Research article Special Issues

A predator-prey fractional model with disease in the prey species

  • Received: 19 December 2023 Revised: 07 February 2024 Accepted: 07 February 2024 Published: 18 February 2024
  • In this paper, we study a generalized eco-epidemiological model of fractional order for the predator-prey type in the presence of an infectious disease in the prey. The proposed model considers that the disease infects the prey, causing them to be divided into two classes, susceptible prey and infected prey, with different density-dependent predation rates between the two classes. We propose logistic growth in both the prey and predator populations, and we also propose that the predators have alternative food sources (i.e., they do not feed exclusively on these prey). The model is evaluated from the perspective of the global and local generalized derivatives by using the generalized Caputo derivative and the generalized conformable derivative. The existence, uniqueness, non-negativity, and boundedness of the solutions of fractional order systems are demonstrated for the classical Caputo derivative. In addition, we study the stability of the equilibrium points of the model and the asymptotic behavior of its solution by using the Routh-Hurwitz stability criteria and the Matignon condition. Numerical simulations of the system are presented for both approaches (the classical Caputo derivative and the conformable Khalil derivative), and the results are compared with those obtained from the model with integro-differential equations. Finally, it is shown numerically that the introduction of a predator population in a susceptible-infectious system can help to control the spread of an infectious disease in the susceptible and infected prey population.

    Citation: Ilse Domínguez-Alemán, Itzel Domínguez-Alemán, Juan Carlos Hernández-Gómez, Francisco J. Ariza-Hernández. A predator-prey fractional model with disease in the prey species[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 3713-3741. doi: 10.3934/mbe.2024164

    Related Papers:

  • In this paper, we study a generalized eco-epidemiological model of fractional order for the predator-prey type in the presence of an infectious disease in the prey. The proposed model considers that the disease infects the prey, causing them to be divided into two classes, susceptible prey and infected prey, with different density-dependent predation rates between the two classes. We propose logistic growth in both the prey and predator populations, and we also propose that the predators have alternative food sources (i.e., they do not feed exclusively on these prey). The model is evaluated from the perspective of the global and local generalized derivatives by using the generalized Caputo derivative and the generalized conformable derivative. The existence, uniqueness, non-negativity, and boundedness of the solutions of fractional order systems are demonstrated for the classical Caputo derivative. In addition, we study the stability of the equilibrium points of the model and the asymptotic behavior of its solution by using the Routh-Hurwitz stability criteria and the Matignon condition. Numerical simulations of the system are presented for both approaches (the classical Caputo derivative and the conformable Khalil derivative), and the results are compared with those obtained from the model with integro-differential equations. Finally, it is shown numerically that the introduction of a predator population in a susceptible-infectious system can help to control the spread of an infectious disease in the susceptible and infected prey population.



    加载中


    [1] I. D. J. May, Population dynamics models in ecology, J. Center Graduates Res. Technol. Instit. Mérida, 32 (2016), 50–55.
    [2] O. Osuna, G. Villavicencio, Review of the state of the art on eco-epidemiological models, AVANZA Algebra Bio-Math. Dynam. Syst., 3 (2019), 27–58.
    [3] W. O. Kermack, A. G. McKendrick. A contribution to the mathematical theory of epidemics, Proceed. Royal Soc. London Series A Contain. Papers Math. Phys. Character, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [4] S. Biswas, S. K. Sasmal, S. Samanta, M. Saifuddin, N. Pal, J. Chattopadhyay., Optimal harvesting and complex dynamics in a delayed eco-epidemiological model with weak Allee effects, Nonlinear Dynam., 87 (2017), 1553–1573. http://dx.doi.org/10.1007/s11071-016-3133-2 doi: 10.1007/s11071-016-3133-2
    [5] M. Saifuddin, S. K. Sasmal, S. Biswas, S. Sarkar, M. Alquran, J. Chattopadhyay, Effect of emergent carrying capacity in an eco-epidemiological system, Math. Methods Appl. Sci., 39 (2016), 806–823. http://dx.doi.org/10.1002/mma.3523 doi: 10.1002/mma.3523
    [6] R. M. Anderson, R. M. May, The invasion, persistence and spread of infectious diseases within animal and plant communities, Philosoph. Transact. Royal Soc. London B Biol. Sci., 314 (1986), 533–570. https://doi.org/10.1098/rstb.1986.0072 doi: 10.1098/rstb.1986.0072
    [7] K. P. Hadeler, H. I. Freedman, Predator-prey populations with parasitic infection, J. Math. Biol., 27 (1989), 609–631. http://dx.doi.org/10.1007/BF00276947 doi: 10.1007/BF00276947
    [8] D. Greenhalgh, Q. J. Khan, J. S. Pettigrew, An eco-epidemiological predator-prey model where predators distinguish between susceptible and infected prey, Math. Methods Appl. Sci., 40 (2017), 146–166. http://dx.doi.org/10.1002/mma.3974 doi: 10.1002/mma.3974
    [9] D. Greenhalgh, Q. J. Khan, F. A. Al-Kharousi, Eco-epidemiological model with fatal disease in the prey, Nonlinear Anal. Real World Appl., 53 (2020), 103072. http://dx.doi.org/10.1016/j.nonrwa.2019.103072 doi: 10.1016/j.nonrwa.2019.103072
    [10] M. Moustafa, M. H. Mohd, A. I. Ismail, F. A. Abdullah, Dynamical analysis of a fractional-order eco-epidemiological model with disease in prey population, Adv. Differ. Equat., (2020), 1–24. http://dx.doi.org/10.1186/s13662-020-2522-5 doi: 10.1186/s13662-020-2522-5
    [11] N. Juneja, K. Agnihotri, Global stability of harvested prey–predator model with infection in predator species, Inform. Decision Sci., 559–568. http://dx.doi.org/10.1007/978-981-10-7563-692_58 doi: 10.1007/978-981-10-7563-692_58
    [12] P. J. Pal, M. Haque, P. K. Mandal, Dynamics of a predator–prey model with disease in the predator, Math. Methods Appl. Sci., 37 (2014), 2429–2450. http://dx.doi.org/10.1002/mma.2988 doi: 10.1002/mma.2988
    [13] S. Rana, S. Samanta, S. Bhattacharya, The interplay of Allee effect in an eco-epidemiological system with disease in predator population, Bull. Calcutta Math. Soc., 108 (2016), 103–122.
    [14] K. Agnihotri, N. Juneja, An eco-epidemic model with disease in both prey and predator, IJAEEE, 4 (2015), 50–54.
    [15] X. Gao, Q. Pan, M. He, Y. Kang, A predator–prey model with diseases in both prey and predator, Phys. A Statist. Mechan. Appl., 392 (2013), 5898–5906. http://dx.doi.org/10.1016/j.physa.2013.07.077 doi: 10.1016/j.physa.2013.07.077
    [16] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, 204 (2006).
    [17] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, (1998).
    [18] P. Bosch, J. M. Rodríguez, J. M. Sigarreta, Oscillation results for a nonlinear fractional differential equation, AIMS Math., 8 (2023), 12486–12505. http://dx.doi.org/10.3934/math.2023627 doi: 10.3934/math.2023627
    [19] R. Khalil, M. Al-Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. http://dx.doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [20] P. M. Guzman, G. Langton, L. M. Lugo, J. Medina, J. N. Valdés, A new definition of a fractional derivative of local type, J. Math. Anal., 9 (2018), 88–98.
    [21] A. Fleitas, J. E. Nápoles, J. M. Rodríguez, J. M. Sigarreta, Note on the generalized conformable derivative, Revista de la Unión Matemática Argentina, 62 (2021), 443–457. http://dx.doi.org/10.33044/revuma.1930 doi: 10.33044/revuma.1930
    [22] R. Almeida, Analysis of a fractional SEIR model with treatment, Appl. Math. Letters, 84 (2018), 56–62. http://dx.doi.org/10.1016/j.aml.2018.04.015 doi: 10.1016/j.aml.2018.04.015
    [23] F. J. Ariza, J. Sanchez, M. Arciga, L. X. Vivas, Bayesian Analysis for a Fractional Population Growth Model, J. Appl. Math., 2017 (2017). http://dx.doi.org/10.1155/2017/9654506 doi: 10.1155/2017/9654506
    [24] F. J. Ariza, M. P. Arciga, J. Sanchez, A. Fleitas, Bayesian derivative order estimation for a fractional logistic model, Mathematics, 8 (2020), 109. https://doi.org/10.3390/math8010109 doi: 10.3390/math8010109
    [25] F. J. Ariza, L. M. Martin, M. P. Arciga, J. Sanchez, Bayesian inversion for a fractional Lotka-Volterra model: An application of Canadian lynx vs. snowshoe hares, Chaos Solit. Fract., 151 (2021), 111278. https://doi.org/10.1016/j.chaos.2021.111278 doi: 10.1016/j.chaos.2021.111278
    [26] L. Bolton, A. H. Cloot, S. W. Schoombie, J. P. Slabbert, A proposed fractional-order Gompertz model and its application to tumour growth data, Math. Med. Biol. J. IMA, 32 (2015), 187–209. http://dx.doi.org/10.1093/imammb/dqt024 doi: 10.1093/imammb/dqt024
    [27] K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever, Nonlinear Dynam., 71 (2013), 613–619. http://dx.doi.org/10.1007/s11071-012-0475-2 doi: 10.1007/s11071-012-0475-2
    [28] J. C. Hernández, R. Reyes, J. M. Rodríguez, J. M. Sigarreta, Fractional model for the study of the tuberculosis in Mexico, Math. Methods Appl. Sci., 45 (2022), 10675–10688. http://dx.doi.org/10.1002/mma.8392 doi: 10.1002/mma.8392
    [29] O. Rosario, A. Fleitas, J. F. Gómez, A. F. Sarmiento, Modeling alcohol concentration in blood via a fractional context, Symmetry, 12 (2020), 459. https://doi.org/10.3390/sym12030459 doi: 10.3390/sym12030459
    [30] E. Ahmed, A. M. A. El-Sayed, H. A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models, J. Math. Anal. Appl., 325 (2007), 542–553. http://dx.doi.org/10.1016/j.jmaa.2006.01.087 doi: 10.1016/j.jmaa.2006.01.087
    [31] M. Das, A. Maiti, G. P. Samanta, Stability analysis of a prey-predator fractional order model incorporating prey refuge, Ecolog. Genet. Genom., 7 (2018), 33–46. http://dx.doi.org/10.1016/j.egg.2018.05.001 doi: 10.1016/j.egg.2018.05.001
    [32] J. P. C Dos Santos, L. C. Cardoso, E. Monteiro, N. H. Lemes, A fractional-order epidemic model for bovine babesiosis disease and tick populations, Abstract Appl. Anal., 2015. http://dx.doi.org/10.1155/2015/729894 doi: 10.1155/2015/729894
    [33] G. González, A. J. Arenas, B. M. Chen, A fractional order epidemic model for the simulation of outbreaks of influenza A (H1N1), Math. Methods Appl. Sci., 37 (2014), 2218–2226. https://doi.org/10.1002/mma.2968 doi: 10.1002/mma.2968
    [34] H. Li, J. Cheng, H. B. Li, S. M. Zhong, Stability analysis of a fractional-order linear system described by the Caputo–Fabrizio derivative, Mathematics, 7 (2019), 200. http://dx.doi.org/10.3390/math7020200 doi: 10.3390/math7020200
    [35] H. Li, A. MuhammadhajI, L. Zhang, Z. Teng, Stability analysis of a fractional-order predator–prey model incorporating a constant prey refuge and feedback control, Adv. Differ. Equat., (2018), 1–12. http://dx.doi.org/10.1186/s13662-018-1776-7 doi: 10.1186/s13662-018-1776-7
    [36] C. Maji, Dynamical analysis of a fractional-order predator–prey model incorporating a constant prey refuge and nonlinear incident rate, Model. Earth Syst. Environ., 8 (2022), 47–57. http://dx.doi.org/10.1007/s40808-020-01061-9 doi: 10.1007/s40808-020-01061-9
    [37] E. Okyere, F. Oduro, S. Amponsah, I. Dontwi, N. Frempong, Fractional order SIR model with constant population, British J. Math. Computer Sci., 14 (2016), 1–12. http://dx.doi.org/10.9734/BJMCS/2016/23017 doi: 10.9734/BJMCS/2016/23017
    [38] J. A. Méndez-Bermúdez, K. Peralta-Martinez, J. M. Sigarreta, E. D. Leonel, Leaking from the phase space of the Riemann–Liouville fractional standard map, Chaos Solit. Fract., 172 (2023), 113532. http://dx.doi.org/10.1016/j.chaos.2023.113532 doi: 10.1016/j.chaos.2023.113532
    [39] N. H. Abel, Solving some problems using definite integrals, Mag. Nat. Sci., (1823), 10–12.
    [40] N. H. Abel, Solving a mechanical problem, Journal Pure Appl. Math., 1 (1826), 153–157.
    [41] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [42] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Sci., 20 (2016), 763. http://dx.doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [43] Q. J. Khan, B. S. Bhatt, R. P. Jaju, Switching model with two habitats and a predator involving group defence, J. Nonlinear Math. Phys., 5 (1998), 212. http://dx.doi.org/10.2991/jnmp.1998.5.2.11 doi: 10.2991/jnmp.1998.5.2.11
    [44] Q. J. Khan, M. Al-Lawatia, F. A. Al-Kharousi, Predator–prey harvesting model with fatal disease in prey, Math. Methods Appl. Sci., 39 (2016), 2647–2658. http://dx.doi.org/10.1002/mma.3718 doi: 10.1002/mma.3718
    [45] Q. J. Khan, F. A. Al-Kharousi, Prey-predator eco-epidemiological model with nonlinear transmission of disease, J. Med. Biol. Sci. Res., 4 (2018), 57–71.
    [46] Z. M. Odibat, N. T. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput., 186 (2007), 286–293. http://dx.doi.org/10.1016/j.amc.2006.07.102 doi: 10.1016/j.amc.2006.07.102
    [47] A. Boukhouima, K. Hattaf, N. Yousfi, Dynamics of a fractional order HIV infection model with specific functional response and cure rate, Int. J. Differ. Equat., (2017). http://dx.doi.org/10.1155/2017/8372140 doi: 10.1155/2017/8372140
    [48] S. K. Choi, B. Kang, N. Koo, Stability for Caputo fractional differential systems, Abstract Appl. Anal., 2014. http://doi.org/10.1155/2014/631419 doi: 10.1155/2014/631419
    [49] E. Ahmed, A. M. A. El-Sayed, H. A. El-Saka, On some Routh–Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems, Phys. Letters A, 358 (2006), 1–4. http://dx.doi.org/10.1016/j.physleta.2006.04.087 doi: 10.1016/j.physleta.2006.04.087
    [50] B. Aguirre, C. A. Loredo, E. C. Díaz, E. Campos, Stability of systems by means of Hurwitz polynomials, J. Math. Theory Appl., 24 (2017), 61–77. http://dx.doi.org/10.15517/rmta.v24i1.27751 doi: 10.15517/rmta.v24i1.27751
    [51] D. Matignon, Stability results for fractional differential equations with applications to control processing, Comput. Eng. Syst. Appl., 2 (1996), 963–968.
    [52] I. Petráš, Fractional-order nonlinear systems: Modeling, analysis and simulation, Springer Science & Business Media, (2011).
    [53] H. Rezazadeh, H. Aminikhah, A. H. R. Sheikhani, Stability Analysis of Conformable Fractional Systems, Iranian J. Numer. Anal. Optimiz., 7 (2017), 13–32. https://doi.org/10.22067/ijnao.v7i1.46917 doi: 10.22067/ijnao.v7i1.46917
    [54] C. Vargas-De-León, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 75–85. http://dx.doi.org/10.1016/j.cnsns.2014.12.013 doi: 10.1016/j.cnsns.2014.12.013
    [55] C. Xu, W. Ou, Y. Pang, Q. Cui, M. ur Rahman, M. Farman, et al., Hopf bifurcation control of a fractional-order delayed turbidostat model via a novel extended hybrid controller, MATCH Commun. Math. Computer Chem., 91 (2024), 367–413. http://dx.doi.org/10.46793/match.91-2.367X doi: 10.46793/match.91-2.367X
    [56] C. Xu, Z. Liu, P. Li, J. Yan, L. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Letters, 55 (2023), 6125–6151. http://dx.doi.org/10.1007/s11063-022-11130-y doi: 10.1007/s11063-022-11130-y
    [57] P. Li, Y. Lu, C. Xu, J. Ren, Insight into Hopf Bifurcation and Control Methods in Fractional Order BAM Neural Networks Incorporating Symmetric Structure and Delay, Cognit. Comput., 15 (2023), 1825. http://dx.doi.org/10.1007/s12559-023-10155-2 doi: 10.1007/s12559-023-10155-2
    [58] P. Li, X. Peng, C. Xu, L. Han, S. Shi, Novel extended mixed controller design for bifurcation control of fractional‐order Myc/E2F/miR‐17‐92 network model concerning delay, Math. Methods Appl. Sci., 46 (2023), 18878–18898. http://dx.doi.org/10.1002/mma.9597 doi: 10.1002/mma.9597
    [59] Y. Zhang, P. Li, C. Xu, X. Peng, R. Qiao, Investigating the Effects of a Fractional Operator on the Evolution of the ENSO Model: Bifurcations, Stability and Numerical Analysis, Fractal Fract., 7 (2023), 602. http://dx.doi.org/10.3390/fractalfract7080602 doi: 10.3390/fractalfract7080602
    [60] W. Ou, C. Xu, Q. Cui, Y. Pang, Z. Liu, J. Shen, et al., Hopf bifurcation exploration and control technique in a predator-prey system incorporating delay, AIMS Math., 9 (2024), 1622–1651. http://dx.doi.org/10.3934/math.2024080 doi: 10.3934/math.2024080
    [61] Q. Cui, C. Xu, W. Ou, Y. Pang, Z. Liu, P. Li, et al., Bifurcation Behavior and Hybrid Controller Design of a 2D Lotka–Volterra Commensal Symbiosis System Accompanying Delay, Mathematics, 11 (2023), 4808. http://dx.doi.org/10.3390/math11234808 doi: 10.3390/math11234808
    [62] C. Xu, Y. Zhao, J. Lin, Y. Pang, Z. Liu, J. Shen, et al., Mathematical exploration on control of bifurcation for a plankton–oxygen dynamical model owning delay, J. Math. Chem., (2023), 1–31. http://dx.doi.org/10.1007/s10910-023-01543-y doi: 10.1007/s10910-023-01543-y
    [63] C. Xua, Q. Cui, Z. Liu, Y. Pan, X. Cui, W. Ou, et al., Extended hybrid controller design of bifurcation in a delayed chemostat model, MATCH Commun. Math. Computer Chem., 90 (2023), 609–648. http://dx.doi.org/10.46793/match.90-3.609X doi: 10.46793/match.90-3.609X
    [64] A. Fleitas, J. A. Méndez, J. E. Nápoles, J. M. Sigarreta, On fractional Liénard-type systems, Mexican J. Phys., 65 (2019), 618–625. http://dx.doi.org/10.31349/RevMexFis.65.618 doi: 10.31349/RevMexFis.65.618
    [65] P. Tomášek, On Euler methods for Caputo fractional differential equations, Arch. Math., 59 (2023), 287–294. http://dx.doi.org/10.5817/AM2023-3-287 doi: 10.5817/AM2023-3-287
    [66] J. Chattopadhyay, N. Bairagi, Pelicans at risk in Salton Sea-an eco-epidemiological model, Ecolog. Model., 136 (2001), 103–112. https://doi.org/10.1016/S0304-3800(00)00350-1 doi: 10.1016/S0304-3800(00)00350-1
    [67] J. Chattopadhyay, P. D. N Srinivasu, N. Bairagi, Pelicans at risk in Salton Sea-an eco-epidemiological model-Ⅱ, Ecolog. Model., 167 (2003), 199–211. https://doi.org/10.1016/S0304-3800(03)00187-X doi: 10.1016/S0304-3800(03)00187-X
    [68] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(484) PDF downloads(72) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog