr. pry) = u, — op(ppp — gpNy) onF
1> Dhs PTh 0 on TN

~lar({pn} = pra)5 + Brlps]]l onTy,

Here, b € [L°°(7:h’ )]¢ is a (possibly null) vector-valued function which is constant on each face. It is
chosen such that
bl < B. (4.23)

with B > 0 independent if the discretization parameters. Moreover, o is the penalization parameter
introduced in (4.7) , whose precise definition will be given in (5.2) below. Note that the numerical flux
p does not depend on uy,. This will allow for an element-by-element elimination of the variable u,
generating a primal formulation of the problem. We also point out that the definition of the numerical
fluxes on the fracture faces is the same as in the primal SIPDG setting.

With this definition of the numerical fluxes, and after integration by parts as in (4.4), Eq. (4.2)
becomes

fv_luh-v—prh-V+f[[ph]]‘({V}—b[[v]])+f ppv - Mp = f gpV - np, (4.24)
Th Th 7! D FD

h

while Eq. (4.3) turns into

[ weva- [ qu-vlwh )+ [ oviml-lal- [ qwens
i 7 FAuFP i
+f,3r[[Ph]]'[[6]]]+f@r({Ph}—Pr,h){q}=f f61+f orgpq. (4.25)
Iy In Th FP

If we discretize the problem in the fracture with the SIPDG method, we obtain the following discrete
mixed problem: Find ((py, up), p}) € Q2 x W), x OF such that

Mp(uy, v) + By(pp, v) = Fyp(v) Vv e W?,
-8By(q, w) + Sp(Pr, @) + L1(pi, q, prp) = Gp(q) Vg € O, (4.26)
ALpras gr) + L2(prs pras qr) = L{(gr) Ygr € 0},
where
My(ay, v) = f viay, v, 4.27)
Th

Bb(ph,V)=—f Vph-V+L[[ph]]-({v}—b[[V]])+f PV - Dp,
Th 1 Y

i

Sp(Pr.q) = f O'F[[Ph]] ) [[Q]]’
Ty

I\(pn»q, pra) = f Brlpil - [l + f ar({ps} = praiql,
Iy

|
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I>(pn, prop> qr) = f ar(pry —{pnhar,

Ty

Fh(V):f gpV - g,
7:D

h

Gy(q) = fa+ f OFr8DpY,
Ti 7P

h

and A{(-,-) and L{(-) are defined as in (4.19) and (4.22), respectively. Also note that we have

Z((pns Pra)s (g, qr)) = L1(pn.q, prp) + Lo(phs proas qr).
We now focus on rewriting the problem in the bulk in a primal form, taking advantage of the local

solvability of LDG method. We proceed as in the SIPDG case and introduce an appropriate lifting
operator, £ : [L"(F, U F.2)* — W?, defined by

f ,,%JLDG(f)'V: _f ({V}_b[[v]])éf_f f-V VVEWZ (428)
Th Fi v

From Eq. (4.24) we obtain
w, = v(Vp, + Z°([pa]) + Go), (4.29)

where G, is the lifting of the Dirichlet boundary datum defined in (4.10). Eq. (4.25) now becomes

f YWpn- Vg + f v.Z2([pi]) - Vai + f vGy - Vg - f ({up} + b)) - [q] - f quy - np
771 Th Th 7—'}11 ThD
+f GF[[ph]]'[[Cl]]+f,8r[[ph]] [[q]]+far( pu} = pri)iq) f61+f TFq8D-
TIOT T 7 7P

h

Using again the definition of the lifting .£/” and the identity (4.29), we obtain

fr v(Vpu + 2,°([pn])) - (Vg + Z,%([q])) + f

wmmM+ﬁ&mmM

« [ atpi-potar= [ fa+ [ ovaen= | v6-Fa+ 2 aD). @30

Ly ﬂ

Summing Egs. (4.30) and (4.16) we obtain the following discrete formulation: Find (py, pg) €
Q" x Qj, such that

A (o 21 (@, 00)) = L£"(g.qr)  ¥(gqr) € Q) x O, (4.31)

where M P stands for mixed-primal and where A" : (QZ X Qg) X (QZ X Q};) — R is defined as
A ((Ph, i) (g QF)) = Ay (P> @) + Ar(proas qr) + I(pus pra)s (g, qr))s
and L} : 0 x 0} — R is defined as

n (q,qr) = L) (q) + Li(gr)
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with

Aona) = [ v+ D) g+ 2+ [ orlpil -l

h h

+f&@mmwjhﬁm—WML 4.32)
Ly

Iy

L)(q) = f fa+ f Trq8p — f vGy - (Vg + 2, ([q])).
i 7P Th

h

Note that the mixed formulation (4.26) is equivalent to the primal formulation (4.31) together with the
definition of the lifting operator (4.28) and Eq. (4.29).

4.4. Primal-Mixed formulation

We now want to approximate the problem in the fracture in mixed form, employing the LDG method
and the problem in the bulk using the SIPDG method. We define the numerical fluxes as follows

{pra} +br-[pra] oné&f,
pr = pr(prn) = 18&r on Sll"),h
Proa on 81}{ Y
{ur} = brlur,] —oe[pra] on 811",/1

A _ D

Ur = ll]*(llr,h, pF,h) =Ur, — o-e(pl",hne - grne) on 81"’]1
N

0 on Sr,h

Here, br € [L°°(8§ h)]d‘1 is a vector-valued function that is constant on each edge and it is chosen such
that ||br||(x,,8§ S Br, with Br < 0 independent of the discretization parameters. Egs. (4.5) and (4.6) now
become '

f (Vi) My, - vr — f vr - Vpr, + f [pral - Gve} =brve]) + f pravr-n, = f grvr-n,
I I, 8?,;1 agh agh
(4.33)

f ur; - Vgr — ‘fg [[QF]] ~({ury} - brﬂllr,h]]) + f; Oec [[Pr,h]] : [[Clr]]
I . I

g

D
T.h

QFur,h'ne=ffr4r+f ar({Ph—Pr,h})CIr‘i‘f o.8rqr, (4.34)
1—‘h

Ty Eran

where we have also used the definition of the numerical flux @ on I, (see (4.7)) to rewrite
—[a] = ear(pn} — prn). For the bulk we proceed as in the primal-primal section using for the
discretization the SIPDG method. We then obtain the following primal-mixed problem: Find
(Pn, (Pl urp) € OF x O x W), such that

Ay (pn, @) + T1((ps @), pr) = Li(q) Vg€ Q)
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Mr(ur, vr) + Br(pro, vr) = Fr(vr)  Yvr € W, (4.35)
—Br(gr.ury) + Sr(pro, qr) + Lo(pu, (pro, qr)) = Gr(gr)  Vqr € 0},
where
Mr(ar, vr) = (Vlzfr)_lur,h - Vr,
rh

BF(Pr,h, vr) = —f Vr- Vpr,h + f [[Pr,h]] ~({vr} = brﬂVr]]) + f Pravr - D,
Ly 811',11 &P

Th

Su(pra.qr) = f aelpral - lar],

Era

Fr(vr) Zf grvr - n,

D
Sl",h

Gr(qr)=ferF+f 0.8rqr,
Ty Eran

and A, (py, q) and L;(q) are defined as in (4.18) and (4.21), respectively.
Aiming at rewriting the problem in the fracture in primal form, we introduce the lifting operator,
L6 [LNEL U EP)]Y — W, defined by

f L) - vr = _f ({vr} = brvr]) - &r - f &r-ve VvreW, (4.36)
Iy 8Ir,h 83/1

From Eq. (4.33) we obtain
ur, = V;fr[vpr,h + g}“LDG([[pF,h]]) + Grl (4.37)

where Gr is the lifting of the Dirichlet boundary datum defined in (4.15). Eq. (4.34) now becomes

f vile(Vpry + L ([pral)) - (Var + L (lgr])) + f o.[pra] - lar]

| D
Fh 81",/1 USF,h

+f6¥r(Pr,h)—{Ph})=ffr6]r+f O'eCIFgr—fV}frgr'(vclr+$rw6([[6]r]]))-
Iy Iy D

SR h rh

We obtain the following primal formulation: Find (p,, pg) € QZ X Q}rl such that

A ((pwr 21 (@, 00)) = L(g,qr)  ¥(gqr) € Q) x O, (4.38)

where PM stands for primal-mixed and where A™ : (07 x 0}) X (0% x 0}) — R is defined as
A ((Pws Pl (@:.q)) = A (Pr @) + AL (Pras gr) + T((pis pra)s (g 4r),

and L;" : QZ X Q{l — Ris defined as £;"(q, qr) = L,(q) + L{'(gr) with

A (Prp, qr) = f vile(Vprp + L([pral)) - (Var + L5 ([gr]))

1
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+ f o el - [arl, 439)
&l USQ

Li(gr) = Jrar + j; O oqr&r — f vilrGr - (Var + L ([qr])).
I D

T.h Ty

4.5. Mixed-Mixed formulation

Finally, if we approximate both the problem in the bulk and in the fracture with the LDG method, we
obtain the following formulation: Find (ps, prj) € Q7 x O and (u;,, ur;) € W), x W), such that

My(uy, V) + By(pp, V) = Fp(v) ¥V eW),

~By(q, ) + Sp(pi, @) + T1(Pn ¢, pra) = Golq) Vg€ O, (4.40)
Mr(urp, Vi) + Br(pra, vr) = Fr(vr)  Yvr € W),

—Br(gr.ury) + Sr(pro, qr) + Lo(pu. (pros qr)) = Grlgr)  Vqr € 0},

This formulation, together with the definition of the lifting operators (4.28) and (4.36) and of the discrete
gradients (4.29) and (4.37) is equivalent to the following: Find (p, pr,) € QZ X Qg such that

A ((pr 21 (@, q0)) = L"(g,qr) Y(gqr) € Q) x O, (4.41)

where MM stands for mixed-mixed and where A : (0% x 0}) X (0% x 0}) — R is defined as

A (w21 (4.0) = A (Prs @) + AL (Pras gr) + T((pis pra)s (4. 4r),

and L™ : 0% x Q) — Ris defined as L)"(q, gr) = L'(q) + L} (gr).

Next, we perform a unified analysis of all of the derived DG discretizations for the fully-coupled
bulk-fracture problem. We remark that the analysis will be performed considering the mixed LDG
discretizations recast in their primal form, following [69]. For clarity, in Table 1 we summarize the
bilinear forms for all the four approaches.

Table 1. Primal forms for the DG discretizations of the bulk-fracture problems.

Method Primal bilinear form

Primal-Primal (PP) A (p.q) + AL(pr. qr) + I(p, @), (pr. qr))

Mixed-Primal (MP) A (p.q) + AL (pr.qr) + (. ). (pr.qr))
Primal-Mixed (PM) AL (p. q) + A (pr.qr) + I((p.q). (pr.qr))
Mixed-Mixed (MM) A (p, @) + A (pr.gr) + I((p, @), (pr. qr))

The bulk, fracture and interface bilinear forms are defined in:

Ap(p, @) (4.18) AL (pr.qr):  (4.19) I((p. @) (pr.qr)):  (4.20)
A (p,q): (4.32) A (progr): - (4.39)
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5. Well-posedness of the discrete formulations

In this section, we address the problem of stability. We prove that the primal-primal (PP) (4.17),
mixed-primal (MP) (4.31), primal-mixed (PM) (4.38) and mixed-mixed (MM)(4.41) formulations are
well-posed. We remark that all these formulations are not strongly consistent, due to the presence of the
lifting operators. This implies that the analysis will be based on Strang’s second Lemma, [70].

We recall that, for simplicity in the analysis, we are assuming the permeability tensors v and v[. to be
piecewise constant. We will employ the following notation ¥z = | VVlg|3 and ¥, = | \[V{IF[3, where | - |,
denotes the /,-norm.

To consider the boundedness and stability of our primal bilinear forms, we introduce the spaces
Q"(h) = Q) + Q" and Q' (h) = Q) + Q" where 0" = {g = (q1,42) € H'(Q) x H'(Q)} N H*(T3) and
0" = H'(I') n HX(T},). We remark that all the bilinear forms A (-, ) are also well-defined on the
extended space Q”(h) x Q' (h).

Further, we introduce the following energy norm on the discrete space Q7 x Q)

(g, g0 = llgllpg + llgrllpe + 11(g, goli7

where

2 _ 1/2 2 1/2 2
lalibg = 10" Vallsr, + llo (416, 100

larllp = IR0 *Varllr, + o2 [arllG g1 o
(g, gl = 1B [qlIRr, + lle) (g} — ao)lir,

Note that ||| - ||| is also well defined on the extended space Q°(h) x Q' (h).

Since our discretization employ general polytopic grids, we need introduce some technical
instruments to work in this framework [36-38,40,41]. In particular, we need trace inverse estimates to
bound the norm of a polynomial on a polytope’s face/edge by the norm on the element itself. To this
aim, we give the following

Definition 5.1. A mesh 7, is said to be polytopic-regular if, for any E € T, there exists a set of
non-overlapping (not necessarily shape-regular) d-dimensional simplices {S %}, contained in E, such
that F = dE N S*, for any face F C JE, and

h <d|i§5| i=1 n
E = |F|a - s ey llE,

with the hidden constant independent of the discretization parameters, the number of faces of the element
ng, and the face measure.

We remark that this definition does not give any restriction on the number of faces per element, nor
on their measure relative to the diameter of the element the face belongs to.

Assumption 5.1. We assume that T, and Iy, are polytopic-regular meshes.
With this hypothesis, we can state the following inverse-trace estimate that is valid for polytopic

elements [38,41].
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Lemma 5.2. Let E be a polygon/polyhedron belonging to a mesh satisfying Definition 5.1 and let

v € Py, (E). Then, we have
2

2 E 2
”v”LZ(BE) < E”v“LZ(E)’ (51)

where the hidden constant depends on the dimension d, but it is independent of the discretization
parameters, of the number of faces of the element and of the relative size of the face compared to the
diameter kg of E.

The second fundamental tool to deal with polytopic discretizations, is an appropriate definition of the
discontinuity penalization parameter, which allows for the use of elements with arbitrarily small faces.
Taking as a reference [36-38,40,41], we give the following two definitions for the bulk and fracture
penalty functions:

Definition 5.2. The discontinuity-penalization parameter o : ¥, \ I, = R for the bulk problem is
defined facewise as

T/Ekz

maxge(g+ £-) hEE ifxcFeF! F=0E*NoE,
o(x) = 0o (5.2)
L ifx C F e FP, F=0E N,

with oy > 0 independent of kg, |E| and |F].

Definition 5.3. The discontinuity-penalization parameter ot : &r;, — R for the fracture problem is
defined edgewise as

5T 1.2
vk

maXpe(rp-) - X Ce€&y, e=0F NoF,
or(X) = oor (5.3)
ST 1,2 _ _
i g ifxCee&P, &=0Fndr,
F 5

with oo > 0 independent of kf, |F| and |e|.

Now we have all the technical tools to work in a polytopic framework. Next, we will state and prove
some estimates that will be instrumental for the proof of the well-posedness of our discrete formulations.
We start deriving some bounds on the lifting operators, with arguments similar to those of [68,69,71].
Note that all the results hold true on the extended spaces Q°(h) and Q' (h).

Lemma 5.3. Let £;'"(-) be the lifting operator defined in (4.9). Then, for every g € Q"(h) it holds
1
V22" ([aDloe < —7llo* [alllogrorp- (54)
9

Proof. Denoting by My the L?-projection onto W2, by definition of the lifting operator 23" and
Cauchy-Schwarz inequality, we have

‘ vl/ZD%SIP([[q]]) .z
||V1/2:$;,“P([[CI]])||0,Q = Ssup fg -

ze[L2(Q))¢ lIzllo.0
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J;z D%SIP([[Q]]) X HWZ(VI/ZZ)

= sup
ze[L2(Q))¢ lI1lo.o
172 —1/2 1/2
oo ol o P My (7 2))
=— sup
ze[L2(Q))4 l1zllo,
1/2 -1/2
o alllorpompllors " M 22y
< sup .
ze[L2(Q)¢ l|1zllo.0

Using the triangular inequality, the definition of the penalization coefficient o (5.2), the inverse
inequality (5.1), the assumptions on the permeability tensor v and the continuity property of the
L?*-projector we have

h 1
-1/2 1/2 E 1/2 2 1/2
o My P2 10 Z - k2||Hw,b,<v "Dl < ) v__”Hwb(V/ Dlhe (5.5
EET), Eer, VEY
2
< — Z IR e = ~— Il
(0] E<T) (20]

This proves the desired estimate.
O

Lemma 5.4. Let £:"(-) be the lifting operator defined in (4.14). Then, for every qr € Q" (h) it holds
1
1070 22 (LgrDllor s =3l larTlo g, vep, -
Tor c
Proof. Same arguments as in in the proof of Lemma 5.3. O

Lemma 5.5. Let £}"°(-) be the lifting operator defined in (4.28). Then, for every q € 0 (h) it holds

1+
V"2 2 ([qDlloa < 12

172
Ty

||0' [[Q]]HO,T,{UGFhD- (5.6)

Proof. We proceed as in the proof of Lemma 5.3. By definition of the lifting operator .Z”° and
Cauchy-Schwarz inequality, we have

V1/2$LDG([[q]]) -7
V"2 2 ([gDlloa = sup Jo 4

ze[L2(Q))? lI1lo.
1/2
Jo Zr({q]) - Ty (v ?2)
= sup
Ze[L2(Q))¢ l|zllo,
o2 —1/2 1/2 1/2
|- f o12la] - o7 (Mg v 22)) = by P2)])|
< sup
ze[L2(Q)¢ lIzllo.0

Mathematics in Engineering Volume 2, Issue 2, 340-385.



362

| o %lal o7 Pl

+ sup

ze[L2(Q))¢ lIzllo.o
< s [alllorgumpllors ™ Mgy 02 2) o 00
Ry o lzllon
o> Tl oD [ My 2]l
’ ze[il;(g)]d ||Z||o,n
= (a) + (b)

From (5.5) we know that (a) < +/2||0'1F/ 2 T4l FIUFD while using similar arguments and bound (4.23)
O'O ’

on b, we can prove that

BZ
-1/2 1/2 2 2 a2
||O-F b[[sz(V Z)H”Oﬂl < O'()”Z”O’Q’
so that (b) < ﬁllO';/ 2 [41llo.1uzp- This concludes the proof. o
0

Lemma 5.6. Let £'"°(-) be the lifting operator defined in (4.36). Then, For every qr € Q" (h) it holds

- 1+ Br
10502 2 L Dlor < o ot [ar e, vep,

0.r

Proof. Same arguments as in in the proof of Lemma 5.5. O

Using these results, we can now prove that the bilinear forms for the bulk problem A;(-,-) and
ﬂfj” (-, ) are continuous on Q”(h) and coercive on QZ, as well as the fracture bilinear forms ﬂ? (-,-) and
AM(-, ) are continuous on Q' (k) and coercive on Q; .

Lemma 5.7. A/(-,") is coercive on QZ X Qz and continuous on Q°(h) x Qb(h), that is
A 9) 2 lglipg Vg € 0},
»(2: @) < Ipllps llgllpe Vp,q € 0" (h),
provided that o is chosen big enough.
Proof. We start with coercivity. Taking p = g € 0, we have

AN ) = ) [IIV”ZVCIH%,E +2 f v, ([aD) - Vg
E

E<Ty,

+ D0 ol s

FeFluFpP

From Young inequality we have

1
2 f v " ([g]) - Vg = =225 ([gDlloelv*Vallog = —elv'> L ([gDig - — ;nv”quué,E,
E

so that, using the bound on the lifting (5.4), we obtain

1 ,
g0 Y |-l Valh, - V2L QDR+ Y, oy [allE

E€T) FeFluFP
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1
z(l—e)Z||v”2Vq||§,E+(1—U—08) D ey [

EET) FeFluFP

for oy big enough.
Continuity directly follows from Cauchy Schwarz inequality and the bound on the lifting (5.4). O

Lemma 5.8. A/(:,) is coercive on QZ X Qg and continuous on Q' (h) x Q' (h), that is

Agr, qr) 2 llgrllpe Yar € Oy,
ALpr, qr) < llprlloe llgrllpe Vpr,qr € Qr(h),

provided that oo is chosen big enough.
Proof. Analogous to the proof of Lemma 5.7. O
Lemma 5.9. A(-,-) is coercive on Q% x Q% and continuous on Q°(h) x Q"(h), that is

A (g, q) 2 llglipe Vg e Qb
A (p,q) < lIplpe llgllpe Vp,q € Q°(h).

Proof. We start with coercivity. From Young’s inequality and the bound on the lifting (5.6) we have, for
every 0 < e < 1,

AG Q) = ) [IIV”quIIS,E+||V”2-=%LD“([[Q]])II§,E +2 f v2,"(la]) - Vg
E

0 ol

EeTy F€7’_]{U7'—,1D
1

> 3 |- Vgl + (1 - —)||v”i%bm([[q]])||3,,;] + ) o Ll
E€T), &

FeFuFP
2= Y IR+ (140 > ol

E€Th FeFluFpP

with C = %(1 - é), so that A}'(-, -) is coercive for every choice of the parameters oo > 0 and B > 0 .
Continuity is again a direct consequence of Cauchy Schwarz’s inequality and the bound on the lifting
(5.6). O

Lemma 5.10. A (-, ) is coercive on Q) X Q) and continuous on Q' (h) x Q' (h), that is

AL(gr, qr) 2 ligrlihe Vgr € O},
Ar(pr, qr) < llprloe llgrlipe Vpr.qr € Q' (h).
Proof. Analogous to the proof of Lemma 5.9. O

Employing Lemmas 5.7, 5.9, 5.8 and 5.10, we can easily prove the well-posedness of all of our
discrete problems, as stated in the following stability result.

*More in detail: we need 1 + C > 0, with 0 < £ < 1. We obtain 1 + (1 — g)% > 0, that is & > —&5— = C, being 0 < C < 1 for
(1+B)2

every possible choice of oy > 0 and B > 0.
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Proposition 5.11. Let the penalization parameters o for the problem in the bulk and in the fracture
be defined as in (5.2) and (5.3), respectively. Then, the fully-coupled discrete problems PP (4.17), MP
(4.31), PM (4.38) and MM (4.41) are well-posed provided that oy and o are chosen big enough for

the primal formulations.

Proof. In order to use Lax-Milgram Lemma, we prove that the bilinear forms A”(-,-), AYF(.,"),
APM(.,-) and AMM(.,-) are continuous on Q”(h) x Q' (h) and coercive on Q% x Q). We have, from
Cauchy-Schwarz inequality

1((q.qr)- (g:9r) = (g qp)Il3
1((g> qr), v, w) < B (gl B> TNy + D Nl = gl llag > (W) = wili s,

Fely, Fely
< llcg, golll - [llow, wolll,

so that coercivity and continuity are a direct consequence of the definition of the norm ||| - ||| and of
Lemmas 5.7, 5.9, 5.8 and 5.10. The continuity of the linear operators L (-), L}'*(-), £L™(-) and L}™(-)
on Q°(h) x Q' (h) can be easily proved by using Cauchy-Schwarz’s inequality, thanks to the regularity
assumptions on the forcing terms f and fr and on the boundary data gp and gr. O

6. Error analysis
In this section we derive error estimates for our discrete problems.

6.1. Approximation results

The tool at the base of DG-method error analysis are hp-interpolation estimates. Here, we
summarize the results contained in [36-38,40,41], where standard estimates on simplices are extended
to arbitrary polytopic elements.

First, we give the following definitions.

Definition 6.1. A covering T4 = {Tg} related to the polytopic mesh 7}, is a set of shape-regular
d-dimensional simplices T, such that for each E € 77, there exists a Tg € 74 such that E C T.

Assumption 6.1. [36-38,40,41] There exists a covering T4 of T}, (see Definition 6.1) and a positive
constant Ogq, independent of the mesh parameters, such that

rglaTxcard{E' €ET,: ENTg#0, T € Ty s.t. ECTg} < Oq,
S

and hr, < hg for each pair E € T, and Ty € Ty, with E C Tg.

Moreover, there exists a covering Fu of I, and a positive constant Or, independent of the mesh
parameters, such that

maxcard{F' €y, : FFNTr#0, Tr € F4 s.t. F CTr} < Or,

Fely,

and hr, < hy for each pair F € Iy, and Tr € Fy, with F C T.
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We can now state the following approximation result:

Lemma 6.2. [36-38,40,41] Let E € T, and T € Ty denote the corresponding simplex such that
E C T (see Definition 6.1). Suppose that v € L*(Q) is such that &v|p, € H®(Tg), for some rg > 0.
Then, if Assumption 5.1 and 6.1 are satisfied, there exists Tlv, such that ﬁvl £ € Py (E), and the following
bound holds

SE—q
= E
v = IVl gae) < e WE VI e (7). 0<qg<re (6.1
E
Moreover, if rg > 1/2,
sg—1/2
= E
v = IVl 208 S an\’”mf(n)- (6.2)
E

Here, sy = min(kg + 1, rg) and the hidden constants depend on the shape-regularity of Tg, but are
independent of v, hg, kg and the number of faces per element and & is the continuous extension operator
as defined in [72].

Proof. See [36] for a detailed proof of (6.1) and [38] for the proof of (6.2). |

Clearly, analogous approximation results can be stated on the fracture spaces, since Assumptions 5.1
and 6.1 are both satisfied.

6.2. Error estimates

For each subdomain Q;, i = 1,2, we denote by &; the classical continuous extension operator (cf. [72],
see also [59]) & : H*(Q;) — H*(RY), for s € N. Similarly, we denote by & the continuous extension
operator &t : H(I') — H*(R*!), for s € Ny. We then make the following regularity assumptions for the
exact solution (p, pr) of problem (3.1):

Assumption 6.3. Let T4 = {Tg} and F4 = {Tr} denote the associated coverings of Q and T, respectively,
of Definition 6.1. We assume that the exact solution (p, pr) is such that:

Al. forevery E € Ty, if E C Q,, it holds & pilr, € H*(Tg), withrg > 1 +d/2 and T € Ty with
ECTg;
A2. forevery F €Iy, it holds &rprlr, € HF(TF), withrp > 1 +(d —1)/2 and Tr € Fy with F C T.

Assumption 6.4. We assume that the normal components of the exact fluxes vVp and €rviVpr are
continuous across mesh interfaces, that is [vVp] = 0 on ¥, and [(rviVpr] = 0 on &,

From Proposition 5.11 and Strang’s second Lemma the following abstract error bound directly
follows.

Lemma 6.5. Assuming that the hypotheses of Proposition 5.11 are satisfied, for all the discrete problems
PP (4.17), MP (4.31), MM (4.41) and PM (4.41) the following abstract error bound holds
IR, ((p, pr), (W, wr))|

(p, pr) = (pr- pr)ll S inf  |[l(p, pr) = (g, qr)lll  +  sup ,
(g.qr)eQix Q) (wwr)eQx ol 1w, w)lll

where the residual R} is defined as

RZ*((pa pI‘)’ (W’ WF)) = ﬂ;?((p» pr)’ (W’ WF)) - LZ*(W’ WF),
with sx € {PP, MP, MM, PM}.
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Note that, irrespective of the numerical method chosen for the discretization (PP, MP, PM or MM),
the residual can always be split into two contributions, one deriving from the approximation of the
problem in the bulk and one deriving from the approximation of the problem in the fracture, i.e.,

R, ((p, pr), w,wr)) = R,(p, w) + Rr(pr, wr) (6.3)

It follows that, to derive a bound for the global residual, we can bound each of the two contributions
separately. With this in mind, we state and prove the next two lemmas.

Lemma 6.6. Let (p, pr) be the exact solution of problem (3.1) satisfying the regularity Assumptions 6.4
and 6.3. Then, for every w € Q°(h) and wr € Q" (h), it holds

2(sg—1) 2
k k
P 2 E 2 =2 -1, E E 2
R < D e 16 Pl [P max o' G2+ 35)] - Wl (6.4)
EeT, “E
2(sp=1) kp k2
F - — F
REprowol € 3 e 16 Pl | (75 )7 max oG+ i) Il (6.5)
Fel'y, “F

Proof. First, we prove (6.4). Let sz be the L*-orthogonal projector onto W’,’l, then, integrating by
parts elementwise, using the fact that p satisfies (2.2) and recalling that, from Assumption 6.4, [vVp]
vanishes on ¥/, we obtain the following expression for the residual R}

Ropow)= D) [0Tp =Ty @pil- [l ¥we Qb

Ferlurp <"

Employing the Cauchy-Schwarz’s inequality and the definition of the norm ||| - |||, we then obtain

IR, (P, W) < Z m?lfI{V(VP—HW;;(VP))}I2 Wil Yw e Q°(h).
F

FeFIURD

If we still denote by II the vector-valued generalization of the projection operator II defined in
Lemma 6.2, we observe that

> o fF (Vp - Ty (Vp)IP < ) o fF [v(Vp - IV

FeF uFy FeF Uy
+ Do f [(vIly (Vp = TV )
FeFluFpP F
= (1) +(2).
To bound the term (1), we employ the approximation result stated in Lemma 6.2. We obtain
2se-1)

h—l
1)< Z E 7. max o5 ENE PP
( ) ier, ké(rE—l)( EFCBE\F F kgl )” p”HE(TE)
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Exploiting, the boundedness of the permeability tensor v, the inverse inequality (5.1), the L2-stability of
the projector My and the approximation results stated in Lemma 6.2, we can bound term (2) as follows:

— K —
152 2 -1-2 “E 2
(2) S Z Flg%)\(l" O-F VE”HWZ(H(VP) Vp)”LZ(aE\r) S Z FlglaaE)h" O-F VEhE”H(Vp) Vp”LZ(E)

EeTy EeTy

h2(sE—l) k2

E 2 2 "FE -1

< Z —— & pll5- V.— max oy ),
fery k,zg(rE_l)H Pl Ehp reopvr ™" )
h

which concludes the proof of (6.4).
Proceeding as above we obtain the following expression for the residual RE:

Reprowr) = Y, [W(Tpr = Ty (Tpon)- el

] D e
eeal",h USF,h

Estimate (6.5) can then be proven with analogous arguments. O

Lemma 6.7. Let (p, pr) be the exact solution of problem (3.1) satisfying the regularity Assumptions 6.4
and 6.3. Then, for every w € Q°(h) and wr € Q' (h), it holds

2(sg—1) 2
k k
M 2 E 2 =2 -1, NE E 2
IR (. w) < E;h WIW{)IIH@(“)[(I + B max o7 GE + 35 - Il (6.6)
2(sp=1) kp k2
M 2 F 2 =T 2 -1 F 2
IRY (pr.wr)l? < Z‘ anprnwﬂ[(l + BTl max oy =+ 0] - el (67)

Proof. We focus on the proof of (6.6), estimate (6.7) can be obtained likewise. Recalling that wa
denotes the L?-orthogonal projector onto W, the residual R has the following expression:

RY(p.w)= Y f (V7 p—Thys (Vp)} =D [V(V p—Tyy (V)] ) W]+ f wr(Vp—Tly(Vp)nr,
FeFuFP F Fef,p d
where we have used the identity .Z/*°([p]) = —G) and the continuity of ¥Vp across internal faces

(Assumption 6.4). From Cauchy-Schwarz and triangular inequalities and the bound on the coefficient b
(4.23), we have

IR (p, )l s( o7 f [v(Vp - TITp)IP + f [Ty (Vp — TV )]
F F

FeFIURp

+B Y o7 fF v(Vp - TP + fF |[[Vng(Vp—ﬁ(Vp))]]|2]) Wl

FeFluFP

where we recall that, with a slight abuse of notation, I still denotes the vector-valued generalization
of the projection operator I1 defined in Lemma 6.2. The thesis now follows from the boundedness of
the permeability tensor v, the inverse inequality (5.1), the L?-stability of the projector HW'Z and the
approximation results stated in Lemma 6.2.

O
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Theorem 6.8. Let T4 = {Tr} and F» = {Tr} denote the associated coverings of Q and T', respectively,
consisting of shape-regular simplexes as in Definition 6.1, satisfying Assumptions 6.1. Let (p, pr) be the
solution of problem (3.1) and (py, pr,) € Q% X Q; be its approximation obtained with the method PP, MP,
MM or PM, with the penalization parameters given by (5.2) and (5.3) and oy and oy sufficiently large
for the primal formulations. Moreover, suppose that the exact solution (p, pr) satisfies the regularity
Assumptions 6.4 and 6.3. Then, the following error bound holds:

2(35 1) hz(.&p 1)
1P, po)=(pa P s Y % - £ Gyl ke VENE Pl Y = = LG ke VNP ey

EeT), Fel,

where the &p is to be interpreted as & p, when E C Q, or as &p, when E C Q,. Here, sp =
min(kg + 1,7g) and sp = min(kg + 1,rp), and the constants are defined according to the chosen
approximation method as follows:

GE(hE,kE,vE) = Vg +hEk maa)\( or + (ar +,8r)hEk +th kg maa)§ O'F +th k maa)\( O'Fl,
E\T

G (hp, kg, V%) = Volr + hpkp' max o, + arhrkyz” + (Volp)*hip kp max o' + (Volr)* by k- max o,
eCOF eCOF eCOF
Ggl(hE, kE, T’E) = ‘_/E + hEkEI max or + (Q’r +ﬁl")hEk1_51
FCOE\T
+ (1 + BV2hilky max o' + (1 + By2h: k2 max o,
( Wehy EFcaE\r P Wehe Epcopr T

G¥ (hp, kp,Ve) = Volr + hpky! max o, + arh:k;?

+ (1 + Br)(¥pbr)*hy ke max o'+ (1 + Bp)(nbr)*hi ki max o'
Proof. From Lemma 6.5 we know that the error satisfies the following bound

. IRy((p, pr), (W, wr))|
Cp, pr) = (Prspelll < inf |[l(p, pr) = (g.qplll+  sup 2 . (6.8)
(MF)EQZXQ,E (W,WF)GQfXQE ”l(w, WF)|||

I 11

We estimate the two terms on the right-hand side of (6.8) separately. We can rewrite term [ as

I=inf (llp=qlhe +llpr - arllhe + lp = g. pr = qrli7)
(g.9r)eQoxQf,

< |lp - Tplg +llpr - Oprl3g +(p - p, pr — pp)3.
(a) (b) (c)

Again we consider each of the three terms separately. To bound term (a), we exploit the two
approximation results stated in Lemma 6.2 and obtain

(@ < lp=Tiplh = > V'V -TIplls + > orllp = TIpliE
E<Ti FefuF P

_ = 2 7112
< Z [VElp - leHl(E) + (Fgglli)il" O-F)”p - Hp”Lz(ﬂE\F)]

EeTy
2(55 1) hZ(SE 1/2)
S Z kZ(rE D E”éap“HrE(TE) + Z 2(rE 1/2) (Fma%\r O-F)”(g)p”H'E(TE)]
EcT), E FcaE\F
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2(sg—-1
=> £||£ [ £ ey o ))
- 2050 1 Pllarerp\VE kg FCOE\T Fl)
EeTy, “E

Using analogous interpolation estimates on the fracture we can bound term (b) as follows:

(b) < llpr = Tprllhg < D VGV (pr = Tpoll + > oelllpr = Tpr]iy,

/ D
Fely e8], UEL,

2(sp—1) hF
F 2 o
< _ -
< X i, s+ sy
Ferh F

Finally, for term (c), we have

(©) < W(p=Tip, pr=Tipp)I2 < Br Y Mp=TIplIEs y +ar D Mp=TIpHEe +ar Y lipr=TIprls .

Fely, Fely, Fely,

Exploiting the approximation result (6.2), we obtain

2sg—1)
By Wlp =Tpay <Br ) I =Tiplsy < B, ———I6plE,
L2(F) = PT L2(0E) ~ PT 20re-1) H'E(TE)
FeTy, E€Th EeT;, k
OENT#0 OENT'#0
2sg—1)
h
_ e 2 ng
=B ), |6 Plman
EeT, RE E
AENT#0
Similarly, we have
2sg-1) i
71012 E 2 E
ar ) Mp = Tplfpy s ar D) s lE Pl
FeT), EeTi, KE
OENT+0

Finally, using the interpolation estimates for the fracture, we deduce that

h2S1: 2(sp=1) h2

T 2 F 2 _ F 2 F
ar ) o =Tprlfi < ar D ol plieay = v ), a6 P, -
Fel'y, Fel'y, Fel, “F F

In conclusion, combining all the previous estimates, we can bound the term / on the right-hand side of
(6.8) as follows:

2(sg—1) hE hE
15 ) Ny |7 + 7= max o + (ar + Br)o- |
~ 2>rg-1) HE(Tp)|VE F r T
b7, ki E kg FCoE\T kg
hz(S[:—l) h h2
F 2 =T F F
+ 3 g 16 Pl P+ o max o +apr | (69)
Fel', ™F - F

Finally, the desired estimates follow from the combination of (6.9), together with the bound on Term 71
deriving from what observed in (6.3) and Lemmas 6.6 and 6.7. O
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Finally, from the above result we can derive some error estimates also for the velocities u and ur.

Theorem 6.9. Let all the hypotheses of Theorem 6.8 hold. Let (w,ur) € W, and (p, pr) € M be the
solution of problem (3.1). Then:

o if ((pn,un), pra) € QZ X Wz X Qg is its approximation obtained with the MP method (4.26), it holds

2(sg-1) 2(sp—1)

2 E M 2 F P 2 .
e —walls s, $ D 2 GENE P ey + | s GG Pl
EeT), kE Fely, kF

o if (pu, (pro,ury)) € Q) X Q) X W, is its approximation obtained with the PM method (4.35), it
holds

2(55 1) 2(SF 1))
2 } : P } : M
||zer _ul",h”(),rh < kZ(VE 1)GE||éap||H,E(Tb) + 20T G ||£Fpr||H”F(T[,),
EcT), Fel'y, “F

o if ((pn>un), (Praurs)) € Q8 x Wi x QF x W} is its approximation obtained with the MM method
(4.40), it holds

2(sg-1) 2(sp—1)
2 2 E M 2 F M 2
e = w7, + e — By, < T O Pl + > S O prlle

EcT, “E Fel', “F

where the constants G, G%, G and GY are defined as in Theorem 6.8.

Proof. Let ((pn,ws), prn) and ((pn, pra), (s, ury)) be the discrete solutions obtained with the MP
method and with the MM method, respectively. Then, using identity (4.29) and the fact that .Z"”([p]) =
-Gy, we can rewrite

w, —u =vVp, + v ([pu]) + vG» — vVp = v(Vp, — Vp) + v.Z,([pr — P]).

From the uniform boundedness of v, the triangular inequality, the bound on the lifting (5.6) and the
definition of the || - ||pg norm it follows that

lu — uhHO,‘i’,, < ||V1/2V(Ph = Dllo T, T ||V1/20%LDG([[ph - P]])Ho:rh

1/2

1+B
< Ipu = pllo + —>-lloy
Ty

lpn — P]]||o,¢h’u7-"hD < lpw = pllpe-

In particular, this implies that [[u — wllo7, < l(p, pr) — (Pr, pra)lll. Similarly, one can prove that, if
(pn» (prasury)) and ((pr, pra), (W, ury,)) are the discrete solutions obtained with the PM method and
with the MM method, respectively, it holds |jur — urllor, < (P, pr) — (Pr, pra)lll- The thesis is now a
direct consequence of Theorem 6.8. O

7. Numerical experiments
In this section we present some two-dimensional numerical experiments with the aim of validating
the obtained theoretical convergence results and of comparing the accuracy of the proposed formulations.

In particular, we will focus on the paradigmatic primal-primal and mixed-primal settings. This means
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that, for the approximation of the problem in the bulk, we will employ the SIPDG method in the first
setting and the LDG method in the second setting, while, for the problem in the fracture, we will employ
the SIPDG method in both settings. All the numerical tests have been implemented in MarLaB™~. For
the generation of polygonal meshes conforming to the fractures we have suitably modified the code
PolyMesher [73].

In particular, we present three sets of numerical experiments. The first set (Sections 7.1 and 7.2) is
obtained assuming that analytical solutions are known and aims at verifying the a-priori error estimates
obtained in Theorems 6.8 and 6.9. The second set (Section 7.3) is derived from physical considerations
and aims at testing how different values of the fracture permeability may influence the flow in the bulk.
Finally, the last set of experiments (Section 7.4) aims at showing how the method is capable of handling
more complicated geometries, specifically networks of partially immersed fractures.

7.1. Example 1: Analytical solution with constant fracture pressure

In this first test case we take Q = (0, 1)? and choose as exact solutions in the bulk and in the fracture
F'={x,y)eQ: x+y=1}

{em inQ,, {—em inQ,, 2nr

n
u= pr=e+ ——e.
4 . .
et + %e in 0, - in), V2

It is easy to prove that u, p and pr satisfy the coupling conditions (2.5a)—(2.5b) with & = 1, ¢r = 0.001
and v = vr = L. Note that in this case fr = 0 since the solution in the fracture is constant and [u] = 0.

Figure 2 shows three successive levels of refinements for the polygonal mesh employed in this set of
experiments. In order to test the behaviour of the energy norm of the error, thus validating the
h-convergence properties of our methods proved in Theorem 6.8, we compute the quantity
llp = pullig, + llpr = prallir, (Figure 3(a) and 3(b)). We also want to validate the results of Theorem 6.9
for the velocity, computing |[u — w,||2) (Figure 3(e)). In addition, we test the behaviour of the L*-norm
of the error for the primal unknowns, i.e., [|p — pulli2@) + llpr — Pl (Figure 3(c) and 3(d)). All the
plots in Figure 3 show the computed errors as a function of the inverse of the mesh size i (loglog scale).
Each plot consists of four lines: Every line shows the behaviour of the computed error for a different
polynomial degree in the bulk (we consider uniform degree kx = k = 1,2,3,4 for all E € 7},). For the
fracture problem we always choose uniform quadratic polynomial degree, i.e., kr = kr = 2 for all
F €T On the left we report the results obtained with the (MP) approximation scheme and on the right
with the (PP) scheme. We observe that, for both methods, the convergence rates are superoptimal with
respect to the expected rate of min(k, kr-) (they coincide with the bulk polynomial degree k). This is
probably due to the constant nature of the solution in the fracture. Indeed this behaviour will not be
observed in the next set of experiments, cf. Section 7.2, where the solution in the fracture is
trigonometric. Moreover, Figure 3(c) and 3(d)) show that one order of convergence is gained for the
L*-norm. Finally, one can clearly see that the level of accuracy achieved by the (PP) and (MP) schemes
is the same.

Mathematics in Engineering Volume 2, Issue 2, 340-385.



372

(a) (b) (©

Figure 2. Example 1: Three refinements of the polygonal mesh grid aligned with the fracture.
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Figure 3. Example 1: Computed errors as a function of 1/4 (loglog scale) and convergence
rates for bulk polynomial degree k = 1, 2, 3, 4 and fracture polynomial degree kr = 2, obtained
with the (MP) approximation scheme (left) and (PP) scheme (right).
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7.2. Example 2: Analytical solution with non-constant fracture pressure

Next, we consider the domain Q = (0, 1) and the fracture I' = {(x,y) € Q : x = 0.5}. We reproduce
the numerical test already proposed in [59] for the primal-primal setting, choosing the exact solutions in
the bulk and in the fracture as follows

pr = &[cos(2) + sin(2)] cos(my).

_|sin(4x) cos(ry) if x <0.5,
cos(4x)cos(my) if x > 0.5,

We impose Dirichlet boundary conditions on the whole Q2 and also on dI'. Notice that coupling
conditions (2.5a)—(2.5b) are satisfied provided that we take v = I, and fr = 2, that is v}./{r = 4. The
source terms are then chosen accordingly as

fr = cos(my)[cos(2) + sin(2)](Evin® + {ji).
T

_ | sin(4x) cos(zy)(16 + 7*)  if x < 0.5,
B cos(4x) cos(my)(16 + %) if x > 0.5,

In the experiments, we set the components of the fracture permeability tensor vi. = 10% and vi=4- 1072,
we set the fracture thickness ¢ = 1072 and the closure parameter ¢ = %. As before, in order to test the
h-convergence properties of the primal-primal and mixed-primal schemes, we compute the quantity
lp = pulli7, + lpr = prallir,. In Figure 4 we show the computed errors as a function of the inverse
of the mesh size h (loglog scale), together with the expected convergence rates. As before, we fix
the polynomial degree for the fracture problem kr = 2, and we vary the polynomial degree for the
problem in the bulk taking k = 1,2, 3, 4. Figure 4(a) encloses the results obtained with the mixed-primal
approximation, while Figure 4(b) with the primal-primal approximation. In each plot, the four lines
describe the behaviour of the energy norm of the error for a different polynomial degree in the bulk.
Notice that in this case, for both the (PP) and (MP) method, the theoretical convergence rates are clearly
obtained, coinciding with min(k, kr-) (no superconvergence is observed). In particular, the convergence
rate is equal to 1 when the approximation in the bulk is linear, i.e., when k = 1 and it is equal to 2 in
all the other cases, since we always choose a quadratic approximation for the problem in the fracture.
Moreover, we remark that also in this case the (PP) and (MP) methods achieve the same level of accuracy.
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Figure 4. Computed errors as a function of 1/A (loglog scale) and expected convergence rates
for uniform bulk polynomial degrees k = 1,2,3,4 and fixed uniform fracture polynomial
degree ki = 2. Case (MP) on the left and (PP) on the right.

7.3. Example 3: Discontinuous fracture permeability

Next, we reproduce some numerical experiments first presented in [47]. We examine two test cases
with bulk domain Q = (0,2) x (0, 1) and fracture domain I = {(x,y) € R? : x =1, 0 < y < 1}. In the
first case, we consider a fracture with constant permeability, while in the second case we consider a
fracture with lower permeability in its middle part, thus presenting a discontinuity. In particular:

(a) Case 1: constant permeability: The permeability tensor in the fracture is given by v{. = v = 100.
The bulk permeability v is chosen to be constant and isotropic, i.e., v = I. We impose Dirichlet
boundary conditions on the left and right side of the bulk domain and homogeneous Neumann
conditions on the top and bottom sides. On the fracture boundaries we impose Dirichlet boundary
conditions.

(b) Case 2: discontinous permeabilty: The fracture I is subdivided into two areas having different
values for the permeability tensor: In the initial and ending part of the fracture I'y = {(x,y) €
I 0 <y <0.25 and 0.75 <y < 1} the permeability tensor vr, is defined as vﬁl = v}l = 1, while
in the middle part I'; = {(x,y) € I,0.25 < y < 0.75} the permeability is low and is defined as
vr, = vr, = 0.002. The bulk permeability tensor is chosen again equal to the identity matrix, i.e.,
v = L In the bulk, we impose the same boundary conditions as in the previous test case, while at
the fracture extremities we impose homogeneous Neumann conditions.

The two geometrical configurations are shown in Figures 5(a)-5(b), together with the boundary
conditions. For both test cases we take the fracture thickness ¢ = 0.01 and the model parameter ¢ = 2/3.
Moreover, we discretize the problem in the bulk taking as polynomial degree k = 1 and the problem in
the fracture taking kr = 2.

The obtained results are shown in Figure 6. For both cases (constant at the top, discontinuous at the
bottom) we report the pressure field and Darcy velocity in the bulk (here the grid is very coarse only
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for visualization purposes) and the value of the pressure along the fracture. In the first case, since we
have taken v{. = v{. = 100 > 1, we can observe that the fluid has the tendency to flow along the fracture.
In the second case, one can see that the part of the fracture with low (normal) permeability acts as a
geological barrier, so that the fluid tends to avoid it and we can observe a jump of the bulk pressure
across it. Our results are in agreement with those obtained in [47].

pr = 1 Ur- 7= 0
L]
u-n=0 u-n=0 u-n=0 i u-n=0
ey
() — —
Il vr I Il vr, I
Y S Y Y
H
u-n=0 u-n=0 u-n=0 0 w.n=0
pr = 0 U -7= 0
(a) Constant permeability (b) Discontinuous permeability

Figure 5. Example 3: Computational domains and boundary conditions for the two test cases.
In the second case, on the fracture, the permeable (red, dotted line) and impermeable (blue,
solid line) areas are shown.

7.4. Example 4: Network of partially immersed fractures

With this last set of numerical experiments we investigate the capability of our discretization method
to deal with more complicated geometrical configurations, considering a network of partially immersed
fractures. Our reference is, in this case, [51], where the mathematical model developed in [47] has been
extended to fully immersed fractures. In [59] we showed that our method in a primal-primal setting is
capable of efficiently handling the configuration. Here, we reproduce the same numerical experiments
to demonstrate that this holds true also in a mixed-primal setting.

In order to deal with immersed fractures, we need to supplement our model (2.6) with an equation
describing the behaviour of the fracture pressure at the immersed tips. Following [51], we impose a
homogeneous Neumann condition, thus assuming that the mass transfer across the immersed tips can
be neglected, i.e., viV.pr - T = 0 on dI'. At the extremities of the fractures that are non-immersed, i.e.,
Jl' N 9Q2, we impose boundary conditions that are consistent with those imposed on d€ in that point.

We consider the bulk domain Q = [0, 1]* cut by a network made of four partially immersed
fractures: T}, = {(x,y) € [0,1]> : x > 0.3,y = 0.2}, I, = {(x,y) € [0,1]> : x < 0.7,y = 0.4},
I3 ={(x,y) €[0,11*> : x> 0.3,y = 0.6} and I'; = {(x,y) € [0,1]* : x < 0.7,y = 0.8}. We perform two
numerical experiments. In both of them, the fractures I'; and I'y are impermeable (vi. = v{ = 1072), while
I'y and I'; are partially permeable. In the first configuration, we consider for I'; and I'5 the permeabilities
Vi = 1072 and vi. = 100, while in the second, we consider v{. = 1072 and vi. = 1. Moreover, we vary the
imposed boundary conditions as illustrated in Figure 7.

In both the experiments we consider an isotropic bulk permeability tensor i.e., v = I and we assume
that all the fractures have aperture £ = 0.01. The flow is only generated by boundary conditions, since
we take all the forcing terms f = fr = 0. Finally, we choose as model parameter & = (.55.
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Figure 6. Example 3: Bulk pressure field (left), bulk Darcy velocity (middle) and fracture
pressure (right) for the constant permeability (top) and discontinuous permeability (bottom)
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Figure 7. Example 4: Configurations and boundary condition for the two test cases.
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To obtain our results, we employed cartesian grids featuring approximately the same number of
elements as those employed in [51] and such that the immersed tips of the fractures coincide with one
of the mesh vertices. For the approximation of the problem in the bulk and in the fracture we chose the
polynomial degrees k = kr = 2. In Figure 8, we show the results obtained for the two test cases with a
mesh of 26051 elements. In particular, we report the pressure field in the bulk with the streamlines of
the velocity (left), the value of the bulk pressure along the line x = 0.65 (middle) and the pressure field
inside the four fractures (right). Our results are in perfect agreement with those obtained in [51] and
in [59], thus showing that, also in a mixed-primal setting, our method is able to efficiently handle this
configuration.

Pressure field and streamlines Pressure along x = 0.65 Pressure in the fracture
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Figure 8. Example 4: First configuration (top) and second configuration (bottom).
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8. Conclusions

In this paper we have proposed a formulation based on discontinuous Galerkin methods on
polygonal/polyhedral grids for the simulation of flows in fractured porous media. In particular, we have
designed and analysed, in the unified framework of [63] based on the flux-formulation, a polyDG
approximation for all the possible combinations of primal-primal, mixed-primal, primal-mixed and
mixed-mixed formulations for the bulk and fracture problems, respectively. The novelty of our method
relies on the imposition of coupling conditions between bulk and fracture through a suitable definition
of the numerical fluxes on the fracture faces. We have proved in an unified setting the well-posedness of
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all the formulations and we have derived a priori hp-version error estimates in a suitable
(mesh-dependent) energy norm, whose validity has been assessed performing some preliminary
numerical experiments, focusing on the paradigmatic primal-primal and mixed-primal methods. In our
test cases we have also compared, in a simplified setting, the performance of our approximation
schemes. In particular, we have shown that the same level of accuracy may be obtained irrespective of
the chosen method. The other the factors that should be taken into account when choosing which one
between the (PP), (MP), (PM), and (MM) setting to employ, are summarized in the following.

e The desired accuracy in the approximation of the physical quantities (pressure and velocity)
according to the application at hand. The primal approach considers a single-field formulation
with the pressure field of the fluid as only unknown, so that velocity may only be afterwards
reconstructed taking the gradient of the computed pressure and multiplying it by the permeability
tensor. This process usually entails a loss of accuracy and does not guarantee mass conservation,
see for example [61, 62], so it may not be suitable for those Engineering applications (such as oil
recovery or groundwater pollution modeling) where the simulation of the phenomenon requires
very accurate approximation of the velocities of the involved fluids in order to be effective. In such
cases, the mixed approach should be preferred, so that Darcy’s velocity can be directly computed
and a higher degree of accuracy can be achieved, together with local and global mass conservation.

e The numerical linear algebra resulting from the discretization. The primal setting has the advantage
of featuring less degrees of freedom and leads to a symmetric positive definite algebraic system of
equations, which can be efficiently solved based on employing, for example, multigrid techniques
[39,44,60]. The mixed approach leads to a so-called generalized saddle point system of equations.
For example, in the MP setting, problem (4.26) translates into an algebraic system of the form

M B 0
-BT S+ C C, R
0 Cg Ar + A{f

where, referring to Eq. (4.27):

— M is the mass matrix related to the bilinear form M,;

— B is related to the bilinear form By;

— S is related to the bilinear form Sy;

— (, is related to the terms involving only bulk unknowns contained in the interface bilinear
forms J; and 15;

— C; is related to the terms involving both bulk and fracture unknowns in 7 and 75;

— Ar is related to the fracture primal bilinear form A’;

— AR is related to the terms involving only fracture unknowns contained in the interface bilinear
forms 7 and 7,, which result in a reaction term for the fracture problem.

In this case the Schur complement of M, i.e. the matrix D+ B M~'B, with D = S+G C ],

CZT Ar + A{g
can be computed explicitly, thanks to the fact that, in the DG setting, M either has a block-diagonal
or a diagonal structure, depending on whether a modal or nodal expansion is chosen to span the
discrete space. We also point out that the mixed case involves a (three-time) larger number of
unknowns, so that efficient memory handling may be needed.
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e The conditioning of the resulting systems. The behaviour of the condition number and the
possibility of building efficient preconditioners is certainly of fundamental importance in the
choice between the primal or mixed approach, especially for three-dimensional problems. We did
not address this issue in the present work. However, one may refer to [76], where preconditioners
for the system stemming from the discretization of problem (2.6) in mixed-mixed form, employing
mimetic finite differences, are constructed. In the DG setting, for the hp—preconditioning of
systems stemming from the discretization of diffusion problems, the reader may refer to [71] for
standard grids and to [39,44,78] for the extension to the polytopic setting.

Finally, we mention that our method may be extended in order to deal with network of intersecting
fractures. To this aim, the mathematical model needs to be complemented with some suitable physical
conditions at the intersections, prescribing the behaviour of the fluid. One possible choice is to impose
pressure continuity and flux conservation as in [52,74]. From the DG-discretization point of view,
the key point to deal with this case is the generalization of the concepts of jump and average at the
intersections. We refer to [75] for a rigorous analysis of the method in the primal-primal setting and
to [59] for a preliminary numerical test case involving a totally immersed network of fractures.
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