Research article Special Issues

Some comparison results and a partial bang-bang property for two-phases problems in balls

  • Received: 30 June 2021 Revised: 28 December 2021 Accepted: 04 January 2022 Published: 27 January 2022
  • In this paper, we present two type of contributions to the study of two-phases problems. In such problems, the main focus is on optimising a diffusion function $ a $ under $ L^\infty $ and $ L^1 $ constraints, this function $ a $ appearing in a diffusive term of the form $ -{{\nabla}} \cdot(a{{\nabla}}) $ in the model, in order to maximise a certain criterion. We provide a parabolic Talenti inequality and a partial bang-bang property in radial geometries for a general class of elliptic optimisation problems: namely, if a radial solution exists, then it must saturate, at almost every point, the $ L^\infty $ constraints defining the admissible class. This is done using an oscillatory method.

    Citation: Idriss Mazari. Some comparison results and a partial bang-bang property for two-phases problems in balls[J]. Mathematics in Engineering, 2023, 5(1): 1-23. doi: 10.3934/mine.2023010

    Related Papers:

  • In this paper, we present two type of contributions to the study of two-phases problems. In such problems, the main focus is on optimising a diffusion function $ a $ under $ L^\infty $ and $ L^1 $ constraints, this function $ a $ appearing in a diffusive term of the form $ -{{\nabla}} \cdot(a{{\nabla}}) $ in the model, in order to maximise a certain criterion. We provide a parabolic Talenti inequality and a partial bang-bang property in radial geometries for a general class of elliptic optimisation problems: namely, if a radial solution exists, then it must saturate, at almost every point, the $ L^\infty $ constraints defining the admissible class. This is done using an oscillatory method.



    加载中


    [1] G. Allaire, Shape optimization by the homogenization method, New York: Springer, 2002. http://dx.doi.org/10.1007/978-1-4684-9286-6
    [2] A. Alvino, P. Lions, G. Trombetti, A remark on comparison results via symmetrization, P. Roy. Soc. Edinb. A, 102 (1986), 37–48. http://dx.doi.org/10.1017/S0308210500014475 doi: 10.1017/S0308210500014475
    [3] A. Alvino, P.-L. Lions, G. Trombetti, Comparison results for elliptic and parabolic equations via Schwarz symmetrization, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 37–65. http://dx.doi.org/10.1016/S0294-1449(16)30303-1 doi: 10.1016/S0294-1449(16)30303-1
    [4] A. Alvino, P.-L. Lions, G. Trombetti, Comparison results for elliptic and parabolic equations via symmetrization: a new approach, Differ. Integral Equ., 4 (1991), 25–50.
    [5] A. Alvino, C. Nitsch, C. Trombetti, A Talenti comparison result for solutions to elliptic problems with Robin boundary conditions, 2019, arXiv: 1909.11950.
    [6] A. Alvino, G. Trombetti, Sulle migliori costanti di maggiorazione per una classedi equazioni ellittiche degeneri, Ricerche Mat., 27 (1978), 413–428.
    [7] A. Alvino, G. Trombetti, A lower bound for the first eigenvalue of an elliptic operator, J. Math. Anal. Appl., 94 (1983), 328–337. http://dx.doi.org/10.1016/0022-247X(83)90066-5 doi: 10.1016/0022-247X(83)90066-5
    [8] A. Alvino, G. Trombetti, P. Lions, On optimization problems with prescribed rearrangements, Nonlinear Anal. Theor., 13 (1989), 185–220. http://dx.doi.org/10.1016/0362-546X(89)90043-6 doi: 10.1016/0362-546X(89)90043-6
    [9] C. Bandle, Isoperimetric inequalities and applications, Pitman Publishing, 1980.
    [10] J. Casado-Díaz, Smoothness properties for the optimal mixture of two isotropic materials: The compliance and eigenvalue problems, SIAM J. Control Optim., 53 (2015), 2319–2349. http://dx.doi.org/10.1137/140971087 doi: 10.1137/140971087
    [11] J. Casado-Díaz, Some smoothness results for the optimal design of a two-composite material which minimizes the energy, Calc. Var., 53 (2015), 649–673. http://dx.doi.org/10.1007/s00526-014-0762-5 doi: 10.1007/s00526-014-0762-5
    [12] J. Casado-Díaz, A characterization result for the existence of a two-phase material minimizing the first eigenvalue, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2016), 1215–1226. http://dx.doi.org/10.1016/j.anihpc.2016.09.006 doi: 10.1016/j.anihpc.2016.09.006
    [13] F. Caubet, T. Deheuvels, Y. Privat, Optimal location of resources for biased movement of species: the 1D case, SIAM J. Appl. Math., 77 (2017), 1876–1903. http://dx.doi.org/10.1137/17M1124255 doi: 10.1137/17M1124255
    [14] C. Conca, A. Laurain, R. Mahadevan, Minimization of the ground state for two phase conductors in low contrast regime, SIAM J. Appl. Math., 72 (2012), 1238–1259. http://dx.doi.org/10.1137/110847822 doi: 10.1137/110847822
    [15] C. Conca, R. Mahadevan, L. Sanz, An extremal eigenvalue problem for a two-phase conductor in a ball, Appl. Math. Optim., 60 (2009), 173–184. http://dx.doi.org/10.1007/s00245-008-9061-x doi: 10.1007/s00245-008-9061-x
    [16] M. Dambrine, D. Kateb, On the shape sensitivity of the first Dirichlet eigenvalue for two-phase problems, Appl. Math. Optim., 63 (2010), 45–74. http://dx.doi.org/10.1007/s00245-010-9111-z doi: 10.1007/s00245-010-9111-z
    [17] G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. http://dx.doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965
    [18] A. Henrot, M. Pierre, Shape variation and optimization: a geometrical analysis, Switzerland: European Mathematical Society Publishing House, 2018.
    [19] B. Kawohl, Rearrangements and convexity of level sets in PDE, Berlin, Heidelberg: Springer, 1985. http://dx.doi.org/10.1007/BFb0075060
    [20] S. Kesavan, Symmetrization and applications, World Scientific, 2006. http://dx.doi.org/10.1142/6071
    [21] J. J. Langford, P. McDonald, Extremizing temperature functions of rods with Robin boundary conditions, 2021, arXiv: 2101.09600.
    [22] A. Laurain, Global minimizer of the ground state for two phase conductors in low contrast regime, ESAIM: COCV, 20 (2014), 362–388. http://dx.doi.org/10.1051/cocv/2013067 doi: 10.1051/cocv/2013067
    [23] E. Lieb, M. Loss, Analysis, Providence, Rhode Island: American Mathematical Society, 2001.
    [24] I. Mazari, Quantitative estimates for parabolic optimal control problems under $l^\infty$ and $l^1$ constraints in the ball: Quantifying parabolic isoperimetric inequalities, Nonlinear Anal., 215 (2022), 112649. http://dx.doi.org/10.1016/j.na.2021.112649 doi: 10.1016/j.na.2021.112649
    [25] I. Mazari, G. Nadin, Y. Privat, Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate, Commun. Part. Diff. Eq., in press. http://dx.doi.org/10.1080/03605302.2021.2007533
    [26] I. Mazari, G. Nadin, Y. Privat, Shape optimization of a weighted two-phase Dirichlet eigenvalue, Arch. Rational Mech. Anal., 243 (2022), 95–137. http://dx.doi.org/10.1007/s00205-021-01726-4 doi: 10.1007/s00205-021-01726-4
    [27] L. Migliaccio, Sur une condition de Hardy, Littlewood, Polya, C. R. Acad. Sci. Paris Sér. I Math., 297 (1983), 25–28.
    [28] J. Mossino, Inégalités isopérimétriques et applications en physique, Paris: Hermann, 1984.
    [29] J. Mossino, J. M. Rakotoson, Isoperimetric inequalities in parabolic equations, Ann. Scuola Norm. Sci. Ser. 4, 13 (1986), 51–73.
    [30] F. Murat, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients, Annali di Matematica, 112 (1977), 49–68. http://dx.doi.org/10.1007/BF02413475 doi: 10.1007/BF02413475
    [31] F. Murat, L. Tartar, Calculus of variations and homogenization, In: Topics in the mathematical modelling of composite materials, Boston, MA: Birkhäuser, 1997,139–173. http://dx.doi.org/10.1007/978-1-4612-2032-9_6
    [32] G. Nadin, The principal eigenvalue of a space–time periodic parabolic operator, Annali di Matematica, 188 (2009), 269–295. http://dx.doi.org/10.1007/s10231-008-0075-4 doi: 10.1007/s10231-008-0075-4
    [33] F. D. Pietra, C. Nitsch, R. Scala, C. Trombetti, An optimization problem in thermal insulation with Robin boundary conditions, Commun. Part. Diff. Eq., 46 (2021), 2288–2304. http://dx.doi.org/10.1080/03605302.2021.1931885 doi: 10.1080/03605302.2021.1931885
    [34] J. V. Ryff, Majorized functions and measures, Proc. Acad. Sci. Amsterdam, 71 (1968), 431–437.
    [35] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304–318. http://dx.doi.org/10.1007/BF00250468 doi: 10.1007/BF00250468
    [36] G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sci. Ser. 4, 3 (1976), 697–718.
    [37] G. Trombetti, J. L. Vazquez, A symmetrization result for elliptic equations with lower-order terms, Annales de la Faculté des sciences de Toulouse: Mathématiques Ser. 5, 7 (1985), 137–150.
    [38] J. L. Vazquez, Symétrisation pour $u_t = {\Delta}\varphi(u)$ et applications, C. R. Acad. Sci. Paris Sér. I Math., 295 (1982), 71–74.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1661) PDF downloads(180) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog